

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On Lindenbaum's extensions. (Part C.)

Author: Andrzej Biela

Citation style: Biela Andrzej. (1976). On Lindenbaum's extensions. (Part C.).
"Bulletin of the Section of Logic" (Vol. 5, no. 2 (1976), s. 68-75).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Bulletin of the Section of Logic
Volume 5/2 (1976), pp. 68-75
reedition 2011 [original edition, pp. 68-79]

Andrzej Biela

ON LINDENBAUM'S EXTENSIONS*
 (Part C)

The full text with detailed proofs will appear in Reports on Mathematical Logic.

1. The purpose of the present paper is to discuss the theorems on existence one Lindenbaum's extensions for finitely axiomatizable systems. This problem is connected with the well known Tarski's theorems (cf. [15]) and the paper [2] devoted not finitely axiomatizable systems which have only one Lindenbaum's extension. Moreover among other things we will consider systems with different than $R_{0^{*}}$-rules and the system with $\mathcal{T}_{M^{-}}$ property for $M \neq Z_{2}^{i}(i=1,2,3$ cf. [3]).
2. Introduction. By $S^{i}(i=1,2,3)$ we denote the smallest sets of well-formed formulas $\left(\overline{\overline{S^{i}}}=\aleph_{0}\right)$ built by means of all propositional variables $A t=\left\{p, q, r, p_{1}, p_{2}, \ldots\right\}$ and connectives: (\rightarrow) implication; (\rightarrow) implication, (\sim) negation, (.) conjunction and $(+)$ disjunction; (\sim) negation, (.) conjunction, (M) possibility, respectively. $A t(X)\left(X \subseteq S^{i}\right)$ denotes the set of all propositional variables occurring in Φ, for every $\Phi \in X . R$ is a set of rules of inference. $R_{0^{*}}$ denotes the set $\left\{r_{0}, r_{*}\right\}$ (r_{0} - the modus ponens rule, r_{*} - the substitution rule). $\langle R, X\rangle \in C n s$ means that $C n(R, X) \neq S^{i}$ $(i=1,2,3) . \quad R(X)$ means that the set X is closed with respect to the rules belonging to the set R. Let \mathcal{M} be the logical matrix, then $S(\mathcal{M})$ is the set of all valid formulas in this matrix. We define now the general notion of \mathcal{T}_{M}-property (for any $M \nsubseteq S^{i}, i=1,2,3$): the system $\langle R, X\rangle$ has \mathcal{T}_{M}-property iff M is the sole Lindenbaum's extension. For simplicity the symbol \mathcal{T}_{i} instead of $\mathcal{T}_{Z_{2}^{i}}$ will be used where Z_{2}^{i} is the set of all two-valued

[^0]tautologies $(i=1,2,3)$. Axioms of Tarski's systems $\left\langle R_{0^{*}}, A_{i}\right\rangle\left(A_{i} \subseteq S^{i}\right.$, $i=1,2$) are as follows (cf. [15]):
$$
A_{1}=\{p \rightarrow(q \rightarrow p), p \rightarrow[(p \rightarrow q) \rightarrow q],(q \rightarrow s) \rightarrow[(p \rightarrow q) \rightarrow(p \rightarrow
$$ s)] \}
$A_{2}=\{p \rightarrow \sim \sim p, q \rightarrow(p \rightarrow q), \sim p \rightarrow(p \rightarrow q), p \rightarrow[\sim q \rightarrow \sim(p \rightarrow$ $q)], p \rightarrow(p+q), q \rightarrow(p+q), \sim p \rightarrow[\sim q \rightarrow \sim(p+q)], p \rightarrow[q \rightarrow(p \cdot q)]$, $\sim p \rightarrow \sim(p \cdot q), \sim q \rightarrow \sim(p \cdot q)\}$

For S^{i} we denote $S .9=C n\left(R_{1}, A_{3}\right)$ and $S .8=C n\left(R_{1}, A_{4}\right)$ where A_{3} and A_{4} are the sets of axioms of well-known modal systems (cf. [9],[14],[8]). $R_{1}=$ $\left\{r_{0}, r_{*}, r_{a}, r_{E}\right\}$, where r_{o} is the modus ponens rule, r_{*} is the subsitution rule, r_{a} is defined by the scheme $\Phi, \Psi / \Phi \cdot \Psi, r_{E}$ is defined by the scheme $\alpha(\Phi), \Phi=\Psi / \alpha(\Psi) . A_{5}$ is the set of axioms of Church's system (cf.[6],[4]). Let \# be the relation between two systems: $\left\langle R_{o *}, X\right\rangle \#\left\langle R_{o *}, X^{\prime}\right\rangle$ iff the sets $C n\left(R_{o *}, X\right) \cap C n\left(R_{o *}, X^{\prime}\right), C n\left(R_{o *}, X\right)-C n\left(R_{o *}, Y\right), C n\left(R_{o *}, Y\right)-$ $C n\left(R_{o *}, X\right)$ are non empty. $C p l$ is the class of Post-complete systems (cf. $[10]) . L^{\phi}(C n(R, X))$ is the set of all Lindenbaum-Asser extensions of the set $C n(R, X)$ for $\phi \notin C n(R, X)$ (cf. [1], [11], [5]).
3. We consider for S^{2} the following set of axioms (cf. [3]);
$X_{1}=\left\{\Phi_{i} \rightarrow \sim \sim \Phi_{i}, \Phi_{i} \rightarrow\left[\sim \Phi_{j} \rightarrow \sim\left(\Phi_{i} \rightarrow \Phi_{j}\right)\right], \Phi_{i} \rightarrow\left(\Phi_{j} \rightarrow \Phi_{i}\right), \sim\right.$ $\Phi_{i} \rightarrow\left(\Phi_{i} \rightarrow \Phi_{j}\right), \Phi_{i} \rightarrow\left(\Phi_{i}+\Phi_{j}\right), \Phi_{j} \rightarrow\left(\Phi_{i}+\Phi_{j}\right), \sim \Phi_{i} \rightarrow\left[\sim \Phi_{j} \rightarrow \sim\right.$ $\left.\left(\Phi_{i}+\Phi_{j}\right)\right], \Phi_{i} \rightarrow\left[\Phi_{j} \rightarrow\left(\Phi_{i}+\Phi_{j}\right)\right], \sim \Phi_{i} \rightarrow \sim\left(\Phi_{i} \cdot \Phi_{j}\right), \sim \Phi \rightarrow\left(\Phi_{i}+\Phi_{j}\right):$ $i \in\{1,2,3,4\}, j \in\{5,6,7,8\}$ where $\Phi_{1}=p \rightarrow q, \Phi_{2}=p . q, \Phi_{3}=p+q$, $\Phi_{4}=\sim p, \Phi_{5}=r \rightarrow s, \Phi_{6}=r . s, \Phi_{7}=r+s, \Phi_{8}=\sim r$.

Gödel's calculi G_{n} are given by the matrices \mathcal{M}_{n} of Gödel. The sequence of matrices \mathcal{M}_{n} was introduced by Gödel in [7] and was axiomatized by Thomas in [16]. Anderson proved that $G_{n}=C n\left(R_{0^{*}}, H \cup\left\{T_{n}\right\}\right)$, where H is the set of axioms of the intuitionistic logic and T_{n} is defined as follows:

$$
T_{n}=p_{1}+\left(p_{1} \rightarrow p_{2}\right)+\left(p_{2} \rightarrow p_{3}\right)+\ldots+\left(p_{n-1} \rightarrow p_{n}\right)+\sim p_{n} \quad(n \geqslant 4)
$$

Using the matrix $\mathcal{N}_{1}^{(n-1)}=\left\langle\{0,1, \ldots, m-1\},\{1\}, f^{\rightarrow}, f^{\sim}, f^{*}, f^{+}\right\rangle(m \geqslant$ 6) where

we can prove that $T_{m-1} \notin C n\left(R_{0^{*}}, X_{1} \cup\left\{T_{4}, T_{5}, \ldots, T_{m-2}\right\}\right)$ since $C n\left(R_{0^{+}}, X_{1} \cup\right.$ $\left.\left\{T_{4}, T_{5}, \ldots, T_{m-2}\right\}\right) \subseteq E\left(\mathcal{N}_{1}^{(m-1)}\right)$ and for $v\left(p_{1}\right)=2, v\left(p_{2}\right)=0, v\left(p_{3}\right)=3$, $\ldots, v\left(p_{m-2}\right)=m-2, v\left(p_{m}\right)=m-1\left(v: A t \rightarrow\left|\mathcal{N}_{1}^{(m-1)}\right|\right)$ we have $h^{v}\left(T_{m-1}\right)-2$. Moreover, for every $m \geqslant 6$ it follows that $p \rightarrow(q \rightarrow p) \in$ $C n\left(R_{0^{*}}, A_{2}\right)-C n\left(R_{0^{*}}, X_{1} \cup\left(T_{4}, T_{5}, \ldots, T_{m-2}\right\}\right)$. This can be shown by means of the matrix

$$
\mathcal{M}_{1}-\left\langle\{0,1,2\},\{1\}, f^{\rightarrow}, f^{\sim}, f^{*}, f^{+}\right\rangle \text {where }
$$

$f \rightarrow$	0	1	2
0	2	1	2
1	2	1	2
2	1	1	1

f^{\sim}	
0	2
1	2
2	1

f^{*}	0	1	2
0	1	1	2
1	1	1	2
2	2	2	2

f^{+}	0	1	2
0	1	1	1
1	1	1	1
2	1	1	2

Hence the following lemma holds:
Lemma 3.1. For every $m, n \geqslant 4 \quad(m \neq n)$
a. $\left\langle R_{0^{*}}, X_{1} \cup\left\{T_{n}\right\}\right\rangle \#\left\langle R_{0^{*}}, X\right\rangle$
b. $\left\langle R_{0^{*}}, X_{1} \cup\left\{T_{n}\right\}\right\rangle \#\left\langle R_{0^{+}}, X_{1} \cup\left\{T_{m}\right\}\right\rangle$
c. $\left\langle R_{0^{*}}, X_{1} \cup\left\{T_{n}\right\}\right\rangle \#\left\langle R_{0^{*}}, A_{2}\right\rangle$
d. $\left\langle R_{0^{*}}, X_{1} \cup\left\{T_{n}\right\}\right\rangle \in \mathcal{T}_{2}$

Theorem 3.2.
a. $\left\{\left\langle R_{0^{*}}, X_{1} \cup\left\{T_{n}\right\}\right\rangle\right\}_{n \geqslant 4}$ is the family of finitely axiomatizable systems "on the edge" of Tarski's system $\left\langle R_{0^{*}}, A_{2}\right\rangle$.
b. $\left\{\left\langle R_{0^{*}}, X_{1} \cup \bigcup_{k=1}^{n}\left\{T_{k}\right\}\right\rangle\right\}_{n \geqslant 4}$ is the family of the ascending systems with \mathcal{T}_{2}-property satisfying the following two conditions:

1. $\left\langle R_{0^{*}}, X_{1} \cup \bigcup_{k=1}^{n}\left\{T_{k}\right\}\right\rangle \#\left\langle R_{0^{*}}, H\right\rangle$
2. $\left\langle R_{0^{*}}, X_{1} \cup \bigcup_{k=1}^{n}\left\{T_{k}\right\}\right\rangle \#\left\langle R_{0^{*}}, A_{2}\right\rangle$

We introduce the sequence $\alpha_{1}=2, \ldots, \alpha_{n+1}=\alpha_{n}+(n+2)$ and $\Gamma_{0}=$ $0, \ldots, \Gamma_{n+1}+1$. Let us put $p=p_{\Gamma_{0}+2}, q=p_{\Gamma_{0}+1}$ and define the functions $e_{i_{k}}: A t \rightarrow S^{2}(i=\{1,2,3,4\}, k \in N-\{1\})$ as follows:

$$
\begin{aligned}
& e_{i_{2}}\left(p_{\Gamma_{0}+1}=\delta_{i}\left(p_{\Gamma_{1}+1}, p_{\Gamma_{1}+2}\right)\right. \\
& e_{i_{2}}\left(p_{\Gamma_{0}+2}=\delta_{i}\left(p_{\Gamma_{1}+3}, p_{\Gamma_{1}+4}\right) \quad \delta_{1}(\Phi, \Psi)=\Phi \rightarrow \Psi\right. \\
& \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \quad i \in\{1,2,3\} \quad \delta_{2}(\Phi, \Psi)=\Phi \cdot \Psi \\
& e_{i_{n+1}}\left(p_{\Gamma_{n-1}+1}=\delta_{i}\left(p_{\Gamma_{n}+1}, p_{\Gamma_{n}+2}\right) \quad \delta_{3}(\Phi, \Psi)=\Phi+\Psi\right. \\
& e_{i_{n+1}}\left(p_{\Gamma_{n-1}+2^{n}}=\delta_{i}\left(p_{\Gamma_{n}+\left(2^{n+1}-1\right)}, p_{\Gamma_{n}+2^{n+1}}\right)\right. \\
& \text { and } \\
& e_{4_{2}}\left(p_{\Gamma_{0}+1}\right)=\delta_{4}\left(p_{\Gamma_{1}+1}\right) \\
& e_{4_{2}}\left(p_{\Gamma_{0}+2}\right)=\delta_{4}\left(p_{\Gamma_{1}+3}\right) \\
& e_{4_{n+1}}\left(p_{\Gamma_{n-1}+1}\right)=\delta_{4}\left(p_{\Gamma_{n}+1}\right) \quad \text { where } \quad \delta_{4}(\Phi)=\sim \Phi \\
& e_{4_{n+1}}\left(p_{\Gamma_{n-1}+2^{n}}\right)=\delta_{4}\left(p_{\Gamma_{n}+\left(2^{n+1}-1\right)}\right)
\end{aligned}
$$

Hence we obtain the sets of formulas

$$
\begin{aligned}
& X_{2}=\left\{\Phi \in S^{2}: \exists_{\lambda \in A_{2}} \exists_{e: A t \rightarrow S^{2}} \exists_{i, k \in\{1,2,3,4\}}\left[\Phi=h^{e}(\lambda) \wedge e\left(p_{\Gamma_{0}+1}\right)=\right.\right. \\
& \left.\left.=e_{i_{2}}\left(p_{\Gamma_{0}+1}\right) \wedge e\left(p_{\Gamma_{0}+2}\right)=e_{k_{2}}\left(p_{\Gamma_{0}+2}\right)\right]\right\} \\
& X_{n+1}=\left\{\Phi \in S^{2}: \exists_{\lambda \in X_{n}} \exists_{e: A t \rightarrow S^{2}} \exists_{\left\{k(1), \ldots, k\left(2^{n}\right)\right\} \subseteq\{1,2,3,4\}}\left[\Phi=h^{e}(\lambda) \wedge\right.\right. \\
& \wedge e\left(p_{\Gamma_{n-1}+1}\right)=e_{k(1)_{n+1}}\left(p_{\Gamma_{n-1}+1} \wedge \ldots \wedge e\left(p_{\Gamma_{n-1}+2^{n}}\right)=\right. \\
& \left.=e_{k\left(2^{n}\right)_{n+1}}\left(p_{\left.\Gamma_{n-1}+2^{n}\right)}\right)\right\}
\end{aligned}
$$

By using the matrix

$$
\mathcal{N}_{n}^{(n+1)}=\left\langle\left\{0,1, \ldots, \alpha_{n+1}\right\},\{1\}, f^{\rightarrow}, f^{\sim}, f^{*}, f^{+}\right\rangle \text {, where }
$$

we can prove that $C n\left(R_{0^{+}}, C_{n+2}\right) \subseteq E\left(\mathcal{N}_{2}^{(n+1)}\right)$. At the same time $\Phi_{n+1}=$ $h^{e_{1_{n+1}}}\left(h^{\epsilon_{1_{n}}}\left(\ldots\left(h^{\epsilon_{1_{2}}}(q \rightarrow(p \rightarrow q))\right) \ldots\right)\right) \in C n\left(R_{0^{*}}, X_{n+1}\right)-C n\left(R_{0^{*}}, X_{n+2}\right)$ for $v\left(p_{\Gamma_{n}+1}\right)-v\left(p_{\Gamma_{n}+2}\right)-\ldots-v\left(p_{\Gamma_{n}+2^{n+1}}\right)-\alpha_{n}+1$ fulfills the equality $h^{v}\left(\Phi_{n+1}\right)=\alpha_{n+1}$ and hence $\Phi_{n+1} \notin C n\left(R_{0^{*}}, X_{n+2}\right)$.

Lemma 3.3. For every $n \geqslant 2$
a. $\left\langle R_{0^{+}}, X_{n}\right\rangle \in \mathcal{T}_{2}$
b. $C n\left(R_{0^{+}}, X_{n}\right) \nsubseteq C n\left(R_{0^{*}}, X_{n+1}\right)$
c. $C n\left(R_{0^{*}}, X_{n}\right) \subset C n\left(R_{0^{*}}, A_{2}\right)$

Theorem 3.4. There exists a family of the descending finitely axiomatizable systems which are subsystems of Tarski's system $\left\langle R_{0^{*}}, A_{2}\right\rangle$ of the power of \aleph_{0}.

This result can be obtained for S^{1} and $\left\langle R_{0^{*}}, A_{1}\right\rangle$.
Theorem 3.5.
a. $\forall_{M \unrhd S^{2}} \forall_{X \supseteq Z_{2}^{2}}\left[C n\left(\left\{r_{0}\right\}, X\right)=M \vee\left\{\left\{r_{0}\right\}, X\right\rangle \notin \mathcal{T}_{M}\right]$

$$
\text { b. } \begin{aligned}
& \forall_{M \unrhd S^{2}}\left[\left\langle\left\{r_{0}\right\}, X\right\rangle \in \mathcal{T}_{M} \wedge Z_{2}^{2} \subseteq X \Rightarrow\left\langle\left\{r_{0}\right\}, X\right\rangle \in \text { Prime }\right] \\
& \text { where Prime is the class of well-known prime systems. } \\
& \text { Because } \forall_{\phi \in Z_{2}^{2}-H} \forall_{Y \in L^{\phi}\left(C n\left(\left\{r_{0}\right\}, H\right)\right)} \notin C \text { lol and } \\
& \forall Z_{2}^{2} \subseteq X \forall_{\phi \notin C n\left(\left\{r_{0}\right\}, X\right)}\left[Y_{1}, \ldots, Y_{n} \in L^{\phi}\left(C n\left(\left\{r_{0}\right\}, X\right)\right) \Rightarrow L^{\phi}\left(C n \left(\left\{r_{0}\right\},\right.\right.\right. \\
& \left.\left.\left.\bigcap_{i=1}^{n} Y_{i}\right)\right)=\left\{Y_{1}, \ldots, Y_{n}\right\}\right], \\
& \left(L ^ { \phi } (C n (\{ r _ { 0 } \} , X)) \text { can be exchanged by } L (C n (\{ r _ { 0 } \} , X)) \text { and } L ^ { \phi } \left(C N \left(\left\{r_{0}\right\}\right.\right.\right. \text {, } \\
& \left.\left.\left.\bigcap_{i=1}^{n} Y_{i}\right)\right) \text { by } L\left(C n\left(\left\{r_{0}\right\}, \bigcap_{i=1}^{n} Y_{i}\right)\right)\right) ; \text { so we introduce the notion } \mathcal{T}_{M_{\phi}} \text { as } \\
& \text { follows }\left(M \nsubseteq S^{2}\right): \\
& \langle R, X\rangle \in \mathcal{T}_{M_{\phi}} \Leftrightarrow \forall_{Y \in L^{\phi}(C n(R, X))} Y=M
\end{aligned}
$$

4. For S^{3} the following theorem can be proved (this theorem was announced in [12] without proof):

Theorem 4.1. $\left\langle R_{1}, A_{4}\right\rangle \in \mathcal{T}_{\text {S. }}$
Proof. By induction on the length of formula we obtain the following lemma:

1. $\forall_{\Phi \in S^{3}}\left\{\exists_{e: A t \rightarrow\{(p \rightarrow p), \sim(p \rightarrow p)\}} \exists_{\Phi \in S^{3}} h^{e}(\Phi)=\Phi \Rightarrow\right.$

$$
\begin{aligned}
& ([\Phi \in S .9 \Rightarrow(\Phi \overline{\overline{S .8}} \sim(p \rightarrow p) \vee \Phi \overline{\overline{S .8}} \sim M(p \rightarrow p))] \wedge \\
& [\Phi \in S .9 \Rightarrow(\Phi \overline{\overline{S .8}}(p \rightarrow p) \vee \Phi \overline{\overline{S .8}} M(p \rightarrow p))]\}
\end{aligned}
$$

$$
\text { Let } \mathcal{M}_{S .9}=\left\langle\{1,2,3,4\},\{1,2\}, f \rightarrow, f^{\vee}, f^{*}, M, L\right\rangle \text { where (cf. [9]) }
$$

f^{\rightarrow}	1	2	3	4	f		f^{*}	1	2	3	4	p	Mp	$L p$
1	2	4	4	4	1	4	1	1	2	3	4	1	1	2
2	2	2	4	4	2	3	2	2	2	4	4	2	1	4
3	2	4	2	4	3	2	3	3	4	3	4	3	1	4
4	2	2	2	2	4	1	4	4	4	4	4	4	3	4

We have (cf. [12], [13]) that $\left\langle R_{1}, A_{3}\right\rangle \in C p l$, hence it follows that $S .9=E\left(\mathcal{M}_{S .9}\right)$. Let us take $\Phi \notin C n\left(R_{1}, A_{3}\right)$ hence $\exists_{v: A t \rightarrow \mid \mathcal{M}_{S .9}} h^{v}(\Phi) \notin$ $\{1,2\}$
Let us define $e_{1}: A t \rightarrow S^{3}$ as follows:

$$
e_{1}\left(p_{j}\right)=\left\{\begin{array}{llc}
p \rightarrow p & \text { if } & w\left(p_{j}\right)=2 \\
M(p \rightarrow p) & \text { if } & v\left(p_{j}\right)=1 \\
\sim(p \rightarrow p) & \text { if } & v\left(p_{j}\right)=3 \\
\sim M(p \rightarrow p) & \text { if } & v\left(p_{j}\right)=4
\end{array}\right.
$$

2. $h^{e_{1}}(\Phi) \in C n\left(R_{1}, A_{3}\right)$. On the ground of 1 we should consider two cases:
a. $h^{e_{1}}(\Phi)_{\overline{S .8}} \sim(p \rightarrow p)$
b. $h^{e_{1}}(\Phi) \overline{\overline{S .8}} \sim(M(p \rightarrow p))$
a. $h^{e_{1}}(\Phi), h^{e_{1}}(\Phi) \rightarrow \sim(p \rightarrow p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)$, hence $\sim(p \rightarrow$ $p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right) . p \cdot \sim p \rightarrow q, p \rightarrow p \in C n\left(R_{1}, A_{3}\right)$ and, using the rule r_{a}, we have that $(p \rightarrow p) \cdot \sim(p \rightarrow p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)$. Consequently, $C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)=S^{3}$.
b. $h^{e_{1}}(\Phi), h^{e_{1}}(\Phi) \rightarrow \sim M(p \rightarrow p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)$ hence \sim $M(p \rightarrow p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)$. Since $M(p \rightarrow p) \in \operatorname{Cn}\left(R_{1}, A_{3}\right)$ then by the rule $r_{a} M(p \rightarrow p) \cdot \sim M(p \rightarrow p) \in C n\left(R_{1}, A_{3} \cup\{\Phi\}\right)$ and by $p \cdot \sim p \rightarrow q$ we have that $\operatorname{Cn}\left(R_{1}, A_{3} \cup\{\Phi\}=S^{3}\right.$.
Hence $\left\langle R_{1}, A_{4}\right\rangle \in \mathcal{T}_{S .9}$
Some examples of the systems for S^{1} with \mathcal{T}_{1}-property with different than $R_{0 *-}$ primitive rules. We consider the following sets of axioms:
$A_{6}=\{[(p \rightarrow p) \rightarrow p] \rightleftarrows p, \quad[p \rightarrow(p \rightarrow p)] \rightleftarrows p \rightarrow p)$,
$[(p \rightarrow p) \rightarrow(p \rightarrow p)] \rightleftarrows(p \rightarrow p)\}$,
$A_{7}=\{(p \rightarrow q) \rightarrow[(q \rightarrow s) \rightarrow(p \rightarrow s)],(q \rightarrow s) \rightarrow[(p \rightarrow q) \rightarrow(p \rightarrow$ $s)]\} \cup A_{6}$ and primitive rules $R_{2}=\left\{r_{0}, r_{*}, r_{E}\right\}$, where r_{E} is the rule of the scheme $\Phi \rightarrow \Psi, \Psi \rightarrow \Phi, \Theta(\Phi) / \Theta(\Psi)$.

Theorem 4.2 .

a. $\left\langle R_{2}, A_{6}\right\rangle \in \mathcal{T}_{1}$
b. $\left\langle R_{2}, A_{7}\right\rangle \in \mathcal{T}_{1} \wedge C n\left(R_{2}, A_{7}\right) \subset C n\left(R_{0^{*}}, A_{1}\right) \wedge r_{E} \in \operatorname{Der}\left(R_{0^{*}}, A_{7}\right)$
c. There exists finitely axiomatizable system $\left\langle R_{2}, A_{8}\right\rangle$ with \mathcal{T}_{1}-property which is a subsystem of Church's system and $\operatorname{At}\left(A_{8}\right)=\{p\}$.

References

[1] G. Asser, Einfürung in die mathematische Logik, Leipzig 1959.
[2] A. Biela, On the so-called Tarski's property in the theory of Lindenbaum's oversystems, Reports in Mathematical Logic, 1975 (to appear).
[3] A. Biela, On Lindenbaum's extension (Part A and B), Bulletin of the Section of Logic, Institute of Philosophy and Sociology of the Polish

Academy of Sciences, Part A: vol. 3, No. 4 (1974), pp. 2-8, Part B: vol. 4, No. 2 (1975), pp. 65-71.
[4] A. Biela and P. Hallala, Studies on Church's Calculus, Bulletin of the Section of Logic, Institute of Philosophy and Sociology of the Polish Academy of Sciences, 1976 (to appear).
[5] A. Biela and W. A. Pogorzelski, The power of the class of LindenbaumAsser extensions of consistent set of formulas, Reports on Mathematical Logic 2 (1974), pp. 5-8.
[6] A. Church, The weak positive implicational propositional calculus, The Journal of Symbolic Logic, vol. 16 (1951).
[7] K. Gödel, Zum intuitionistischer Aussagenkalkül, Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, Auzeiger, 69 (1932), pp. 65-66.
[8] S. Halden, Results concerning the decision problem of Lewis's calculi S3 and S6, JSL, vol. 14 (1950), pp. 230-236.
[9] G. E. Hughes, M. J. Cresswel, An Introduction to Modal Logic, London EC4.
[10] W. A Pogorzelski, Kilka uwag o pojȩciu supetności rachunku zdań. I, Studia Logica, XXIII (1968).
[11] W. A. Pogorzelski, Nota o mocy klasy tzw. relatywnych nadzbiorw Lindenbauma, Zeszyty Naukowe UJ, Prace z Logiki, Z. 4 (1969).
[12] K. Segerberg, On Post completeness in modal logic, JSL, vol. 37 (1972) (Abstract).
[13] K. Segerberg, Post completeness in Modal Logic, JSL, vol. 37, No. 4, Dec. (1972).
[14] Starrs McCall and Arnold Vander Nat, The system S.9, Philosophical Logic, Dordrecht (1969), pp. 194-214.
[15] A. Tarski, Über die Erweiterungen der unvollständigen Systeme des Aussagenkalküls, Ergebnisse eines mathematischen Kolloquiums, fasc. 7, Wien (1934).
[16] I. Thomas, Finite limitations of Dummett's LC, Notre Dame Journal of Formal Logic, vol. 3 (1962), pp. 170-174.

Mathematical Institute
Silesian University
Katowice

[^0]: * As abstract this article is not to be reviewed.

