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Piotr Wojtylak

STRONGLY FINITE LOGICS: FINITE 
AXIOMATIZABILITY AND THE PROBLEM OF 

SUPREMIUM

This is an extended version of a lecture read at the meeting organized 
by the Lodź section of the Philosophical Society on January 20, 1979. Ex
tended fragments of this paper will appear in “Reports on Mathematical 
Logic”.

This paper, which in its subject matter goes back to works on strongly 
finite logics (e.g. [8], [9]), is concerned with the following problems:

(1) Let Cn1, Cn2 be two strongly finite logics over the same propositional 
language. Is the supremum of Cn1 and Cn2 (noted as Cn1 U Cn2) 
also a strongly finite operation?

(2) Is any finite matrix (or more precisely, the content of any finite ma
trix) axiomatizable by a finite set of standard rules?

The first question can be found in [9] (and also in [11]). The second conjec
ture was formulated by Wolfgang Rautenberg, but investigations into this 
problem had been carried out earlier in works of many logicians (e.g. the 
known theorem of Mordchaj Wajsberg [7], see also [5]). Moreover, Stephen 
Bloom [1] posed a conjecture stronger than (2) that: the consequence de
termined by a finite matrix (a strongly finite consequence, see [9]) is finitely 
based, i.e. it is the consequence generated by a finite set of standard rules. 
This hypothesis was, however, disproved by Andrzej Wronźski [10] (and also 
by Alasdair Urquhart [6]).

In the present paper it is shown that neither (1) nor (2) holds true. 
The negative answer to (2) can be viewed as a generalization of the result 
given by Andrzej Wronźski [10] (or by [6]).
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Let So = (So, ◦) be the algebra of the propositional language deter
mined by the set V = {pi; i = 0, 1, 2, .. .} of propositional variables and 
by a two-argument connective ◦. By he we denote the extension of the 
mapping e : V S0 to an endomorphism of S0 (he e Hom(S0,S0)). The 
symbol V(a) stands for the set of all variables occurring in the formula 
a e So. Moreover, V(X) = |J{V(a) : a e X} for every set X C So. The 
length of a formula is defined as follows:

Definition 1.1.

(i) l(pi) = 1 for every pi e V
(ii) l(a ◦ P) = 1 + l(a) + l(P) for every a, P e So

(iii) l(X) = max{l(a) : a e X} for every finite set X C S0

Let us take into consideration the following three matrices: K = 
({0, 1}, {1}, f+) (the matrix of the classical disjunction), L = ({0, a, 1}, 
{a, 1}, f =) and M = ({0, a, 1}, {a, 1}, f *), where

f+ 0 1
0 0 1
1 1 1

f= 0 a 1
0 1 0 0
a 0 0 1
1 0 1 1

f* 0 a 1
0 0 0 0
a 0 0 0
1 0 0 a

The structural consequences determined by these matrices (or the so-called 
matrix consequences, see [3]) will be designated by CK, CL, CM . We can 
easily make the following observation:

(a) a e (CK A CM)(a ◦ a) for every a e So, where (CK A CM)(X) = 
Ck (X) A Cm (X) for X C So

(b) P e (CL A CM)(a, a ◦ P) = CL(a, a ◦ P) A CM(a, a ◦ P) for every 
a, P e S0 .

(c) CM(a) = S0 if a e S0 and l(a) > 3.

Let us take X0 = {pi ◦ pj; i = j} and note that:

(d) CM(X0) = S0

(e) V A CK (Xo) = 0 - it suffices to consider, for every pi e V, a homo
morphism hi e Hom(S0, alg(M)) such that hi(pj) = 1 iff i = j.

(f) pi ◦ pi e CK(Xo) for every pi e V - by (a) and (e).
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(g) V C CL (X0) = 0 - let us consider a homomorphism h e Hom(S0, 
alg(L)) such that h(pi) = 0 for every pi e V. Then h(X) C {1} and 
h(V) C {0}.

(h) pi ◦ pi e CL(X0) for every pi e V - if h e Hom(S0,alg(L)) is a 
homomorphism such that hi(pj) = 1 for j = i and hi(pi) = a, then 
hi(pi ◦ pi) = f=(a, a) = 0 and hi(pi ◦ pj) = f=(a, 1) = 1 for every 
j = i.

It immediately follows from (c) and (d) that: if a e CK Cl CM(X0), then 
3 < l(a). Hence, by (e) and (f), we get

(i) (CK C CM)(X0) = CK(X0) C CM(X0) = X0

Similarly, by (c), (d), (g) and (h), we obtain

(j) (CL C CM)(X0) = CL(X0) C CM(X0) = X0

We state without proofs the following easy lemmas:

Lemma 1.2. Let Let Cn1 and Cn2 be consequence operations on S0 and 
let Cni U Cn2 be the supremum (the least upper bound in the lattice of 
all consequences over S0, see [8]) of Cn1 and Cn2. Then, for every set 
X C S0,

(Cni U Cn2)(X) = Q{Y; Y = Cn^Y) = Cn2(Y) = Y D X}.

Lemma 1.3. Let K be a class of finite matrices for So and let Ck be 
the structural consequence operation determined by K (that is Ck(X) = 

{CN(X); N e K, see [8]). Then

a e Ck(X) = VkVe:v^{pi,..,pk}he(a) e CS(he(X)) 

for every a e S0 and X C S0.

The above lemma is closely similar to the criterion of strong finiteness 
given by Ryszard Wójcicki [8].

Theorem 1.4. The consequence Cn = (CK C CM) U (CL C CM) is not 
strongly finite and, what is more, Cn = CK for any class K of finite ma
trices.

Proof. Suppose that e : V {p1,...,pk}. Since the set {p1,...,pk} 
is finite, there exist pi, pj e V such that i = j and e(pi) = e(pj). Thus
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he(pi◦Pi = e(pi)◦ e(pi) = e(pi)oe(pj) = he(pi◦pj) & he(Xo) C Cn(he(Xo)) 
and hence, by (a), e(pi) & Cn(he(X0)) for some pi & V. On the other hand 
e(pi) ◦ e(pk) = he(pi ◦ pk) & he(X0) C Cn(he(X0)) for every pk = pi. So it 
follows from (b) that e(pk) & Cn(he(X0)) for every pk & V. Consequently, 
he(V) C Cn(he(X0)) for every e : V {p1,... ,pk}.

Let us assume, to the contrary, that Cn = CK for some class K of finite 
matrices. Then, by Lemma 1.3, V C Cn(X0). But on the other hand, 
by (i), (j) and Lemma 1.2, Cn(X0) = X0. Hence V C X0, which is a 
contradiction. □

According to the definition of a strongly finite consequence (see [8]) the 
operations CK A CM, CL A CM are strongly finite. Therefore conjecture 
(1) has been disproved.

Instead of CK A CM, CL A CM one can take CKxM, ClxM and by the 
similar argument it can be shown that CKxM U CLxM is not a strongly 
finite consequence. Note that K x M and L x M are elementary matrices. 
It can also be proved that CKx M U CLx M is uniform, that is, there exists 
an elementary matrix which is strongly adequate for CKxM U CLxM (this 
is the answer to the question posed by Wiesław Dziobiak).

Obviously the set Cn(0) is empty, but when we extend the language 
S0 (and also the matrices K, L, M) by adding some new connectives, then 
we can easily obtain two strongly finite consequences Cn1 and Cn2 such 
that Cn1 U Cn2 is not strongly finite and Cn1 U Cn2(0) is not empty.

Theorem 1.4 states that the set of strongly finite logics does not form 
a sublattice of the lattice of all logics on S0. From this statement, by an 
easy verification, the following theorem may also be deduced.

Theorem 1.5. The set of all strongly finite logics does not form a lattice.

It was proved in Theorem 1.4 that the supremum (CK A CM) U (CL A 
CM) of two strongly finite logics does not have the strongly finite model 
property (the notion introduced by Ryszard Wźojcicki). In particular, this 
means that strengthenings of a given strongly finite consequence need not 
be characterized by finite matrices (need not have the strongly finite model 
property). This result was first obtained by Wiesław Dziobiak [2].
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§.2

Let us proceed to the second conjecture. Further we will consider formulae 
of the form:

(*) Y1 ◦ (Y2 ◦ ... ◦ (Yn-1 ◦ Yn)) where Y1,Y2,..., Yn e V.
The following definition is accepted:

Definition 2.1. The set F(P), for every P e S0, is defined as follows:

(i) P e F(p)
(ii) if a e F(p) and if Y e V, then Y ◦ a e F(p)

(iii) A formula a belongs to F(p) if it can be shown to be in F(p) on the 
basis (i) and (ii).

Moreover, let us define an operation p : S0 V:

(i) p(Y) = Y for every Y = V
(ii) p(a ◦ p) = p(p) for every a, p e S0

For every a e S0 and for every Y e V, the number of occurrences of the 
variable Y in the formula a will be denoted by ind(a, Y), that is ind(pi, pj) = 
0 if i = j, ind(pi,pi) = 1 and ind(a ◦ P,y) = ind(a, y) + ind(P, y). It is 
easy to see that F = {F(Y); Y e V} is the set of all formulae of the form
(*) and that p(a), for a e F, is the initial variable of a (i.e. p(a) = Yn in 
(*)). We quote without proofs:

Lemma 2.2. For every formulae a, beta e So and every mapping e : V
S0

(i) l(a) = 2( ind(a, Y)) - 1
yev

(u) a e F(P) l(P) < l(a) A V(P) C V(a),
(iii) F(a) C F(P) =0 F(a) C F(P) V F(P) C F(a),
(iv) If he(a) e F and if l(he(a)) > l(a), then

(a) ind(a, p(a)) = 1
(b) e(p(a)) e F A a e F
(c) e(V(a)\{p(a)}) C V.

(v) If a e F A e(P(a)) e F(P) and if the above conditions (a), (c) are 
fulfilled, then he(a) e F(P).

We will consider the matrix N = ({0, 1, 2, 3, 4}, {1, 2, 3, 4}, f) where
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f 0 1 2 3 4
0 4 4 4 4 4
1 0 2 2 0 4
2 4 4 4 4 4
3 4 0 0 4 4
4 4 4 4 4 4

The designated values in N are {1, 2, 3, 4} and hence the set of formulae 
valid in N can be defined as:

E(N) = CN(0) = {a e So; h(a) = 0 for every h e Hom(So, alg(N))}

It will be proved that E(N) is not finitely axiomatizable by means of stan
dard rules. Let us recall that a rule r C 2So x So is said to be standard 
(polynomial c.f. [3]) if there exist a finite set X C S0 and a formula a e S0 

such that r = ra, where

rX = {(he(X),he(a)); e : V So}.

Observe that rules of the form rao , where 0 is the empty set, are also stan
dard. Such rules are called axiomatic. Given a set R of rules we shall write 
Cn(R, X) (or CR(X)) to denote the least superset of X closed under R. 
We say that the matrix N is axiomatizable by a set R of rules if and only 
if R(N) = Cn(R, 0).

Lemma 2.3. For every formula a e So : a e E(N) = a e F A ind(a, y) = 
1 for some y e V.

Theorem 2.4. The matrix N cannot be axiomatized by a finite set of 
standard rules.

Proof. Suppose to the contrary that E(N) = Cn(R, 0) for some finite 
set R of standard rules. Thus the members of R are unfailing in the matrix 
N that is:

(a) r e R A (X, $) e r A X C E(N) $ e E(N).

Since the set R is finite, there exists a natural number k such that

(b) k = max{l(X, a); rX e R}.

Let us take ao = po and an+1 = pn+1 ◦ an for every natural number n. It 
is obvious that:
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(c) V (an) = {p0,pi v^n})
l(a„) = 2n +1,
an & F(po) C F.

Moreover, we shall prove that:

(d) $ & F(an) A E(N) = l($) > 4n + 3,
F(an) A E(N) = 0.

If $ & F(an)AE(N), then it follows from Lemma 2.2 (ii) that {p0, . . . , pn} C 
V($) and therefore, according to Lemma 2.3, ind($,pi) > 2 for i = 
0, Hence, by 2.2 (i), l($) > 4n +3. To show E(N) A F(an) = 0 it
suffices to consider the formula = an(p0/an). From Lemma 2.2 (v) it 
follows that this formula is an element of F(an) and according to 2.3, 2.1: 

po ◦ vl' & F(an) A E(N).
Let us assume that the sequence:

(e) $1, $2, . . . , $m

is a proof of a formula $ & E(N) A F(ak) (where the natural number k is 
defined in (a)) on the ground of the rules R, i.e. $m = $ and for every 
i < m there exist a rule r & R and a set Y C {$1,..., $i-1} such that 
(X, $i) & r. Suppose m = 1. Then $ = he(a) and ro & R for some a & So. 
But l(a) < k < 4k + 3 < l($) by (b) and (d). Hence, it follows from 
Lemma 2.2 (iv) that a & F and ind(a, p(a)) = 1. Consequently a & E(N) 
by Lemma 2.3, which contradicts assumption (a). Assume that no formula 
in F(ak) A E(N) has a proof on the ground of R with less than m elements 
(where m > 2). Since $m = $, there exists X C So, a & So and mapping 
e : V So such that he(X) C {$1,..., $m-1} C E(N), he(a) = $, and 
rX & R. Moreover, by (b) and (d), l(a) < l($). Thus, according to Lemma 
2.2 (iv):

(f) a & F,
ind(a, p(a)) = 1,
e(V(a)\{p(a)}) C V

On the other hand e(p(a)) C F(p(a)) by 2.1 and hence he(a) = $ & 
F(e(p(a))) - see Lemma 2.2 (v). Since $ & F(ak), it follows from 2.2 (ii), 
(iii) that

(g) F(e(p(a))) C F(ak)

Let us consider a substitution f : V So such that:
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{
(po ◦ po) ◦ po 

p1 ◦ po 

po

if y e V(a)
if y = p(a)
if y e V(a)\{p(a)}.

It follows from 2.2 (v) and 2.3 that hf(a) e E(N). Since raX e R, there 
exists VI' e X such that hf (^) e E(N). It can be proved using 2.3, (f), (e) 
that

(h) V(*) C V(a),
e F and p(^) = p(a), 

ind(^,p(^)) = 1.

The simple conclusion based on (h), (f) and Lemma 2.2 (iv) is that he(^) e 
F(e(p(a))). Hence, by (g), he(^) e F(ak) - which contradicts the induc
tive hypothesis because he(^) has a proof with less than m elements. It has 
been proved, by induction on the number of elements in a proof of a for
mula $ e F(ak)AE(N), that Cn(R, 0)AF(ak)AE(N) = 0. Consequently, 
by (d), Cn(R, 0) = E(N), which completes the proof of our theorem. □

§3.

Finally we shall deal with the following problem: under what condition on 
strongly finite logics do the questions considered have positive answers? In 
the sequel some solution of this problem is presented.

Let S = (S, =, +, F1,..., Fn) be a propositional language based on the 
set V = {po, p1, . . . , } of propositional variables. We will assume that + and 
= are two-argument connectives. A consequence operation Cn on S is said 
to be a disjunctive one if and only if Cn(X, a) A Cn(X, P) = Cn(X, a + P) 
for every X C S and every a, P e S (Cn e D, see [5]). We say that Cn 
is a consequence with the identity connective (Cn e I, see [4]) when the 
binary relation on S defined as follows:

a « P iff a = P e Cn(0)

is a congruence in S consistent with Cn, that is

a « P Cn(a) = Cn(P)

If Cn is a disjunctive operation with identity, then we will write Cn e DI .

Lemma 3.1 Cn1, Cn2 e DI Cn1 U Cn2 e DI
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Lemma 3.2. If Cn & DI is a strongly finite consequence, then {Cn1 & 
Struct; Cn Cni & D} is a finite subset of the set of strongly finite 
consequences.

Theorem 3.3. If Cn1, Cn2 & DI are strongly finite consequences, then 
Cn1 U Cn2 is also a strongly finite operation.

Proof. Since Cn1, Cn2 & DI, it follows from 3.1 that Cn1 U Cn2 & DI 
and, which is obvious, Cn1 < Cn1 U Cn2. Thus Cn1 U Cn2 is a strongly 
finite consequence by Lemma 3.2. □

It can also be proved that:

Theorem 3.4. If Cn & DI is a strongly finite consequence, then Cn is 
finitely based, that is, Cn = CR for a finite R of standard rules.

It conclusion it is worth while adding, as was mentioned after the lec
ture, that Jan Zygmunt had proved that: every disjunctive consequence 
determined by an elementary finite matrix is finitely based.
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