

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: On information functions. Part One : Basic formal properties

Author: Krzysztof Szymanek

Citation style: Szymanek Krzysztof. (1989). On information functions. Part One : Basic formal properties. "Bulletin of the Section of Logic" (Vol. 18, no. 1 (1989), s. 6-10).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

🕼 Biblioteka 💭 Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Bulletin of the Section of Logic Volume 18/1 (1989), pp. 6–10 reedition 2006 [original edition, pp. 6–12]

Krzysztof Szymanek

ON INFORMATION FUNCTIONS PART ONE: BASIC FORMAL PROPERTIES

In this paper we present the definition and fundamental properties of the information functions – functions which establish a correspondence between sets of formulas and information contained in these sets. The intuitions of the notion of information stem from Bar-Hillel–Carnap's conception derived from [1]. The information contained in the proposition is, according to this conception, the set of all state-descriptions excluded by this proposition.

By S we shall note the set of all formulas in the language $\{\neg, \land, \lor, \rightarrow\}$ and by C, the classical consequence operation over S. Instead of $C(\emptyset)$ we write *Taut*. The set of all complete subsets of S we note as Cpl.

We put forward the following definition:

DEFINITION A.1. A function $J: P(S) \to Z$, where Z is a family of sets, is called an information function iff

- (J1) $J(C(X)) \subseteq J(X)$, for any $X \subset S$
- (J2) $J(X) = \bigcup \{ J(\{\alpha\}) : \alpha \in X \}, \text{ for any } X \subset S \}$

(J3) $J(\{\alpha\}) \cap J(\{\neg\alpha\}) = \emptyset$, for any $\alpha \in S$

The condition (J2) of the above definition may seem to be non-intuitive; it may seem, for example that the collective information contained in the formulas p and $p \rightarrow q$ is less than the information contained in the set $\{p, p \rightarrow q\}$. However, according to the interpretation presented above, it is not the case:

Let A be a set; we call it a set of all possible cases. For every $\underline{a} \in A$ we assume that \underline{a} is the case of the following kind: "in the time t, in the place r, x occurred (is occurring or will occur)".

On Information Functions Part One: Basic Formal Properties

The state-description is every function $f \in \widehat{W}$, where $\widehat{W} = \{0, 1\}^A$. If $\underline{a} \in A$ and $f \in \widehat{W}$, then notation $f(\underline{a}) = 1$ means that the case \underline{a} occurred (is occurring or will occur); notation $f(\underline{a}) = 0$ means that the case \underline{a} did not occur (is not occurring, will not occur). To every proposition p we attribute its content, i.e. an element \underline{a}_p of the set A. The information contained in p is the set $I_{\{p\}} = \{f \in \widehat{W} : f(\underline{a}_p) = 0\}$. Similarly: $I_{\{p \to q\}} = \{f \in \widehat{W} : f(\underline{a}_p) = 1 \text{ and } f(\underline{a}_q) = 0\}$. The sets $\{p, p \to q\}$ and $\{p, q\}$, as logically equivalent, contain the same information, namely:

$$I_{\{p,p\rightarrow q\}}=I_{\{p,q\}}=\{f\in \widehat{W}: f(\underline{a}_p=0 \text{ or } f(\underline{a}_q)=0\}.$$

It is easy to see, that $I_{\{p,p \to q\}} = I_{\{p\}} \cup I_{\{p \to q\}}$. \Box

The following lemma gives several primary properties of the information functions. Instead of $J(\{\alpha_1, \ldots, \alpha_n\})$ we shall write $J(\alpha_1, \ldots, \alpha_n)$.

LEMMA A.2. If J is an information function, then:

 $\begin{array}{ll} (a) & J(\emptyset) = \emptyset \\ (b) & if \ X \subseteq Y, \ then \ J(X) \subseteq J(Y), \ for \ any \ X, Y \subseteq S \\ (c) & J(C(X)) = J(X), \ for \ any \ X \subseteq S \\ (d) & if \ \mathcal{R} \subseteq P(S), \ then \ J(\bigcup \mathcal{R}) = \bigcup \{J(X) : X \in \mathcal{R}\} \\ (e) & if \ \emptyset \neq \mathcal{R} \subseteq P(S), \ then \ J(\bigcap \mathcal{R}) \subseteq \bigcap \{J(X) : X \in \mathcal{R}\} \\ (f) & if \ X, Y \subseteq S \ are \ theories, \ then \ J(X) \cap J(Y) = J(X \cap Y) \\ (g) & J(Taut) = \emptyset \\ (h) & if \ \alpha \to \beta \in Taut, \ then \ J(\beta) \subseteq J(\alpha), \ for \ any \ \alpha, \beta \in S \\ (i) & J(\neg \alpha) = J(S) \setminus J(\alpha), \ for \ any \ \alpha, \beta \in S \\ (j) & J(\alpha \land \beta) = J(\alpha) \cup J(\beta), \ for \ any \ \alpha, \beta \in S \\ (l) & J(\alpha \to \beta) = J(\neg \alpha) \cap J(\beta), \ for \ any \ \alpha, \beta \in S \\ \end{array}$

Let W be a set. By Inf(W) we denote the class of all information functions J such that J(S) = W. From the item (b) of the above lemma it follows that if $J \in Inf(W)$, then $J : P(S) \to P(W)$.

THEOREM A.3. Assume that $J : P(S) \to Z$ and $J(X) = \bigcup \{J(\alpha) : \alpha \in X\}$, for any $X \subseteq S$. Let W = J(S). Then $J \in Inf(W)$ iff the mapping $h : S \to P(W)$ defined by

$$h(\alpha) = W \setminus J(\alpha), \text{ for every } \alpha \in S$$

is a homomorphism, i.e. $h(\neg \alpha) = W \setminus h(\alpha), h(\alpha \land \beta) = h(\alpha) \cap h(\beta), h(\alpha \lor \beta) = h(\alpha) \cup h(\beta), h(\alpha \to \beta) = h(\neg \alpha) \cup h(\beta), \text{ for any } \alpha, \beta \in S. \square$

Let $J \in Inf(W), B_J = \{J(\alpha) : \alpha \in S\}, \underline{B}_J = \langle B_J, W, 0, -, \cap, \cup, \rangle$ \rightarrow >, where \cap and \cup are the usual set-theoretical operations and $-U = W \setminus U, U \rightarrow V = -U \cup V$, for any $U, V \in B_J$. Besides, we define:

$$C_J(X) = \{ \alpha \in S : J(\alpha) \subseteq J(X) \}, \text{ for every } X \subseteq S \}$$

 C_J is a consequence operation and for any $X \subseteq S : C(C_J(X)) = C_J(X)$.

THEOREM A.4. If $J \in Inf(W)$, then \underline{B}_J is isomorphic with the Lindenbaum algebra $S/C_J(\emptyset)$. \Box

Let $J \in Inf(W)$. For every $U \subseteq W$ we define:

$$con_J(U) = \{ \alpha \in S : J(\alpha) \subseteq U \}$$

LEMMA A.5. If $J \in Inf(W)$, then:

(a)
$$C(con_J(U)) = C_J(con_J(U)) = con_J(U)$$
, for any $U \subseteq W$
(b) $con_J(J(X)) = C_J(X)$, for any $X \subseteq S$
(c) $C_J(X) = C_J(Y)$ iff $J(X) = J(Y)$, for any $X, Y \subseteq S$
(d) if $\emptyset \neq \mathcal{R} \subseteq P(W)$, then $con_J(\bigcap \mathcal{R}) = \bigcap \{con_J(U) : U \in \mathcal{R}\}$
(e) $con_J(X \setminus \{x\}) \in Cpl$, for any $x \in W$

If $J \in Inf(W)$, then the family $T_J = \{J(X) : X \subseteq S\}$ is a topology in the set W. We say that topological space $\langle W, T_J \rangle$ is determined by $J. \langle W, T_J \rangle$ is a zero-dimensional space with countable basis B_J . In addition: $intU = J(con_J(U))$, for any $U \subseteq W$.

If for any $\alpha, \beta \in S : J(\beta) \subseteq J(\alpha)$ implies $\alpha \to \beta \in Taut$, then we write $J \in Inf^+(W)$. If $C = C_J$ then we write $J \in Inf^0(W)$. Observe that $J \in Inf^+(W)$ iff $con_J(\emptyset) = Taut$. It is simple that $Inf^0(W) \subseteq Inf^+(W)$, for any W.

LEMMA A.6. If $J \in Inf^+(W)$, then

$$J \in Inf^{0}(W)$$
 iff the space $\langle W, T_{J} \rangle$ is compact.

Note, that there exist a set W and $J \in Inf^+(W)$, such that $J \notin Inf^0(W)$.

On Information Functions Part One: Basic Formal Properties

LEMMA A.7. If $J \in Inf(W)$, then there are $W_H \subseteq W$ and $J_H \in Inf(W_H)$ such that:

(a) $J_H(X) = J(X) \cap W_H$, for any $X \subseteq S$ (b) $C_{J_H} = C_J$ (c) W_H is a dense subset of W(d) $\langle W_H, T_{J_H} \rangle$ is a subspace of $\langle W, T_J \rangle$ (e) $\langle W_H, T_{J_H} \rangle$ is a Hausdorff space.

If $J \in Inf(W)$ and $\langle W, T_J \rangle$ is a Hausdorff space, then we write $J \in Inf_H(W)$.

LEMMA A.8. Let $J \in Inf(W)$. The mapping $f : W \to P(S)$ we define by:

$$f(x) = con_J(W \setminus \{x\}), \text{ for every } x \in W$$

Then we have:

 $(a) \quad f[W] \subseteq Cpl$

(b) $f[W] = Cpl \ iff \ J \in Inf^0(W)$

(c) f is one-to-one iff
$$J \in Inf_H(W)$$
.

Lemma A.9.

- (a) if $Inf_H(W) \neq \emptyset$, then $\overline{\overline{W}} \leq \mathsf{c}$
- (b) if $Inf_{H}^{+}(W) \neq \emptyset$, then $\overline{\overline{W}} \ge \omega$

(c) $Inf_{H}^{0}(W) \neq \emptyset$ iff $\overline{W} = \mathsf{c}$.

Sketch of proof of (c): Necessity results from Lemma A.8., in view of $\overline{\overline{Cpl}} = \mathsf{c}$. The function $J: P(S) \to P(Cpl)$ defined by:

$$J(X) = \{ Z \in Cpl : X \not\subseteq Z \}, \text{ for every } X \subseteq S$$

is an element of $Inf_H^0(Cpl)$.

Let $J_1 \in Inf_H(W_1)$ and $J_2 \in Inf_H(W_2)$. A mapping $h: W_1 \to W_2$ is called an isomorphism from J_1 into J_2 iff h is one-to-one and onto and $J_2(X) = h[J_1(X)]$, for any $X \subseteq S$.

 J_1 and J_2 are said to be isomorphic $(J_1 \approx J_2)$ iff there is an isomorphism from J_1 onto J_2 . Note that each isomorphism from J_1 onto J_2 is a homeomorphism of the spaces $\langle W_1, T_{J_1} \rangle$ and $\langle W_2, T_{J_2} \rangle$. There exists at most one isomorphism from J_1 onto J_2 .

THEOREM A.10. If $J_1 \in Inf_H^0(W_1)$ and $J_2 \in Inf_H^0(W_2)$ then $J_1 \approx J_2$.

THEOREM A.11. If $J \in Inf_H(W)$ and $\overline{J} \in Inf_H^0(\overline{W})$, then there exists a unique mapping $h: W \to \overline{W}$ such that:

(a)
$$h$$
 is a homeomorphism from W onto $h[W]$
(b) $h[J(X)] = \overline{J}(X) \cap h[W]$, for any $X \subseteq S$.

REMARK A.12. If $J \in Inf_H^0(W)$, then $\langle W, T_J \rangle$ is a zero-dimensional, compact, dense-in-itself, Hausdorff space. It is well known that each such space is homeomorphic with the Cantor space. So we may assume that $\langle W, T_J \rangle$ is the Cantor space. \Box

References

[1] Y. Bar-Hillel and R. Carnap [1952], An Outline of a Theory of Semantic Information, **Technical Report** No 247. Cambridge (Mass.), MIT Research Laboratory of Electronics. Reprint in: Y. Bar-Hillel [1964] Language and Information, Reading (Mass.), Addison-Wesley.

Section of Logic and Methodology Silesian University Katowice, Poland