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DEMONSTRATIO MATHEMATICA
Vol. XXII No 3 1989

Erwin Kasparek

THE HOMOMORPHISMS OF THE PSEUDO-ORTHOGONAL GROUP
OF THE INDEX ONE INTO AN ABELIAN GROUP

In the paper [1] there has been determined all the
homomorphisms of a pseudo- orthogonal subgroup GL(2,R) into
the multiplgcation group of reals numbers. In this paper we
will solve this problem for a pseudo-orthogonal subgroup of
the index one of the group GL(n,R).

Denote by E1 the diagonal matrix of the form

1
E ) 0

0o 1

-1

and the pseudo-orthogonal subgroup Ol(n,R) of the index one

we define as follows
0,(n,R) = {A € GL(n,R) : ATEIA =E} .

It is easy to show the following.

Lemma 1. Let G be an arbitrary group and N its
normal subgroup. If there is a subgroup H ¢ G such that
(1) N n H = {e}, where e is the neutral element of G ,
(ii) for each element g € G there are n € N and h € H such
that g = nh (g = hn),
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E. Kasparek

then the function ¢ : G —— H determined by (ii) is a homo-

morphism.
Theorem 1. Let G be an arbitrary group and K its

commutator group. If there is a subgroup H ¢ G such that the
conditjons (i) and (ii) of Lemma 1 are satisfied (for N =
K), then f is a homomorphism of the group G into an abelian
group 4 if and only if there is a homomorphism f: H— 4
such that f = §o¢ , where ¢ 1s the homomorphism defined in
Lemma 1.

Proof. (Necessity). Let g€ G and g = kh, k € K,
he H be the unique decomposition of g. Then f(g) = f(k)f(h),
but f(k) is equal to the neutral element of the group 4,
thus
(0) f(g) = f(h) .

Denote by f the restriction of the f to the subgroup H.
Finally, from (0) we have f = fop .

(Sufficiency). It is not hard to show, that if f:H—
4 is a homomorphism then the function f :G —— 4, where f =
;°¢ is a homomorphism too.

To solve our ﬁroblem we shall find the commutator group
and the subgroup H of the group Oi(n,R) such that the
cionditions (i) and (ii) of Lemma 1 are satisfied. Then by
Theorem 1 it suffices to determine all the homomorphisms of
the subgroup H into an abelian group.

Lemma 2. For each matrix A = (aU) of the‘group
Ol(n,R) we have :

(a) the function « :Ol(n,R) —> {-1,1} determined by a(A) =
sgn gnn is a homomorphism ,
(b) if the diagonal matrix
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Homomorphisms of the pseudo-orthogonal group

does not coincide with identity matrix then it does not

belong to the commutator group of the group Oi(n,R).
Proof. (a) Let A= (au). B = (blj) be two arbitrary

matrices of Oi(n,R) and C = AB with the elements 5

n-1
Then S szla“’b“ + annbnn . Using the Cauchy-Buniakowskl

inequality we get

[ ]
n-1 n-1 2 n-1 2
Z ansbsn = zans stn
s=1 s=1 s=1
But
n-1 n-1
a2 =a®-1 and b2 =b° -1,
ns nn sn nn
s=1 s=1
thus
n-1
Yab | <|ab |
ns sn nn nn
s=1
Finally, we have
ab -Jab|<c <ab +ab|,
nn nn nn nn nn nn nn nn nn

thus
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1) ifa b >0 thenc >0
nn nn nn

2) ifa b <0 thenc <O0.
nn nn nn

Now it is obvious that (a) holds.
(b) If A € O (n,R) then Al= EIATEl. Thus the element Em of

the matrix A-1 is equal to the element a of the matrix A.
Therefore if C = (c’j) is the commutator of A and B, then by
(a) we have c_ > 0.
Now if C is the finite product of the commutators then by
(a) and by the fact that detC = 1 we conclude that (b) is
true.

Theorem 2. For each matrix A e Oi(n,R) the pro-

duct

detA
a
nn 1 0
: A
0 1
sgn a__

belongs to the commutator group of the group Ol(n,R).
Proof. Any matrix A € 0,(n,R) can be written in the

so-called block form. Namely

where A11 is a square (n-1)x(n-1) matrix. The inverse matrix

A™! has the form
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Homomorphisms of the pseudo-orthogonal group

T T
A -A
1 11 21
A =
T
- a
12 nn

On the other hand, the element a of A_1 is equal to the
algebraic adjunct of a divided by the determinant of A.
Since a # 0 therefore Au is nonsingular. Thus there are
two orthogonal matrices ® and ¢ such that D = GTA ¢ is

1 2 11 111 2
the diagonal matrix, whose elements are the square roots of
the eigenvalues of the matrix AuAL and det 61 = 1.

Thus we have

= -

11 12 2 11 12
(1)

A21 a o 1 D D

The right-side of (1) is an element of the group Ol(n,R).
Therefore in the matrices D12 and D21 at most one element is
different from zero. If however the element dm of the
matrix D12 is equal to zero, then the element dnl of the
matrix D21 is equal to zero too, and the element d“ of the
matrix D11 satisfies the condition d“ = 1.

Thus there is a permutation matrix P such that

PD P =
11
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and det P = 1. Now we can write

D
11 12

]
—
=
X

(2)

21 22

where

2_ 2 2 2 _ _ 2 2 _ _ - _
A-x= 1, A-y 1, x"-a 1, y-a_ 1, ydal-x a =0.

From these equations we get

y=xsgna  and Al = |a |

nn

Put

(3) €=sgna_ .

From this and (1), (2) we get

(4) A = A11 A12 _ . 0|1 "1 0]
nnl

0 1
0...0 x 12l

where 8= 6P and & = Pxﬂr. Since a2 - x2 =1 and det & = 1
1 1 ?, 2 nn 1
thus det A = £ det 02 .
Now from (3) and from the fact that (det A)2 = 1 we

conclude that

det 5& = sgn detA .
nn
Put
(5) 7N = sgn d:tA ]

nn
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Finally the condition (4) can be written in the form

1 o ][ ]
n L . -
1 01 0 . 0 . oé 0

(6) A= . 0 |a

where

¢ O ¢ O
1 2
0 1 0 1

are the elements of the commutator group of the group
OI(n,R). We will show that the matrix

1 o ]
) 0
1 .
0
0 Ia'nnl X
0....0 x la_|
L nn

belongs to the commutator group of the group Oi(n,R) too.

Indeed, let

t -t
e e

+
Iaml = cht = —-2_-

and
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et - et
x = sht = 5
It is easy to verify that
t t t t |-1 -1
cht, sht ) ch 5 sh 5 1 Of|ch 5 sh 5 [1 o
t t t t '
sht, cht shz, chz[[0 -1flsh =, chz [o -1

From this and from (6) we conclude that the theorem is

proved.
Put
-1
1 1 -1
E = 0| g- Y 1. 0], gt - 1.0
1 1 1 1
0 1 0 -1 0O 1 0 1

Corollary. The subgroup H = {E,EI,EI,Ei} and the
commutator group of the group Ol(n,R) satisfy the conditions
(i) and (ii) of Lemma 1. Thus the function ¢ : Oi(n,R) — H
determined by

detA
n

(7) p(A) =

SgNn a
g nn

is a homomorphism.
Theorem 3. A function f : Ol(n:R) — 4 is a
homomorphism into the abelian group 4 if and only if there

exist elements a,b € 4 such that a2 = b2

e and
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f(A) = e, 1If o(A) =E,

f(A) =a, if o(A) = E ,
£(A) =b, 1if @(A) = E',
f(A) = ab, 1If ¢(A) = E'

Proof. By Theorem 1 we have
(8) f = fop ,

where f : H — 4 is a homomorphism and ¢ is determined by
(7). It is easy to show that any homomorphism f : H — 4

has the form
~ ~ ~ 1 ~ 1 2 2
f(E) = e, fGEl) =a, f(E) = b, f(El) = ab, where a“= b= e

and conversely. From this and (8) we conclude that the

theorem is proved.
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