

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: The homomorphisms of the pseudo-orthogonal group of the index one into an abelian group

Author: Erwin Kasparek

Citation style: Kasparek Erwin. (1989). The homomorphisms of the pseudoorthogonal group of the index one into an abelian group. "Demonstratio Mathematica" (Vol. 22, nr 3 (1989) s. 763-771), doi 10.1515/dema-1989-0315

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska-Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

DEMONSTRATIO MATHEMATICA

Vol. XXII No 31989

Erwin Kasparek

THE HOMOMORPHISMS OF THE PSEUDO-ORTHOGONAL GROUP OF THE INDEX ONE INTO AN ABELIAN GROUP

In the paper [1] there has been determined all the homomorphisms of a pseudo- orthogonal subgroup GL(2,R) into the multiplication group of reals numbers. In this paper we will solve this problem for a pseudo-orthogonal subgroup of the index one of the group $\mathrm{GL}(\mathrm{n}, \mathrm{R})$.

Denote by E_{1} the diagonal matrix of the form

$$
E_{1}=\left[\begin{array}{lllll}
1 & & & & \\
& \cdot & & 0 & \\
& 0 & \cdot & 1 & \\
& 0 & & & -1
\end{array}\right]
$$

and the pseudo-orthogonal subgroup $O_{1}(n, R)$ of the index one we define as follows

$$
O_{1}(n, R)=\left\{A \in G L(n, R): A^{T} E_{1} A=E_{1}\right\}
$$

It is easy to show the following.
Lemma 1. Let G be an arbitrary group and N its normal subgroup. If there is a subgroup $H \subset G$ such that (i) $N \cap H=\{e\}$, where e is the neutral element of G, (ii) for each element $g \in G$ there are $n \in N$ and $h \in H$ such that $g=n h(g=h n)$,
then the function $\varphi: G \longrightarrow H$ determined by (ii) is a homomorphism.

Theorem 1. Let G be an arbitrary group and K its commutator group. If there is a subgroup $H \subset G$ such that the conditions (i) and (ii) of Lemma 1 are satisfied (for $N=$ K), then f is a homomorphism of the group G into an abelian group A if and only if there is a homomorphism $\tilde{f}: H \longrightarrow A$ such that $f=\tilde{f} \circ \varphi$, where φ is the homomorphism defined in Lemma 1.

Proof. (Necessity). Let $g \in G$ and $g=\mathbf{k h}, \quad \mathbf{k} \in \mathbf{K}$, $h \in H$ be the unique decomposition of g. Then $f(g)=f(k) f(h)$, but $f(k)$ is equal to the neutral element of the group A, thus

$$
\begin{equation*}
f(g)=f(h) \tag{0}
\end{equation*}
$$

Denote by \tilde{f} the restriction of the f to the subgroup H. Finally, from (0) we have $f=\tilde{f} \circ \varphi$.
(Sufficiency). It is not hard to show, that if $\tilde{\mathbf{f}}: \mathrm{H} \longrightarrow$ A is a homomorphism then the function $f: G \longrightarrow A$, where $f=$ $\tilde{i} \circ \varphi$ is a homomorphism too.

To solve our problem we shall find the commutator group and the subgroup H of the group $O_{1}(n, R)$ such that the cionditions (i) and (ii) of Lemma 1 are satisfied. Then by Theorem 1 it suffices to determine all the homomorphisms of the subgroup H into an abelian group.

Lemma 2. For each matrix $A=\left(a_{i j}\right)$ of the group $O_{1}(n, R)$ we have :
(a) the function $\alpha: O_{1}(n, R) \longrightarrow\{-1,1\}$ determined by $\alpha(A)=$ $\operatorname{sgn} a_{n n}$ is a homomorphism ,
(b) if the diagonal matrix

$$
\left[\begin{array}{ccccc}
\operatorname{sgn} \frac{\operatorname{det} A}{a_{n n}} & & & & \\
& & & & 0 \\
& & & \ddots & \\
0 & & & & \\
& & & & \operatorname{sgn} a_{n n}
\end{array}\right]
$$

does not coincide with identity matrix then it does not belong to the commutator group of the group $O_{1}(n, R)$.

Proof. (a) Let $A=\left(a_{1 j}\right), B=\left(b_{1 j}\right)$ be two arbitrary matrices of $O_{1}(n, R)$ and $C=A B$ with the elements $c_{1 j}$.
Then $c_{n n}=\sum_{s=1}^{n-1} a_{n s} b_{s n}+a_{n n} b_{n n}$. Using the Cauchy-Buniakowski inequality we get

$$
\left|\sum_{s=1}^{n-1} a_{n s} b_{s n}\right| \leq \sqrt{\sum_{s=1}^{n-1} a_{n s}^{2}} \sqrt{\sum_{s=1}^{n-1} b_{s n}^{2}} .
$$

But

$$
\sum_{s=1}^{n-1} a_{n s}^{2}=a_{n n}^{2}-1 \quad \text { and } \quad \sum_{s=1}^{n-1} b_{s n}^{2}=b_{n n}^{2}-1
$$

thus

$$
\sum_{s=1}^{n-1} a_{n s} b_{s n}\left|<\left|a_{n n} b_{n n}\right| .\right.
$$

Finally, we have

$$
a_{n n} b_{n n}-\left|a_{n n} b_{n n}\right|<c_{n n}<a_{n n} b_{n n}+\left|a_{n n} b_{n n}\right|,
$$

thus

1) if $a_{n n} b_{n n}>0$ then $c_{n n}>0$
2) if $a_{n n} b_{n n}<0$ then $c_{n n}<0$.

Now it is obvious that (a) holds.
(b) If $A \in O_{1}(n, R)$ then $A^{-1}=E_{1} A^{T} E_{1}$. Thus the element $\tilde{a}_{n n}$ of the matrix A^{-1} is equal to the element $a_{n n}$ of the matrix A. Therefore if $C=\left(c_{i j}\right)$ is the commutator of A and B, then by (a) we have $c_{n n}>0$.

Now if C is the finite product of the commutators then by (a) and by the fact that $\operatorname{det} C=1$ we conclude that (b) is true.

Theorem 2. For each matrix $A \in O_{1}(n, R)$ the product

$$
\left[\begin{array}{ccccc}
\operatorname{sgn} \frac{\operatorname{det} A}{a_{n n}} & & & & \\
& 1 & & 0 & \\
& \ddots & & \\
0 & & 1 & \\
& & & & \operatorname{sgn} a_{n n}
\end{array}\right] A
$$

belongs to the commutator group of the group $O_{1}(n, R)$.
Proof. Any matrix $A \in O_{1}(n, R)$ can be written in the so-called block form. Namely

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & a_{n n}
\end{array}\right]
$$

where A_{11} is a square $(n-1) x(n-1)$ matrix. The inverse matrix A^{-1} has the form

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{T} & -A_{21}^{T} \\
-A_{12}^{T} & a_{n n}
\end{array}\right]
$$

On the other hand, the element $a_{n n}$ of A^{-1} is equal to the algebraic adjunct of $a_{n n}$ divided by the determinant of A. Since $a_{n n} \neq 0$ therefore A_{11} is nonsingular. Thus there are two orthogonal matrices ϑ_{1} and ϑ_{2} such that $D_{11}=\theta_{1}^{T} A_{11} \theta_{2}$ is the diagonal matrix, whose elements are the square roots of the eigenvalues of the matrix $A_{11} A_{11}^{T}$ and $\operatorname{det} \theta_{1}=1$.
Thus we have
(1) $\left[\begin{array}{ll}\theta_{1}^{T} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & a_{n n}\end{array}\right]\left[\begin{array}{ll}\vartheta_{2} & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right]$.

The right-side of (1) is an element of the group $O_{1}(n, R)$.
Therefore in the matrices D_{12} and D_{21} at most one element is different from zero. If however the element $d_{\text {in }}$ of the matrix D_{12} is equal to zero, then the element $d_{n l}$ of the matrix D_{21} is equal to zero too, and the element d_{11} of the matrix D_{11} satisfies the condition $d_{11}=1$.
Thus there is a permutation matrix P such that

$$
P^{T} D_{11} P=\left[\begin{array}{ccc}
1 & & \\
& \ddots & \\
& 0 & 1 \\
& & \\
& & \\
&
\end{array}\right]
$$

and $\operatorname{det} P=1$. Now we can write
(2) $\left[\begin{array}{ll}P^{T} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right]\left[\begin{array}{ll}P & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & & & 0 \\ & & 1_{1} & \\ & & & \sqrt{\lambda} \\ \hline 0 & & 0 & y \\ \hline & & & a_{n n}\end{array}\right]$
where
$\lambda-x^{2}=1, \lambda-y^{2}=1, x^{2}-a_{n n}^{2}=-1, y^{2}-a_{n n}^{2}=-1, y \sqrt{\lambda}-x a_{n n}=0$.
From these equations we get

$$
y=x \operatorname{sgn} a_{n n} \quad \text { and } \quad \sqrt{\lambda}=\left|a_{n n}\right|
$$

Put

$$
\begin{equation*}
\varepsilon=\operatorname{sgn} a_{n n} \tag{3}
\end{equation*}
$$

From this and (1), (2) we get

where $\tilde{\vartheta}_{1}=\hat{\vartheta}_{1} P$ and $\tilde{\vartheta}_{2}=P^{T} \vartheta_{2}^{T}$. Since $a_{n n}^{2}-x^{2}=1$ and $\operatorname{det} \tilde{\theta}_{1}=1$ thus $\operatorname{det} A=\varepsilon \operatorname{det} \tilde{\theta}_{2}$.

Now from (3) and from the fact that $(\operatorname{det} A)^{2}=1$ we conclude that

$$
\operatorname{det} \tilde{\vartheta}_{2}=\operatorname{sgn} \frac{\operatorname{det} A}{a_{n n}}
$$

Put
(5)

$$
\eta=\operatorname{sgn} \frac{\operatorname{det} A}{a_{n n}}
$$

Finally the condition (4) can be written in the form

where

$$
\dot{\theta}_{1}^{*}=\left[\begin{array}{ccc}
\eta & & 0 \\
1 . & 0 \\
0 & 1 & \\
& & \\
\hline
\end{array}\right] \tilde{\theta}_{1}\left[\begin{array}{lll}
\eta & & 0 \\
1 & 0 & \\
0 & 1 & \\
& & 1
\end{array}\right] \text { and } \theta_{2}^{*}=\left[\begin{array}{lll}
\eta & & \\
1 & 0 \\
0 & & 1
\end{array}\right] \tilde{\theta}_{2} .
$$

Since $\operatorname{det} \theta_{1}^{*}=\operatorname{det} \theta_{2}^{*}=1$ therefore the orthogonal matrices

$$
\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
\theta_{2} & 0 \\
0 & 1
\end{array}\right]
$$

are the elements of the commutator group of the group $O_{1}(n, R)$. We will show that the matrix

$$
\left[\begin{array}{ccc|c}
1 & & & 0 \\
\ddots & & 0 & \vdots \\
0 & & \left|a_{n n}\right| & 0 \\
& & & x \\
\hline 0 . \ldots & x & x & \left|a_{n n}\right|
\end{array}\right]
$$

belongs to the commutator group of the group $O_{1}(n, R)$ too. Indeed, let

$$
\left|a_{n n}\right|=c h t=\frac{e^{t}+e^{-t}}{2}
$$

and

$$
x=\operatorname{sht}=\frac{\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-t}}{2} .
$$

It is easy to verify that
$\left[\begin{array}{ll}\operatorname{cht}, & \operatorname{sht} \\ \text { sht, } & \text { cht }\end{array}\right]=\left[\begin{array}{lll}\operatorname{ch} \frac{t}{2}, & \operatorname{sh} \frac{t}{2} \\ \operatorname{sh} \frac{t}{2}, & \operatorname{ch} \frac{t}{2}\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{lll}\operatorname{ch} \frac{t}{2}, & \operatorname{sh} \frac{t}{2} \\ \operatorname{sh} \frac{t}{2}, & \operatorname{ch} \frac{t}{2}\end{array}\right]^{-1}\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]^{-1}$.
From this and from (6) we conclude that the theorem is proved.

Put
$E=\left[\begin{array}{lll}1 & & \\ & \ddots & 0 \\ 0 & & 1\end{array}\right], E_{1}=\left[\begin{array}{ccc}1 & & \\ & \ddots & 0 \\ 0 & & -1\end{array}\right], E^{1}=\left[\begin{array}{ccc}-1 & & \\ & 1 & 0 \\ & 0 & \\ 0 & 1\end{array}\right], E_{1}^{1}=\left[\begin{array}{ccc}-1 & & \\ & 1 & 0 \\ 0 & & 0 \\ 0 & & 1\end{array}\right]$.
$C \circ r \circ 1$ lary. The subgroup $H=\left\{E, E^{1}, E_{1}, E_{1}^{1}\right\}$ and the commutator group of the group $O_{1}(n, R)$ satisfy the conditions (i) and (ii) of Lemma 1. Thus the function $\varphi: \mathrm{O}_{1}(\mathrm{n}, \mathrm{R}) \longrightarrow \mathrm{H}$ determined by

$$
\varphi(A)=\left[\begin{array}{ccccc}
\operatorname{sgn} \frac{\operatorname{det} A}{a_{n n}} & & & & \tag{7}\\
& 1 & & 0 \\
& \ddots & & \\
& & & & \\
& & & & \operatorname{sgn} a_{n n}
\end{array}\right]
$$

is a homomorphism.
Theorem 3. A function $f: O_{1}(n ; R) \longrightarrow A$ is a homomorphism into the abelian group A if and only if there exist elements $a, b \in \mathbb{A}$ such that $a^{2}=b^{2}=e$ and

$$
\begin{gather*}
f(A)=e, \text { if } \varphi(A)=E, \\
f(A)=a, \text { if } \varphi(A)=E, \\
f(A)=b, \text { if } \varphi(A)=E^{1}, \\
f(A)=a b, \text { if } \varphi(A)=E^{1} . \\
\text { By Theorem } 1 \text { we have } \tag{8}\\
f=\tilde{f} \circ \varphi,
\end{gather*}
$$

Proof. By Theorem 1 we have
where $\tilde{f}: H \longrightarrow \notin$ is a homomorphism and φ is determined by (7). It is easy to show that any homomorphism $\tilde{f}: H \longrightarrow$ has the form
$\tilde{f}(E)=e, \tilde{f}\left(E_{1}\right)=a, \tilde{f}\left(E^{1}\right)=b, \tilde{f}\left(E_{1}^{1}\right)=a b$, where $a^{2}=b^{2}=e$ and conversely. From this and (8) we conclude that the theorem is proved.

REFERENCES

[1] M. Lo rens, W. K e dzierski : Rozwiazanie równania $f(A B)=f(A) f(B)$ na grupie macierzy pseudoortogonalnych drugiego atopnia, Rocznik Naukowo-Dydaktyczny WSP w Rzeszowie, Matematyka, No 5/41 (1979).

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, 40-007 KATOWICE, POLAND
Received October 21, 1987.

