

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On information functions. Part One : Basic formal properties

Author: Krzysztof Szymanek

Citation style: Szymanek Krzysztof. (1989). On information functions. Part One : Basic formal properties. "Bulletin of the Section of Logic" (Vol. 18, no. 1 (1989), s. 6-10).

Uznanie autorstwa - Uiycie niekomercyine - Eez utworow zalezinych Folska-Licencja ta zenwala na rozporazechuianie, puzedstawianie i wykonywatie utwout jedyrie w elach niekomercyinych oraz pod watunkiem zachowania go wo ougeinalnej postaci (nie tworzenia utworow zaleznych).

Bulletin of the Section of Logic
Volume 18/1 (1989), pp. 6-10
reedition 2006 [original edition, pp. 6-12]

Krzysztof Szymanek

ON INFORMATION FUNCTIONS
 PART ONE: BASIC FORMAL PROPERTIES

In this paper we present the definition and fundamental properties of the information functions - functions which establish a correspondence between sets of formulas and information contained in these sets. The intuitions of the notion of information stem from Bar-Hillel-Carnap's conception derived from [1]. The information contained in the proposition is, according to this conception, the set of all state-descriptions excluded by this proposition.

By S we shall note the set of all formulas in the language $\{\neg, \wedge, \vee, \rightarrow\}$ and by C, the classical consequence operation over S. Instead of $C(\emptyset)$ we write Taut. The set of all complete subsets of S we note as $C p l$.

We put forward the following definition:
Definition A.1. A function $J: P(S) \rightarrow Z$, where Z is a family of sets, is called an information function iff
(J1) $J(C(X)) \subseteq J(X)$, for any $X \subset S$
(J2) $J(X)=\bigcup\{J(\{\alpha\}): \alpha \in X\}$, for any $X \subset S$
(J3) $J(\{\alpha\}) \cap J(\{\neg \alpha\})=\emptyset$, for any $\alpha \in S$
The condition (J2) of the above definition may seem to be non-intuitive; it may seem, for example that the collective information contained in the formulas p and $p \rightarrow q$ is less than the information contained in the set $\{p, p \rightarrow q\}$. However, according to the interpretation presented above, it is not the case:

Let A be a set; we call it a set of all possible cases. For every $\underline{a} \in A$ we assume that \underline{a} is the case of the following kind: "in the time t, in the place r, x occurred (is occurring or will occur)".

The state-description is every function $f \in \widehat{W}$, where $\widehat{W}=\{0,1\}^{A}$. If $\underline{a} \in A$ and $f \in \widehat{W}$, then notation $f(\underline{a})=1$ means that the case \underline{a} occurred (is occurring or will occur); notation $f(\underline{a})=0$ means that the case \underline{a} did not occur (is not occurring, will not occur). To every proposition p we attribute its content, i.e. an element \underline{a}_{p} of the set A. The information contained in p is the set $I_{\{p\}}=\left\{f \in \widehat{W}: f\left(\underline{a}_{p}\right)=0\right\}$. Similarly: $I_{\{p \rightarrow q\}}=$ $\left\{f \in \widehat{W}: f\left(\underline{a}_{p}\right)=1\right.$ and $\left.f\left(\underline{a}_{q}\right)=0\right\}$. The sets $\{p, p \rightarrow q\}$ and $\{p, q\}$, as logically equivalent, contain the same information, namely:

$$
I_{\{p, p \rightarrow q\}}=I_{\{p, q\}}=\left\{f \in \widehat{W}: f\left(\underline{a}_{p}=0 \text { or } f\left(\underline{a}_{q}\right)=0\right\} .\right.
$$

It is easy to see, that $I_{\{p, p \rightarrow q\}}=I_{\{p\}} \cup I_{\{p \rightarrow q\}}$.
The following lemma gives several primary properties of the information functions. Instead of $J\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$ we shall write $J\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Lemma A.2. If J is an information function, then:
(a) $J(\emptyset)=\emptyset$
(b) if $X \subseteq Y$, then $J(X) \subseteq J(Y)$, for any $X, Y \subseteq S$
(c) $J(C(X))=J(X)$, for any $X \subseteq S$
(d) if $\mathcal{R} \subseteq P(S)$, then $J(\bigcup \mathcal{R})=\bigcup\{J(X): X \in \mathcal{R}\}$
(e) if $\emptyset \neq \mathcal{R} \subseteq P(S)$, then $J(\cap \mathcal{R}) \subseteq \bigcap\{J(X): X \in \mathcal{R}\}$
(f) if $X, Y \subseteq S$ are theories, then $J(X) \cap J(Y)=J(X \cap Y)$
(g) $J($ Taut $)=\emptyset$
(h) if $\alpha \rightarrow \beta \in$ Taut, then $J(\beta) \subseteq J(\alpha)$, for any $\alpha, \beta \in S$
(i) $J(\neg \alpha)=J(S) \backslash J(\alpha)$, for any $\alpha \in S$
(j) $J(\alpha \wedge \beta)=J(\alpha) \cup J(\beta)$, for any $\alpha, \beta \in S$
(k) $J(\alpha \vee \beta)=J(\alpha) \cap J(\beta)$, for any $\alpha, \beta \in S$
(l) $J(\alpha \rightarrow \beta)=J(\neg \alpha) \cap J(\beta)$, for any $\alpha, \beta \in S$

Let W be a set. By $\operatorname{In} f(W)$ we denote the class of all information functions J such that $J(S)=W$. From the item (b) of the above lemma it follows that if $J \in \operatorname{In} f(W)$, then $J: P(S) \rightarrow P(W)$.

Theorem A.3. Assume that $J: P(S) \rightarrow Z$ and $J(X)=\bigcup\{J(\alpha): \alpha \in$ $X\}$, for any $X \subseteq S$. Let $W=J(S)$. Then $J \in \operatorname{Inf}(W)$ iff the mapping $h: S \rightarrow P(W)$ defined by

$$
h(\alpha)=W \backslash J(\alpha), \text { for every } \alpha \in S
$$

is a homomorphism, i.e. $h(\neg \alpha)=W \backslash h(\alpha), h(\alpha \wedge \beta)=h(\alpha) \cap h(\beta), h(\alpha \vee$ $\beta)=h(\alpha) \cup h(\beta), h(\alpha \rightarrow \beta)=h(\neg \alpha) \cup h(\beta)$, for any $\alpha, \beta \in S$.

Let $J \in \operatorname{In} f(W), B_{J}=\{J(\alpha): \alpha \in S\}, \underline{B}_{J}=<B_{J}, W, 0,-, \cap, \cup$, \rightarrow, where \cap and \cup are the usual set-theoretical operations and $-U=$ $W \backslash U, U \rightarrow V=-U \cup V$, for any $U, V \in B_{J}$. Besides, we define:

$$
C_{J}(X)=\{\alpha \in S: J(\alpha) \subseteq J(X)\}, \text { for every } X \subseteq S
$$

C_{J} is a consequence operation and for any $X \subseteq S: C\left(C_{J}(X)\right)=C_{J}(X)$.
Theorem A.4. If $J \in \operatorname{In} f(W)$, then \underline{B}_{J} is isomorphic with the Lindenbaum algebra $S / C_{J}(\emptyset)$.

Let $J \in \operatorname{In} f(W)$. For every $U \subseteq W$ we define:

$$
\operatorname{con}_{J}(U)=\{\alpha \in S: J(\alpha) \subseteq U\}
$$

Lemma A.5. If $J \in \operatorname{Inf}(W)$, then:
(a) $C\left(\operatorname{con}_{J}(U)\right)=C_{J}\left(\operatorname{con}_{J}(U)\right)=\operatorname{con}_{J}(U)$, for any $U \subseteq W$
(b) $\operatorname{con}_{J}(J(X))=C_{J}(X)$, for any $X \subseteq S$
(c) $C_{J}(X)=C_{J}(Y)$ iff $J(X)=J(Y)$, for any $X, Y \subseteq S$
(d) if $\emptyset \neq \mathcal{R} \subseteq P(W)$, then $\operatorname{con}_{J}(\bigcap \mathcal{R})=\bigcap\left\{\operatorname{con}_{J}(U): U \in \mathcal{R}\right\}$
(e) $\operatorname{con}_{J}(X \backslash\{x\}) \in C p l$, for any $x \in W$

If $J \in \operatorname{In} f(W)$, then the family $T_{J}=\{J(X): X \subseteq S\}$ is a topology in the set W. We say that topological space $\left\langle W, T_{J}\right\rangle$ is determined by $\left.J .<W, T_{J}\right\rangle$ is a zero-dimensional space with countable basis B_{J}. In addition: $\operatorname{int} U=J\left(\operatorname{con}_{J}(U)\right)$, for any $U \subseteq W$.

If for any $\alpha, \beta \in S: J(\beta) \subseteq J(\alpha)$ implies $\alpha \rightarrow \beta \in$ Taut, then we write $J \in \operatorname{In} f^{+}(W)$. If $C=C_{J}$ then we write $J \in \operatorname{In} f^{0}(W)$. Observe that $J \in \operatorname{Inf} f^{+}(W)$ iff $\operatorname{con}_{J}(\emptyset)=$ Taut. It is simple that $\operatorname{In} f^{0}(W) \subseteq \operatorname{In} f^{+}(W)$, for any W.

Lemma A.6. If $J \in \operatorname{In} f^{+}(W)$, then

$$
J \in \operatorname{In} f^{0}(W) \text { iff the space }\left\langle W, T_{J}\right\rangle \text { is compact. }
$$

Note, that there exist a set W and $J \in \operatorname{Inf} f^{+}(W)$, such that $J \notin \operatorname{In} f^{0}(W)$.

Lemma A.7. If $J \in \operatorname{In} f(W)$, then there are $W_{H} \subseteq W$ and $J_{H} \in \operatorname{Inf}\left(W_{H}\right)$ such that:
(a) $J_{H}(X)=J(X) \cap W_{H}$, for any $X \subseteq S$
(b) $C_{J_{H}}=C_{J}$
(c) W_{H} is a dense subset of W
(d) $\left\langle W_{H}, T_{J_{H}}\right\rangle$ is a subspace of $\left\langle W, T_{J}\right\rangle$
(e) $<W_{H}, T_{J_{H}}>$ is a Hausdorff space.

If $J \in \operatorname{In} f(W)$ and $\left\langle W, T_{J}\right\rangle$ is a Hausdorff space, then we write $J \in \operatorname{In} f_{H}(W)$.

Lemma A.8. Let $J \in \operatorname{In} f(W)$. The mapping $f: W \rightarrow P(S)$ we define by:

$$
f(x)=\operatorname{con}_{J}(W \backslash\{x\}), \text { for every } x \in W
$$

Then we have:
(a) $f[W] \subseteq C p l$
(b) $f[W]=C p l$ iff $J \in \operatorname{In} f^{0}(W)$
(c) f is one-to-one iff $J \in \operatorname{Inf} f_{H}(W)$.

Lemma A.9.
(a) if $\operatorname{Inf}_{H}(W) \neq \emptyset$, then $\overline{\bar{W}} \leq \mathrm{c}$
(b) if $\operatorname{In} f_{H}^{+}(W) \neq \emptyset$, then $\overline{\bar{W}} \geq \omega$
(c) $\operatorname{In} f_{H}^{0}(W) \neq \emptyset$ iff $\overline{\bar{W}}=\mathrm{c}$.

Sketch of proof of (c): Necessity results from Lemma A.8., in view of $\overline{\overline{C p l}}=\mathrm{c}$. The function $J: P(S) \rightarrow P(C p l)$ defined by:

$$
J(X)=\{Z \in C p l: X \nsubseteq Z\}, \text { for every } X \subseteq S
$$

is an element of $\operatorname{In} f_{H}^{0}(C p l)$.
Let $J_{1} \in \operatorname{In} f_{H}\left(W_{1}\right)$ and $J_{2} \in \operatorname{In} f_{H}\left(W_{2}\right)$. A mapping $h: W_{1} \rightarrow W_{2}$ is called an isomorphism from J_{1} into J_{2} iff h is one-to-one and onto and $J_{2}(X)=h\left[J_{1}(X)\right]$, for any $X \subseteq S$.
J_{1} and J_{2} are said to be isomorphic ($J_{1} \approx J_{2}$) iff there is an isomorphism from J_{1} onto J_{2}. Note that each isomorphism from J_{1} onto J_{2} is a homeomorphism of the spaces $\left\langle W_{1}, T_{J_{1}}\right\rangle$ and $\left\langle W_{2}, T_{J_{2}}\right\rangle$. There exists at most one isomorphism from J_{1} onto J_{2}.

Theorem A.10. If $J_{1} \in \operatorname{In} f_{H}^{0}\left(W_{1}\right)$ and $J_{2} \in \operatorname{In} f_{H}^{0}\left(W_{2}\right)$ then $J_{1} \approx J_{2}$.

Theorem A.11. If $J \in \operatorname{In} f_{H}(W)$ and $\bar{J} \in \operatorname{In} f_{H}^{0}(\bar{W})$, then there exists a unique mapping $h: W \rightarrow \bar{W}$ such that:
(a) h is a homeomorphism from W onto $h[W]$
(b) $h[J(X)]=\bar{J}(X) \cap h[W]$, for any $X \subseteq S$.

Remark A.12. If $J \in \operatorname{In} f_{H}^{0}(W)$, then $\left\langle W, T_{J}\right\rangle$ is a zero-dimensional, compact, dense-in-itself, Hausdorff space. It is well known that each such space is homeomorphic with the Cantor space. So we may assume that $<W, T_{J}>$ is the Cantor space.

References

[1] Y. Bar-Hillel and R. Carnap [1952], An Outline of a Theory of Semantic Information, Technical Report No 247. Cambridge (Mass.), MIT Research Laboratory of Electronics. Reprint in: Y. Bar-Hillel [1964] Language and Information, Reading (Mass.), Addison-Wesley.

Section of Logic and Methodology
Silesian University
Katowice, Poland

