

\sqrt{r}

You have downloaded a document from RE-BUŚ

repository of the University of Silesia in Katowice

Title: Strongly finite logics : finite axiomatizability and the problem of supremium

Author: Piotr Wojtylak

Citation style: Wojtylak Piotr. (1979). Strongly finite logics : finite axiomatizability and the problem of supremium. "Bulletin of the Section of Logic" (Vol. 8, no. 2 (1979), s. 99-108).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska-Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Bulletin of the Section of Logic
Volume 8/2 (1979), pp. 99-108
reedition 2010 [original edition, pp. 99-111]

Piotr Wojtylak

STRONGLY FINITE LOGICS: FINITE
 AXIOMATIZABILITY AND THE PROBLEM OF SUPREMIUM

This is an extended version of a lecture read at the meeting organized by the Lódź section of the Philosophical Society on January 20, 1979. Extended fragments of this paper will appear in "Reports on Mathematical Logic".

This paper, which in its subject matter goes back to works on strongly finite logics (e.g. [8], [9]), is concerned with the following problems:
(1) Let $C n_{1}, C n_{2}$ be two strongly finite logics over the same propositional language. Is the supremum of $C n_{1}$ and $C n_{2}$ (noted as $C n_{1} \cup C n_{2}$) also a strongly finite operation?
(2) Is any finite matrix (or more precisely, the content of any finite matrix) axiomatizable by a finite set of standard rules?

The first question can be found in [9] (and also in [11]). The second conjecture was formulated by Wolfgang Rautenberg, but investigations into this problem had been carried out earlier in works of many logicians (e.g. the known theorem of Mordchaj Wajsberg [7], see also [5]). Moreover, Stephen Bloom [1] posed a conjecture stronger than (2) that: the consequence determined by a finite matrix (a strongly finite consequence, see [9]) is finitely based, i.e. it is the consequence generated by a finite set of standard rules. This hypothesis was, however, disproved by Andrzej Wroński [10] (and also by Alasdair Urquhart [6]).

In the present paper it is shown that neither (1) nor (2) holds true. The negative answer to (2) can be viewed as a generalization of the result given by Andrzej Wroński [10] (or by [6]).

Let $\underline{S}_{0}=\left(S_{0}, \circ\right)$ be the algebra of the propositional language determined by the set $V=\left\{p_{i} ; i=0,1,2, \ldots\right\}$ of propositional variables and by a two-argument connective 0 . By h^{e} we denote the extension of the mapping $e: V \rightarrow S_{0}$ to an endomorphism of $\underline{S}_{0}\left(h^{e} \in \operatorname{Hom}\left(\underline{S}_{0}, \underline{S}_{0}\right)\right)$. The symbol $V(\alpha)$ stands for the set of all variables occurring in the formula $\alpha \in S_{0}$. Moreover, $V(X)=\bigcup\{V(\alpha): \alpha \in X\}$ for every set $X \subseteq S_{0}$. The length of a formula is defined as follows:

Definition 1.1.
(i) $l\left(p_{i}\right)=1$ for every $p_{i} \in V$
(ii) $l(\alpha \circ \beta)=1+l(\alpha)+l(\beta)$ for every $\alpha, \beta \in S_{0}$
(iii) $l(X)=\max \{l(\alpha): \alpha \in X\}$ for every finite set $X \subseteq S_{0}$

Let us take into consideration the following three matrices: $K=$ $\left(\{0,1\},\{1\}, f^{+}\right)$(the matrix of the classical disjunction), $L=(\{0, a, 1\}$, $\left.\{a, 1\}, f^{=}\right)$and $M=\left(\{0, a, 1\},\{a, 1\}, f^{*}\right)$, where

f^{+}	0	1
0	0	1
1	1	1

$f=$	0	a	1
0	1	0	0
a	0	0	1
1	0	1	1

f^{*}	0	a	1
0	0	0	0
a	0	0	0
1	0	0	a

The structural consequences determined by these matrices (or the so-called matrix consequences, see [3]) will be designated by C_{K}, C_{L}, C_{M}. We can easily make the following observation:
(a) $\alpha \in\left(C_{K} \cap C_{M}\right)(\alpha \circ \alpha)$ for every $\alpha \in S_{0}$, where $\left(C_{K} \cap C_{M}\right)(X)=$ $C_{K}(X) \cap C_{M}(X)$ for $X \subseteq S_{0}$
(b) $\beta \in\left(C_{L} \cap C_{M}\right)(\alpha, \alpha \circ \beta)=C_{L}(\alpha, \alpha \circ \beta) \cap C_{M}(\alpha, \alpha \circ \beta)$ for every $\alpha, \beta \in S_{0}$.
(c) $C_{M}(\alpha)=S_{0}$ if $\alpha \in S_{0}$ and $l(\alpha)>3$.

Let us take $X_{0}=\left\{p_{i} \circ p_{j} ; i \neq j\right\}$ and note that:
(d) $C_{M}\left(X_{0}\right) \neq S_{0}$
(e) $V \cap C_{K}\left(X_{0}\right)=0$ - it suffices to consider, for every $p_{i} \in V$, a homomorphism $h_{i} \in \operatorname{Hom}\left(\underline{S}_{0}, \operatorname{alg}(M)\right)$ such that $h_{i}\left(p_{j}\right)=1$ iff $i \neq j$.
(f) $p_{i} \circ p_{i} \notin C_{K}\left(X_{0}\right)$ for every $p_{i} \in V-$ by (a) and (e).
(g) $V \cap C_{L}\left(X_{0}\right)=0$ - let us consider a homomorphism $h \in \operatorname{Hom}\left(\underline{S}_{0}\right.$, $\operatorname{alg}(L))$ such that $h\left(p_{i}\right)=0$ for every $p_{i} \in V$. Then $h(X) \subseteq\{1\}$ and $h(V) \subseteq\{0\}$.
(h) $p_{i} \circ p_{i} \notin C_{L}\left(X_{0}\right)$ for every $p_{i} \in V$ - if $h_{i} \in \operatorname{Hom}\left(\underline{S}_{0}, \operatorname{alg}(L)\right)$ is a homomorphism such that $h_{i}\left(p_{j}\right)=1$ for $j \neq i$ and $h_{i}\left(p_{i}\right)=a$, then $h_{i}\left(p_{i} \circ p_{i}\right)=f^{=}(a, a)=0$ and $h_{i}\left(p_{i} \circ p_{j}\right)=f=(a, 1)=1$ for every $j \neq i$.
It immediately follows from (c) and (d) that: if $\alpha \in C_{K} \cap C_{M}\left(X_{0}\right)$, then $3<l(\alpha)$. Hence, by (e) and (f), we get
(i) $\left(C_{K} \cap C_{M}\right)\left(X_{0}\right)=C_{K}\left(X_{0}\right) \cap C_{M}\left(X_{0}\right)=X_{0}$

Similarly, by (c), (d), (g) and (h), we obtain
(j) $\left(C_{L} \cap C_{M}\right)\left(X_{0}\right)=C_{L}\left(X_{0}\right) \cap C_{M}\left(X_{0}\right)=X_{0}$

We state without proofs the following easy lemmas:
Lemma 1.2. Let Let $C n_{1}$ and $C n_{2}$ be consequence operations on S_{0} and let $C n_{1} \cup C n_{2}$ be the supremum (the least upper bound in the lattice of all consequences over S_{0}, see [8]) of $C n_{1}$ and $C n_{2}$. Then, for every set $X \subseteq S_{0}$,

$$
\left(C n_{1} \cup C n_{2}\right)(X)=\bigcap\left\{Y ; Y=C n_{1}(Y)=C n_{2}(Y)=Y \supset X\right\}
$$

Lemma 1.3. Let \mathbb{K} be a class of finite matrices for \underline{S}_{0} and let $C_{\mathbb{K}}$ be the structural consequence operation determined by \mathbb{K} (that is $C_{\mathbb{K}}(X)=$ $\bigcap\left\{C_{N}(X) ; N \in \mathbb{K}\right.$, see [8]). Then

$$
\alpha \in C_{\mathbb{K}}(X) \equiv \forall_{k} \forall_{e: V \rightarrow\left\{p_{1}, \ldots, p_{k}\right\}} h^{e}(\alpha) \in C_{\mathbb{K}}\left(h^{e}(X)\right)
$$

for every $\alpha \in S_{0}$ and $X \subseteq S_{0}$.
The above lemma is closely similar to the criterion of strong finiteness given by Ryszard Wójcicki [8].

ThEOREM 1.4. The consequence $C n=\left(C_{K} \cap C_{M}\right) \cup\left(C_{L} \cap C_{M}\right)$ is not strongly finite and, what is more, $C n \neq C_{\mathbb{K}}$ for any class \mathbb{K} of finite matrices.

Proof. Suppose that $e: V \rightarrow\left\{p_{1}, \ldots, p_{k}\right\}$. Since the set $\left\{p_{1}, \ldots, p_{k}\right\}$ is finite, there exist $p_{i}, p_{j} \in V$ such that $i \neq j$ and $e\left(p_{i}\right)=e\left(p_{j}\right)$. Thus
$h^{e}\left(p_{i} \circ p_{i}=e\left(p_{i}\right) \circ e\left(p_{i}\right)=e\left(p_{i}\right) \circ e\left(p_{j}\right)=h^{e}\left(p_{i} \circ p_{j}\right) \in h^{e}\left(X_{0}\right) \subseteq C n\left(h^{e}\left(X_{0}\right)\right)\right.$ and hence, by (a), e($\left.p_{i}\right) \in C n\left(h^{e}\left(X_{0}\right)\right)$ for some $p_{i} \in V$. On the other hand $e\left(p_{i}\right) \circ e\left(p_{k}\right)=h^{e}\left(p_{i} \circ p_{k}\right) \in h^{e}\left(X_{0}\right) \subseteq C n\left(h^{e}\left(X_{0}\right)\right)$ for every $p_{k} \neq p_{i}$. So it follows from (b) that $e\left(p_{k}\right) \in C n\left(h^{e}\left(X_{0}\right)\right)$ for every $p_{k} \in V$. Consequently, $h^{e}(V) \subseteq C n\left(h^{e}\left(X^{0}\right)\right)$ for every $e: V \rightarrow\left\{p_{1}, \ldots, p_{k}\right\}$.

Let us assume, to the contrary, that $C n=C_{\mathbb{K}}$ for some class \mathbb{K} of finite matrices. Then, by Lemma 1.3, V $\subseteq C n\left(X_{0}\right)$. But on the other hand, by (i), (j) and Lemma 1.2, Cn(X_{0}) $=X_{0}$. Hence $V \subseteq X_{0}$, which is a contradiction.

According to the definition of a strongly finite consequence (see [8]) the operations $C_{K} \cap C_{M}, C_{L} \cap C_{M}$ are strongly finite. Therefore conjecture (1) has been disproved.

Instead of $C_{K} \cap C_{M}, C_{L} \cap C_{M}$ one can take $C_{K \times M}, C_{L \times M}$ and by the similar argument it can be shown that $C_{K \times M} \cup C_{L \times M}$ is not a strongly finite consequence. Note that $K \times M$ and $L \times M$ are elementary matrices. It can also be proved that $C_{K \times M} \cup C_{L \times M}$ is uniform, that is, there exists an elementary matrix which is strongly adequate for $C_{K \times M} \cup C_{L \times M}$ (this is the answer to the question posed by Wiesław Dziobiak).

Obviously the set $C n(0)$ is empty, but when we extend the language \underline{S}_{0} (and also the matrices K, L, M) by adding some new connectives, then we can easily obtain two strongly finite consequences $C n_{1}$ and $C n_{2}$ such that $C n_{1} \cup C n_{2}$ is not strongly finite and $C n_{1} \cup C n_{2}(0)$ is not empty.

Theorem 1.4 states that the set of strongly finite logics does not form a sublattice of the lattice of all logics on S_{0}. From this statement, by an easy verification, the following theorem may also be deduced.

Theorem 1.5. The set of all strongly finite logics does not form a lattice.
It was proved in Theorem 1.4 that the supremum $\left(C_{K} \cap C_{M}\right) \cup\left(C_{L} \cap\right.$ C_{M}) of two strongly finite logics does not have the strongly finite model property (the notion introduced by Ryszard Wójcicki). In particular, this means that strengthenings of a given strongly finite consequence need not be characterized by finite matrices (need not have the strongly finite model property). This result was first obtained by Wiesław Dziobiak [2].

$\S .2$

Let us proceed to the second conjecture. Further we will consider formulae of the form:
(*) $\gamma_{1} \circ\left(\gamma_{2} \circ \ldots \circ\left(\gamma_{n-1} \circ \gamma_{n}\right)\right)$ where $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in V$.
The following definition is accepted:
Definition 2.1. The set $F(\beta)$, for every $\beta \in S_{0}$, is defined as follows:
(i) $\beta \in F(\beta)$
(ii) if $\alpha \in F(\beta)$ and if $\gamma \in V$, then $\gamma \circ \alpha \in F(\beta)$
(iii) A formula α belongs to $F(\beta)$ if it can be shown to be in $F(\beta)$ on the basis (i) and (ii).
Moreover, let us define an operation $p: S_{0} \rightarrow V$:
(i) $p(\gamma)=\gamma$ for every $\gamma=V$
(ii) $p(\alpha \circ \beta)=p(\beta)$ for every $\alpha, \beta \in S_{0}$

For every $\alpha \in S_{0}$ and for every $\gamma \in V$, the number of occurrences of the variable γ in the formula α will be denoted by $\operatorname{ind}(\alpha, \gamma)$, that is $\operatorname{ind}\left(p_{i}, p_{j}\right)=$ 0 if $i \neq j$, $\operatorname{ind}\left(p_{i}, p_{i}\right)=1$ and $\operatorname{ind}(\alpha \circ \beta, \gamma)=\operatorname{ind}(\alpha, \gamma)+\operatorname{ind}(\beta, \gamma)$. It is easy to see that $F=\bigcup\{F(\gamma) ; \gamma \in V\}$ is the set of all formulae of the form (*) and that $p(\alpha)$, for $\alpha \in F$, is the initial variable of α (i.e. $p(\alpha)=\gamma_{n}$ in $(*))$. We quote without proofs:

Lemma 2.2. For every formulae α, beta $\in S_{0}$ and every mapping e:V \rightarrow S_{0}
(i) $l(\alpha)=2\left(\sum_{\gamma \in V} i n d(\alpha, \gamma)\right)-1$
(ii) $\alpha \in F(\beta) \Rightarrow l(\beta) \leqslant l(\alpha) \wedge V(\beta) \subseteq V(\alpha)$,
(iii) $F(\alpha) \cap F(\beta) \neq 0 \Rightarrow F(\alpha) \subseteq F(\beta) \vee F(\beta) \subseteq F(\alpha)$,
(iv) If $h^{e}(\alpha) \in F$ and if $l\left(h^{e}(\alpha)\right)>l(\alpha)$, then
(a) $\operatorname{ind}(\alpha, p(\alpha))=1$
(b) $e(p(\alpha)) \in F \wedge \alpha \in F$
(c) $e(V(\alpha) \backslash\{p(\alpha)\}) \subseteq V$.
(v) If $\alpha \in F \wedge e(P(\alpha)) \in F(\beta)$ and if the above conditions (a), (c) are fulfilled, then $h^{e}(\alpha) \in F(\beta)$.
We will consider the matrix $N=(\{0,1,2,3,4\},\{1,2,3,4\}, f)$ where

f	0	1	2	3	4
0	4	4	4	4	4
1	0	2	2	0	4
2	4	4	4	4	4
3	4	0	0	4	4
4	4	4	4	4	4

The designated values in N are $\{1,2,3,4\}$ and hence the set of formulae valid in N can be defined as:

$$
E(N)=C_{N}(0)=\left\{\alpha \in S_{0} ; h(\alpha) \neq 0 \text { for every } h \in \operatorname{Hom}\left(\underline{S}_{0}, \operatorname{alg}(N)\right)\right\}
$$

It will be proved that $E(N)$ is not finitely axiomatizable by means of standard rules. Let us recall that a rule $r \subseteq 2^{S_{0}} \times S_{0}$ is said to be standard (polynomial c.f. [3]) if there exist a finite set $X \subseteq S_{0}$ and a formula $\alpha \in S_{0}$ such that $r=r_{\alpha}^{I}$, where

$$
r_{\alpha}^{X}=\left\{\left(h^{e}(X), h^{e}(\alpha)\right) ; e: V \rightarrow S_{0}\right\}
$$

Observe that rules of the form r_{α}^{0}, where 0 is the empty set, are also standard. Such rules are called axiomatic. Given a set R of rules we shall write $C n(R, X)$ (or $C_{R}(X)$) to denote the least superset of X closed under R. We say that the matrix N is axiomatizable by a set R of rules if and only if $R(N)=C n(R, 0)$.

Lemma 2.3. For every formula $\alpha \in S_{0}: \alpha \notin E(N) \equiv \alpha \in F \wedge$ ind $(\alpha, \gamma)=$ 1 for some $\gamma \in V$.

Theorem 2.4. The matrix N cannot be axiomatized by a finite set of standard rules.

Proof. Suppose to the contrary that $E(N)=C n(R, 0)$ for some finite set R of standard rules. Thus the members of R are unfailing in the matrix N that is:
(a) $r \in R \wedge(X, \Phi) \in r \wedge X \subseteq E(N) \Rightarrow \Phi \in E(N)$.

Since the set R is finite, there exists a natural number k such that
(b) $k=\max \left\{l(X, \alpha) ; r^{X} \in R\right\}$.

Let us take $\alpha_{0}=p_{0}$ and $\alpha_{n+1}=p_{n+1} \circ \alpha_{n}$ for every natural number n. It is obvious that:
(c) $V\left(\alpha_{n}\right)=\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$,

$$
l\left(\alpha_{n}\right)=2 n+1
$$

$$
\alpha_{n} \in F\left(p_{0}\right) \subseteq F
$$

Moreover, we shall prove that:
(d) $\Phi \in F\left(\alpha_{n}\right) \cap E(N) \equiv l(\Phi) \geqslant 4 n+3$, $F\left(\alpha_{n}\right) \cap E(N) \neq 0$.

If $\Phi \in F\left(\alpha_{n}\right) \cap E(N)$, then it follows from Lemma 2.2 (ii) that $\left\{p_{0}, \ldots, p_{n}\right\} \subseteq$ $V(\Phi)$ and therefore, according to Lemma $2.3, \operatorname{ind}\left(\Phi, p_{i}\right) \geqslant 2$ for $i=$ $0, \ldots, n$. Hence, by 2.2 (i), $l(\Phi) \geqslant 4 n+3$. To show $E(N) \cap F\left(\alpha_{n}\right) \neq 0$ it suffices to consider the formula $\Psi=\alpha_{n}\left(p_{0} / \alpha_{n}\right)$. From Lemma 2.2 (v) it follows that this formula is an element of $F\left(\alpha_{n}\right)$ and according to 2.3, 2.1: $p_{0} \circ \Psi \in F\left(\alpha_{n}\right) \cap E(N)$.
Let us assume that the sequence:
(e) $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$
is a proof of a formula $\Phi \in E(N) \cap F\left(\alpha_{k}\right)$ (where the natural number k is defined in (a)) on the ground of the rules R, i.e. $\Phi_{m}=\Phi$ and for every $i \leqslant m$ there exist a rule $r \in R$ and a set $Y \subseteq\left\{\Phi_{1}, \ldots, \Phi_{i-1}\right\}$ such that $\left(X, \Phi_{i}\right) \in r$. Suppose $m=1$. Then $\Phi=h^{e}(\alpha)$ and $r^{0} \in R$ for some $\alpha \in S_{0}$. But $l(\alpha)<k<4 k+3<l(\Phi)$ by (b) and (d). Hence, it follows from Lemma 2.2 (iv) that $\alpha \in F$ and $\operatorname{ind}(\alpha, p(\alpha))=1$. Consequently $\alpha \notin E(N)$ by Lemma 2.3, which contradicts assumption (a). Assume that no formula in $F\left(\alpha_{k}\right) \cap E(N)$ has a proof on the ground of R with less than m elements (where $m \geqslant 2$). Since $\Phi_{m}=\Phi$, there exists $X \subseteq S_{0}, \alpha \in S_{0}$ and mapping $e: V \rightarrow S_{0}$ such that $h^{e}(X) \subseteq\left\{\Phi_{1}, \ldots, \Phi_{m-1}\right\} \subseteq E(N), h^{e}(\alpha)=\Phi$, and $r_{\alpha}^{X} \in R$. Moreover, by (b) and (d), $l(\alpha)<l(\Phi)$. Thus, according to Lemma 2.2 (iv):
(f) $\alpha \in F$,

$$
\begin{aligned}
& \operatorname{ind}(\alpha, p(\alpha))=1 \\
& e(V(\alpha) \backslash\{p(\alpha)\}) \subseteq V
\end{aligned}
$$

On the other hand $e(p(\alpha)) \subset F(p(\alpha))$ by 2.1 and hence $h^{e}(\alpha)=\Phi \in$ $F(e(p(\alpha)))$ - see Lemma $2.2(\mathrm{v})$. Since $\Phi \in F\left(\alpha_{k}\right)$, it follows from 2.2 (ii), (iii) that
(g) $F(e(p(\alpha))) \subseteq F\left(\alpha_{k}\right)$

Let us consider a substitution $f: V \rightarrow S_{0}$ such that:

$$
f(\gamma)= \begin{cases}\left(p_{0} \circ p_{0}\right) \circ p_{0} & \text { if } \gamma \notin V(\alpha) \\ p_{1} \circ p_{0} & \text { if } \gamma=p(\alpha) \\ p_{0} & \text { if } \gamma \in V(\alpha) \backslash\{p(\alpha)\}\end{cases}
$$

It follows from 2.2 (v) and 2.3 that $h^{f}(\alpha) \notin E(N)$. Since $r_{\alpha}^{X} \in R$, there exists $\Psi \in X$ such that $h^{f}(\Psi) \notin E(N)$. It can be proved using 2.3 , (f), (e) that
(h) $V(\Psi) \subseteq V(\alpha)$,
$\Psi \in F$ and $p(\Psi)=p(\alpha)$,
$\operatorname{ind}(\Psi, p(\Psi))=1$.
The simple conclusion based on (h), (f) and Lemma 2.2 (iv) is that $h^{e}(\Psi) \in$ $F(e(p(\alpha)))$. Hence, by $(\mathrm{g}), h^{e}(\Psi) \in F\left(\alpha_{k}\right)$ - which contradicts the inductive hypothesis because $h^{e}(\Psi)$ has a proof with less than m elements. It has been proved, by induction on the number of elements in a proof of a formula $\Phi \in F\left(\alpha_{k}\right) \cap E(N)$, that $C n(R, 0) \cap F\left(\alpha_{k}\right) \cap E(N)=0$. Consequently, by $(\mathrm{d}), C n(R, 0) \neq E(N)$, which completes the proof of our theorem.

$\S 3$.

Finally we shall deal with the following problem: under what condition on strongly finite logics do the questions considered have positive answers? In the sequel some solution of this problem is presented.

Let $\underline{S}=\left(S, \equiv,+, F_{1}, \ldots, F_{n}\right)$ be a propositional language based on the set $V=\left\{p_{0}, p_{1}, \ldots,\right\}$ of propositional variables. We will assume that + and \equiv are two-argument connectives. A consequence operation $C n$ on S is said to be a disjunctive one if and only if $C n(X, \alpha) \cap C n(X, \beta)=C n(X, \alpha+\beta)$ for every $X \subseteq S$ and every $\alpha, \beta \in S(C n \in D$, see [5]). We say that $C n$ is a consequence with the identity connective ($C n \in I$, see [4]) when the binary relation on S defined as follows:

$$
\alpha \approx \beta \text { iff } \alpha \equiv \beta \in C n(0)
$$

is a congruence in \underline{S} consistent with $C n$, that is

$$
\alpha \approx \beta \Rightarrow C n(\alpha)=C n(\beta)
$$

If $C n$ is a disjunctive operation with identity, then we will write $C n \in D I$.
Lemma 3.1 $C n_{1}, C n_{2} \in D I \Rightarrow C n_{1} \cup C n_{2} \in D I$

Lemma 3.2. If $C n \in D I$ is a strongly finite consequence, then $\left\{C n_{1} \in\right.$ Struct; $\left.C n \leqslant C n_{1} \in D\right\}$ is a finite subset of the set of strongly finite consequences

ThEOREM 3.3. If $C n_{1}, C n_{2} \in D I$ are strongly finite consequences, then $C n_{1} \cup C n_{2}$ is also a strongly finite operation.

Proof. Since $C n_{1}, C n_{2} \in D I$, it follows from 3.1 that $C n_{1} \cup C n_{2} \in D I$ and, which is obvious, $C n_{1} \leqslant C n_{1} \cup C n_{2}$. Thus $C n_{1} \cup C n_{2}$ is a strongly finite consequence by Lemma 3.2.

It can also be proved that:
ThEOREM 3.4. If $C n \in D I$ is a strongly finite consequence, then $C n$ is finitely based, that is, $C n=C_{R}$ for a finite R of standard rules.

It conclusion it is worth while adding, as was mentioned after the lecture, that Jan Zygmunt had proved that: every disjunctive consequence determined by an elementary finite matrix is finitely based.

References

[1] S. L. Bloom, A representation theorem for the lattice of standard consequence operations, Studia Logica 34 (1975), pp. 235-237.
[2] W. Dziobiak, On strongly finite consequence operations, preprint, Institute of Mathematics, Nicholas Copernicus University, Toruń 1979, No. 1.
[3] J. Łoś and R. Suszko, Remarks on sentential logics, Indagationes Mathematicae 20 (1958), pp. 177-183.
[4] R. Suszko, Identity connective and modality, Studia Logica 27 (1971), pp. 7-39.
[5] A. Tarski, Logics, Semantics, Metamathematics, Oxford 1956.
[6] A. Urquhart, A finite matrix whose consequence relation is not finitely axiomatizable, Reports on Mathematical Logic 9 (1977), pp. 7173.
[7] M. Wajsberg, Beitrage zum Metaausagenkalkul I., Monatshefte für Mathematic und Physik 42 (1935), pp. 221-242.
[8] R. Wójcicki, Matrix approach in metodology of sentential calculi, Studia Logica 33 (1973), pp. 7-39.
[9] R. Wójcicki, Strongly finite sentential calculi, [in:] Selected papers on Łukasiewicz sentential calculi, edited by Wójcicki R. and Malinowski G., Warszawa-Wrocław 1977.
[10] A. Wroński, On finitely based consequence operations, Studia Logica 35 (1976), pp. 453-458.
[11] J. Zygmunt, Research project on strongly finite sentential calculi, Bulletin of the Section of Logic, Polish Academy of Science, Institute of Philosophy and Sociology, 6 (1977), pp. 87-90.

Mathematical Institute
Silesian University
Katowice

