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DEMONSTRATIO MATHEMATICA 
Vol. XXII No 3 1989 

Erwin Kasparek 

THE HOMOMORPHISMS OF THE PSEUDO-ORTHOGONAL GROUP 
OF THE INDEX ONE INTO AN ABELIAN GROUP 

In the paper [ 1 ] there has been determined all the 
homomorphisms of a pseudo- orthogonal subgroup GL(2,R) into 
the multiplication group of reals numbers. In this paper we 
will solve this problem for a pseudo-orthogonal subgroup of 
the index one of the group GL(n,R). 
Denote by E the diagonal matrix of the form 

1 

-1 

and the pseudo-orthogonal subgroup O^n, R) of the index one 
we define as follows 

Ot(n,R) = {A e GL(n,R) : A ^ A = E ^ . 

It is easy to show the following. 
L e m m a 1. Let G be an arbitrary group and N its 

normal subgroup. If there is a subgroup H c G such that 
(i) N n H = {e}, where e is the neutral element of G , 
(ii) for each element g 6 G there are n € N and h e H such 
that g = nh (g = hn), 
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then the function <p : G » H determined by ( i i ) i s a homo-

morphism. 
T h e o r e m 1. Let G be an arbitrary group and K i t s 

commutator group. I f there is a subgroup H c G such that the 

conditions ( i ) and ( i i ) of Lemma 1 are sa t i s f i ed ( f o r N = 

K), then f i s a homomorphism of the group G into an abelian 

group A i f and only i f there is a homomorphism f : H » A 

such that f = fop , where <p Is the homomorphism defined in 

Lemma 1. 

P r o o f . (Necessity) . Let g e G and g = kh, k e K, 

he H be the unique decomposition of g. Then f ( g ) = f ( k ) f ( h ) , 

but f ( k ) i s equal to the neutral element of the group A, 

thus 

(0) f ( g ) = f ( h ) . 

Denote by f the r es t r i c t i on of the f to the subgroup H. 

Final ly , from (0) we have f = fop . 

(Suf f i c i ency ) . I t i s not hard to show, that i f f : H » 

A i s a homomorphism then the function f :G » A, where f = 

i*op is a homomorphism too. 

To solve our problem we shall f ind the commutator group 

and the subgroup H of the group O^Cn, R) such that the 

cionditions ( i ) and ( i i ) of Lemma 1 are sa t i s f i ed . Then by 

Theorem 1 i t su f f i c es to determine a l l the homomorphisms of 

the subgroup H into an abelian group. 

L e m m a 2. For each matrix A = (a t ) of the group 

O^in, R) we have : 

(a ) the function a ¡C^in.R) » { -1 ,1 } determined by a(A) = 

sgn a is a homomorphism , nn 
(b) i f the diagonal matrix 
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Homomorphlsms of the pseudo-orthogonal group 

sgn detA 

1 
sgn a 

does not coincide with identity matrix then it does not 
belong to the commutator group of the group 0 (n,R). 

P r o o f . (a) Let A = (a^), B = (b^) be two arbitrary 
matrices of 0j(n,R) and C = AB with the elements c . 

n-1 
Then c = ) a b + a b . Using the Cauchy-Buniakowskl nn Li ns sn nn nn s = 1 
Inequality we get 

n-l 
V a b 
L ns sn s = l 

1 
n-l 

s=l 

n-l 
E> 8=1 

But 
n-l E2 2 . a = a - 1 
s = 1 ns nn 

n-l 
and ) b - b -1 , Li sn nn s = l 

thus 
n-l 
Y a b L, ns sn s = l 

< a b 1 nn nn1 

Finally, we have 

a b - a b < c < a b + la b I nn nn ' nn nn1 nn nn nn 1 nn nn1 

thus 
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1) if a b > 0 then c > 0 nn nn nn 
2) if a b < 0 then c < 0 . 

nn nn nn 
Now it is obvious that (a) holds. 
(b) If A € 0 (n,R) then A_1= E ATE . Thus the element a of 1 1 1 nn 
the matrix A-1 is equal to the element a of the matrix A. nn 
Therefore if C = (c

tj) is the commutator of A and B, then by 
(a) we have c > 0. nn 
Now if C is the finite product of the commutators then by 
(a) and by the fact that detC = 1 we conclude that (b) is 
true. 

T h e o r e m 2. For each matrix A e O^n, R) the pro-
duct 

sgn detA 

sgn a 

belongs to the commutator group of the group C^in,R). 
P r o o f . Any matrix A e (^(n.R) can be written in the 

so-called block form. Namely 

A = li 

21 

12 

where A is a square (n-l)x(n-l) matrix. The inverse matrix 
A 1 has the form 
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Homomorphisms of the pseudo-orthogonal group 

A"1 = 
il -A 21 

-A 12 

On the other hand, the element a of A nn 
-1 

algebraic adjunct of a 
is equal to the 

divided by the determinant of A. 
Since a * 0 therefore A is nonsingular. Thus there are 

1111 T two orthogonal matrices û and û such that D = 0 A O is ° 1 2 11 1 11 2 
the diagonal matrix, whose elements are the square roots of 
the eigenvalues of the matrix A AT and det û = 1 . ° il il l 
Thus we have 

( 1 ) 
* T 0 l 

0 1 

A A 
11 12 

21 a 

G 0 
2 

0 1 

D D 
11 12 

D D 
21 22 

The right-side of (1) is an element of the group O^n.R). 
Therefore in the matrices D and D at most one element is 

12 21 
different from zero. If however the element d of the in 
matrix D is equal to zero, then the element d of the 12 M nl 
matrix D is equal to zero too, and the element d of the 

21 11 

matrix D satisfies the condition d = 1 . ii n 
Thus there is a permutation matrix P such that 

1 

P D P = 11 1 

4X1 
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and det P = 1. Now we can write 

(2) 
PT 0 

0 1 

D D 
11 12 

D D 
21 22 

P 0 

0 1 
«TP 

o y a 

where 

1, A-y*2 = 1, x2-a2 = -1, ya-ai! = -1, y-iX'-x a = 0. nn nn nn 
2 2 ~3L nn 

From these equations we get 
y = x sgn a and 4X1 = la 

Put 

(3) e = sgn a 

From this and (1), (2) we get 

(4) A = 
A A n 12 

= 

A A 21 22 

0 0 0 1 

0 1 

' 1 

L 0. . .0 x 

0 0 
2 

0 1 

~ ~ T T 2 2 where 0 = # P and § = P « . Since a - x = 1 and det 1 1 2 2 nn 
thus det A = e det 0 . 

2 

= 1 

Now from (3) and from the fact that (det A)' 
conclude that 

detA 

= 1 we 

det d = sgn 2 Q. 
Put 

(5) V = sgn detA 
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F i n a l l y the c o n d i t i o n (4) can be w r i t t e n in the form 

(6) A = 

where 

' 1 

0 

0 1 

"1 0 
0 

• 1 • 

0 l a 1 
0 

1 nn1 X 
o . . . . O x l a 1 1 nn1 

G 0 2 

0 1 

6 = 1 
1. 

0 

0 
G \ • 

and û = 
T) 

1 0 
1 

1 
l 

o 1 , 2 
0 1 

Q 

w w 
Since de t d = det O^ = 1 t h e r e f o r e t h e or thogonal ma t r i ce s 

G* 0 l 
0 1 

and 
6* 0 2 

0 1 

aire the elements of the commutator group of t h e group 
O^n .R) . We w i l l show t h a t the mat r ix 

"1 0 
0 • 

• 1 • 

0 | a I 
0 

1 nn1 X 

0 0 X l a 1 
„ 

1 nn1 

belongs t o t h e commutator group of the group (^(n,R) too . 
Indeed, l e t 

| a | = cht = 1 nn1 2 
and 

- 769 -



.E. Kasparek 

x = sht = 

It is easy to verify that 

t -t e - e 

cht, sht 

sht, cht 

« t . t 
c h 2 ' S h 2 
w t U t 

s h 2 ' C h 2 

1 0 

0 -1 

, t . t 
c h 2 ' S h 2 
, t . t sh g . ch g 

-1 1 0 

0 -1 

-1 

From this and from (6) we conclude that the theorem is 
proved. 

Put 

1 
E = E = l 

0 

— 1 "-1 
0 , E1 = , E1 = i 0 

l 0 l 
l 

0 1 - ! 

C o r o l l a r y . The subgroup H = {E, E , E ,E } and the 
commutator group of the group (^(n.R) satisfy the conditions 
(i) and (ii) of Lemma 1. Thus the function <p : (^(n,R) — » H 
determined by 

(7) *>(A) = 

sgn detA 

is a homomorphism. 
T h e o r e m 3. 

sgn a 

A function f : C^in'.R) -» 4 is a 
homomorphism into the abelian group d if and only if there 
exist elements a,b € 2 2 such that a = b = e and 
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f(A) = e , if Ì>(A) = E , 

f(A) = a , if *>(A) = E , 

f(A) = b , if y(A) = E 1 , 

f(A) = ab, if ?(A) = E 1 . 

P r o o f . By Theorem 1 we have 

(8) f = fo<p , 

where f : H > A is a homomorphism and ip is determined by 

(7). It is easy to show that any homomorphism f : H » A 

has the form 

f(E) = e, f&E^ = a, fiE1) = b, f(Ej) » ab, where a2= b2= e 

and conversely. From this and (8) we conclude that the 

theorem is proved. 
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