

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: The homomorphisms of the pseudo-orthogonal group of the index one into an abelian group

Author: Erwin Kasparek

Citation style: Kasparek Erwin. (1989). The homomorphisms of the pseudoorthogonal group of the index one into an abelian group. "Demonstratio Mathematica" (Vol. 22, nr 3 (1989) s. 763-771), doi 10.1515/dema-1989-0315

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

DEMONSTRATIO MATHEMATICA

Vol. XXII No 3 1989

Erwin Kasparek

THE HOMOMORPHISMS OF THE PSEUDO-ORTHOGONAL GROUP OF THE INDEX ONE INTO AN ABELIAN GROUP

In the paper [1] there has been determined all the homomorphisms of a pseudo- orthogonal subgroup GL(2,R) into the multiplication group of reals numbers. In this paper we will solve this problem for a pseudo-orthogonal subgroup of the index one of the group GL(n,R).

Denote by E, the diagonal matrix of the form

$$E_{1} = \begin{bmatrix} 1 & & & \\ & \cdot & & 0 \\ & & \cdot & & \\ 0 & 1 & & \\ & & & -1 \end{bmatrix}$$

and the pseudo-orthogonal subgroup $O_i(n,R)$ of the index one we define as follows

$$O_1(n, R) = \{A \in GL(n, R) : A^T E_1 A = E_1\}$$
.

It is easy to show the following.

L e m m a 1. Let G be an arbitrary group and N its normal subgroup. If there is a subgroup $H \in G$ such that (i) $N \cap H = \{e\}$, where e is the neutral element of G, (ii) for each element $g \in G$ there are $n \in N$ and $h \in H$ such that g = nh (g = hn), then the function φ : G \longrightarrow H determined by (ii) is a homomorphism.

Theorem 1. Let G be an arbitrary group and K its commutator group. If there is a subgroup H c G such that the conditions (i) and (ii) of Lemma 1 are satisfied (for N = K), then f is a homomorphism of the group G into an abelian group \mathcal{A} if and only if there is a homomorphism $\tilde{f} : H \longrightarrow \mathcal{A}$ such that $f = \tilde{f} \circ \varphi$, where φ is the homomorphism defined in Lemma 1.

Proof. (Necessity). Let $g \in G$ and g = kh, $k \in K$, h \in H be the unique decomposition of g. Then f(g) = f(k)f(h), but f(k) is equal to the neutral element of the group A, thus

(0) f(g) = f(h).

Denote by \tilde{f} the restriction of the f to the subgroup H. Finally, from (0) we have $f = \tilde{f} \circ \varphi$.

(Sufficiency). It is not hard to show, that if $\tilde{f} : H \longrightarrow A$ is a homomorphism then the function $f : G \longrightarrow A$, where $f = \tilde{i} \circ \varphi$ is a homomorphism too.

To solve our problem we shall find the commutator group and the subgroup H of the group $O_1(n,R)$ such that the cionditions (i) and (ii) of Lemma 1 are satisfied. Then by Theorem 1 it suffices to determine all the homomorphisms of the subgroup H into an abelian group.

Lemma 2. For each matrix $A = (a_{ij})$ of the group $O_1(n,R)$ we have :

(a) the function $\alpha : 0_1(n, R) \longrightarrow \{-1, 1\}$ determined by $\alpha(A) =$ sgn a is a homomorphism ,

(b) if the diagonal matrix

does not coincide with identity matrix then it does not belong to the commutator group of the group $O_1(n,R)$.

Proof. (a) Let $A = (a_{ij})$, $B = (b_{ij})$ be two arbitrary matrices of $O_1(n,R)$ and C = AB with the elements c_{ij} .

Then $c_{nn} = \sum_{s=1}^{n-1} a_{ns} b_{sn} + a_{nn} b_{nn}$. Using the Cauchy-Buniakowski inequality we get

$$\left| \begin{array}{c} n-1 \\ \sum \\ s=1 \end{array} \right| a_{ns} b_{sn} \right| \leq \left| \begin{array}{c} n-1 \\ \sum \\ s=1 \end{array} \right| a_{ns}^{2} \left| \begin{array}{c} n-1 \\ \sum \\ s=1 \end{array} \right| b_{sn}^{2}$$

But

$$\sum_{s=1}^{n-1} a_{ns}^2 = a_{nn}^2 - 1 \quad \text{and} \quad \sum_{s=1}^{n-1} b_{sn}^2 = b_{nn}^2 - 1 ,$$

thus

$$\left| \sum_{s=1}^{n-1} a_{ns} b_{sn} \right| < \left| a_{nn} b_{nn} \right| .$$

Finally, we have

$$a_{nn}b_{nn} - |a_{nn}b_{nn}| < c_{nn} < a_{nn}b_{nn} + |a_{nn}b_{nn}|$$

thus

1) if $a_{nn} b_{nn} > 0$ then $c_{nn} > 0$ 2) if $a_{nn} b_{nn} < 0$ then $c_{nn} < 0$. Now it is obvious that (a) holds. (b) If $A \in O_1(n, R)$ then $A^{-1} = E_1 A^T E_1$. Thus the element \tilde{a}_{nn} of the matrix A^{-1} is equal to the element a_{nn} of the matrix A. Therefore if $C = (c_{1j})$ is the commutator of A and B, then by (a) we have $c_{n} > 0$. Now if C is the finite product of the commutators then by (a) and by the fact that detC = 1 we conclude that (b) is true.

Theorem 2. For each matrix $A \in O_1(n, R)$ the product

$$\begin{bmatrix} \operatorname{sgn} \frac{\det A}{a_{nn}} & & & \\ & 1 & 0 & \\ & \ddots & & \\ 0 & 1 & \\ & & \operatorname{sgn} a_{nn} \end{bmatrix} A$$

belongs to the commutator group of the group $O_1(n, R)$.

Proof. Any matrix $A \in O_1(n, R)$ can be written in the so-called block form. Namely

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{a}_{nn} \end{bmatrix}$$

where A is a square (n-1)x(n-1) matrix. The inverse matrix A^{-1} has the form

$$A^{-1} = \begin{bmatrix} A_{11}^{T} & -A_{21}^{T} \\ & & \\ -A_{12}^{T} & a_{nn} \end{bmatrix}$$

On the other hand, the element a_{nn} of A^{-1} is equal to the algebraic adjunct of a_{nn} divided by the determinant of A. Since $a_{nn} \neq 0$ therefore A_{11} is nonsingular. Thus there are two orthogonal matrices ϑ_1 and ϑ_2 such that $D_{11} = \vartheta_1^T A_{11} \vartheta_2$ is the diagonal matrix, whose elements are the square roots of the eigenvalues of the matrix $A_{11}A_{11}^T$ and det $\vartheta_1 = 1$. Thus we have

(1)
$$\begin{bmatrix} \vartheta_1^{\mathsf{T}} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{a}_{nn} \end{bmatrix} \begin{bmatrix} \vartheta_2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathsf{D}_{11} & \mathsf{D}_{12} \\ \mathsf{D}_{21} & \mathsf{D}_{22} \end{bmatrix}$$

The right-side of (1) is an element of the group $O_1(n,R)$. Therefore in the matrices D_{12} and D_{21} at most one element is different from zero. If however the element d_{in} of the matrix D_{12} is equal to zero, then the element d_{ni} of the matrix D_{21} is equal to zero too, and the element d_{ni} of the matrix D_{21} is equal to zero too, and the element d_{11} of the matrix D_{11} satisfies the condition $d_{11} = 1$. Thus there is a permutation matrix P such that

$$P^{T}D_{11}P = \begin{bmatrix} 1 & & & \\ & \ddots & & 0 \\ & & \ddots & 0 \\ & & 0 & & 1 \\ & & & & 1 \\ & & & & & 1 \end{bmatrix}$$

- 767 -

and det P = 1. Now we can write

(2)
$$\begin{bmatrix} P^{T} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} P & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & 0 \\ & & 1 \\ \hline & & & 1 \\ \hline & & & 1 \\ \hline & & & 0 \\ \hline & & & 1 \end{bmatrix}$$

where

$$\lambda - x^2 = 1$$
, $\lambda - y^2 = 1$, $x^2 - a_{nn}^2 = -1$, $y^2 - a_{nn}^2 = -1$, $y(\overline{\lambda}) - x = 0$.

From these equations we get

$$y = x \operatorname{sgn} a_{nn}$$
 and $\sqrt{\lambda} = |a_{nn}|$

 \mathbf{Put}

(3)
$$\varepsilon = \operatorname{sgn} a_{\operatorname{nn}}$$
.

From this and (1), (2) we get

$$(4) \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & & \\ & \cdot & 0 \\ & 0 & & \epsilon \end{bmatrix} \begin{bmatrix} \tilde{\vartheta}_{1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & | 0 \\ \cdot & 1 \\ 0 \\ - & | a_{nn} | \\ x \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ x \\ - & | a_{nn} | \end{bmatrix} \begin{bmatrix} \tilde{\vartheta}_{2} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

where $\tilde{\vartheta}_1 = \vartheta_1 P$ and $\tilde{\vartheta}_2 = P^T \vartheta_2^T$. Since $a_{nn}^2 - x^2 = 1$ and det $\tilde{\vartheta}_1 = 1$ thus det $A = \varepsilon$ det $\tilde{\vartheta}_2$.

Now from (3) and from the fact that $(\det A)^2 = 1$ we conclude that

det
$$\tilde{\vartheta}_2 = \operatorname{sgn} \frac{\operatorname{det A}}{\operatorname{a_{nn}}}$$
.

Put

(5)
$$\eta = \operatorname{sgn} \frac{\operatorname{det} A}{a_{nn}}$$

- 768 -

.

Finally the condition (4) can be written in the form

(6)
$$A = \begin{bmatrix} \eta_{1} & & \\ & 0 & \\ & & 1 \\ & 0 & \varepsilon \end{bmatrix} \begin{bmatrix} \vartheta_{1}^{*} & 0 \\ & 0 & \\ & & 0 \end{bmatrix} \begin{bmatrix} 1 & & 0 & \\ & 0 & \\ & & 0 \\ 0 & |\mathbf{a}_{nn}| & \\ \hline 0 & 0 & x & |\mathbf{a}_{nn}| \end{bmatrix} \begin{bmatrix} \vartheta_{2}^{*} & 0 \\ & \vartheta_{2}^{*} & 0 \\ & & 0 \\ 0 & 1 \end{bmatrix}$$

where

$$\vartheta_1^* = \begin{bmatrix} \eta & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \widetilde{\vartheta}_1 \begin{bmatrix} \eta & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \vartheta_2^* = \begin{bmatrix} \eta & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \widetilde{\vartheta}_2.$$

Since det $\vartheta_1^* = \det \vartheta_2^* = 1$ therefore the orthogonal matrices

$$\begin{bmatrix} \vartheta_1^* & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \vartheta_2^* & 0 \\ 0 & 1 \end{bmatrix}$$

are the elements of the commutator group of the group $O_1(n,R)$. We will show that the matrix

$$\begin{bmatrix} 1 & & & 0 \\ & & 0 & \\ & & 1 \\ 0 & |\mathbf{a}_{nn}| & \mathbf{x} \\ \hline 0 & \dots 0 & \mathbf{x} & |\mathbf{a}_{nn}| \end{bmatrix}$$

belongs to the commutator group of the group $O_1(n,R)$ too. Indeed, let

$$|\mathbf{a}_{nn}| = cht = \frac{\mathbf{e}^t + \mathbf{e}^{-t}}{2}$$

and

$$x = sht = \frac{e^t - e^{-t}}{2}$$

It is easy to verify that

$$\begin{bmatrix} \operatorname{cht}, \ \operatorname{sht}\\ \operatorname{sht}, \ \operatorname{cht} \end{bmatrix} = \begin{bmatrix} \operatorname{ch} \frac{\mathrm{t}}{2}, \ \operatorname{sh} \frac{\mathrm{t}}{2}\\ \operatorname{sh} \frac{\mathrm{t}}{2}, \ \operatorname{ch} \frac{\mathrm{t}}{2} \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} \operatorname{ch} \frac{\mathrm{t}}{2}, \ \operatorname{sh} \frac{\mathrm{t}}{2}\\ \operatorname{sh} \frac{\mathrm{t}}{2}, \ \operatorname{ch} \frac{\mathrm{t}}{2} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}^{-1}.$$

From this and from (6) we conclude that the theorem is proved.

Put

$$\mathbf{E} = \begin{bmatrix} 1 & & \\ & & \\ 0 & & 1 \end{bmatrix}, \quad \mathbf{E}_{1} = \begin{bmatrix} 1 & & \\ & & \\ 0 & & -1 \end{bmatrix}, \quad \mathbf{E}^{1} = \begin{bmatrix} -1 & & \\ & 1 & & \\ 0 & & 1 \end{bmatrix}, \quad \mathbf{E}_{1}^{1} = \begin{bmatrix} -1 & & \\ & 1 & & \\ 0 & & 1 \end{bmatrix}, \quad \mathbf{E}_{1}^{1} = \begin{bmatrix} -1 & & \\ & 1 & & \\ 0 & & 1 \end{bmatrix},$$

C o r o l l a r y. The subgroup $H = \{E, E^1, E_1, E_1^1\}$ and the commutator group of the group $O_1(n, R)$ satisfy the conditions (i) and (ii) of Lemma 1. Thus the function $\varphi : O_1(n, R) \longrightarrow H$ determined by

(7)
$$\varphi(A) = \begin{bmatrix} \operatorname{sgn} \frac{\det A}{a_{nn}} & 1 & 0 \\ 0 & 1 & \\ & & \operatorname{sgn} a_{nn} \end{bmatrix}$$

is a homomorphism.

Theorem 3. A function $f : O_1(n, \mathbb{R}) \longrightarrow A$ is a homomorphism into the abelian group A if and only if there exist elements $a, b \in A$ such that $a^2 = b^2 = e$ and $f(A) = e , \quad \text{if } \varphi(A) = E ,$ $f(A) = a , \quad \text{if } \varphi(A) = E ,$ $f(A) = b , \quad \text{if } \varphi(A) = E^{1} ,$ $f(A) = ab, \quad \text{if } \varphi(A) = E^{1} .$ P r o o f. By Theorem 1 we have $(8) \qquad \qquad f = \tilde{f} \circ \varphi .$

where \tilde{f} : $H \longrightarrow A$ is a homomorphism and φ is determined by (7). It is easy to show that any homomorphism \tilde{f} : $H \longrightarrow A$ has the form

 $\tilde{f}(E) = e$, $\tilde{f}(E_1) = a$, $\tilde{f}(E^1) = b$, $\tilde{f}(E_1^1) = ab$, where $a^2 = b^2 = e$ and conversely. From this and (8) we conclude that the theorem is proved.

REFERENCES

 M. Lorens, W. Kędzierski: Rozwiązanie równania f(AB) = f(A)f(B) na grupie macierzy pseudoortogonalnych drugiego stopnia, Rocznik Naukowo-Dydaktyczny WSP w Rzeszowie, Matematyka, No 5/41 (1979).

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, 40-007 KATOWICE, POLAND Received October 21, 1987.