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Krzysztof Szymanek

ON INFORMATION FUNCTIONS
PART TWO: APPLICATIONS TO THE LOGIC OF
THEORY CHANGE

The purpose of this work is to show how the notion of information
function introduced in [1] can be used in the logic of theory change devel-
oped by P. Gérdenfors, C. E. Alchourron and D. Makinson in [2], [3] and
[4].

The simplest and best known form of theory change is expansion,
where a new position, if consistent with a given theory K, is set-theoretically
added to K and this expanded set is then closed under logical consequence.
Second form is theory contraction, where a proposition «, which was earlier
in a theory K, is rejected. The basic problem is to determine which propo-
sitions should be rejected along with « so that the contracted theory will be
closed under logical consequence. Third kind of change is revision, where
a proposition, in general inconsistent with a given theory K, is added to
K under the requirement that the revised theory be consistent and closed
under logical consequence.

In this note we shall focus on the contraction functions, i.e. functions
which reflect the process of contraction according to Géardenfors postulates
(see definition B.1.). We will point how using the notions presented in Part
One can be proved a few important theorems about contraction functions
(in the less general case than in [2] and [3], where C' is not necessarily the
classical consequence).

Our leading idea is rather intuitive. Loosely speaking, a proposition o
is rejected from a theory K if at least a part of information contained in «
has lost its credibility and the contraction operation is to reject, along with
o, those formulas which contain any component of “bad” information.
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In this part by .J we shall denote the “unique” (see [1], theorem A.10.)
element of the set Infy (W), where <W, T > is the Cantor space (see [1],
remark A.12.). Instead of con;(U) we write con(U). The formulas of the
form (o — B) A (8 — «) will be abbreviated as a « 5. From now on we
assume that K is any fixed theory.

DeriniTION B.1. (cf. [2], [3], [4]) A function K— : S — P(S) is called a
contraction function over K iff for every o, 5 € S
(cl) K— ais a theory
(¢2) K~ aCK
(e3) ifad K, then K— a=K
(c4) if a & Taut, then a ¢ K— «
() if e peTaut, then K— a= K- j
(c6) K C (L= a)U{a})

LEMMA B.2. A function K— : S — P(K) is a conlraction function over
K iff there exists a mapping ' : S — P(W) such for every a, 3 € S
(a) F(a)# 0 if a e K\Taut
(b) Fla) C J(a)
(¢) if o = peTaut, then F(a)
(d) K— a=con(J(K)\F(a))

=F(p)

0O

Any mapping satisfying (a)—(d) above is called a determinant of contraction
K—. For every a € S the set F/(«) represents a part of the information

contained in the formula o, which is excluded while contracting the set
K into the set K— «. If I' is a determinant of K —, then the mapping

F defined by F (o) = clF(a), for any o € S, is also a determinant of
K —, so called closed determinant. If Fy and I, are two determinants of
contraction K-, then clFi(a) = clFs(a), for any a € S. Consequently,
each contraction function over K has exactly one closed determinant.

We define (cf. [2]) K L« to be the set of all maximal subtheories K’ of
K such that o & K’. Note that a ¢ K iff K La = {K}, likewise K1la =10
iff @ € Taut. For every o, 3 € S we have: Kla =K1 iff a — g € Taut.

Lemma B.3. If a € K\Taut, then:
(a) con(J(K)\{z}) € Kla iff z € J(a), foranyz € W
(b) the mapping [ : J(a) - K La given by

f(@) = con(J(K)\{z}), for any z € J(a)
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18 one-to-one and onto. O

CoROLLARY B.4. [fae K\Taut, then Kla = c.

Proor. J(«) is a non-empty, closed-open subset of W hence it is home-
omorphic with the Cantor space <W,T; >. Then by the above lemma we

have: Kla=J(a)=W =c. O

LemMMA B.5. (cf. [2]) For every o € K\Taut : [ K La= KN C(-a).

Proor. Suppose o € K\Taut and let U, = J(K)\{z}, for any z € J(a).
By lemma B.3 and lemmas A.2 and A.5 of [1] we have:

NKLlae = N{econ(Uy) : 2 € J(a)} = con[[[{Uz : = € J(a)}] =
= con(J(K\J(a)) = con(J(K) N (W\J(a))) = con(J(K) N J(-a)) =
= con(J(K))Ncon(J(—a))=KNC(-a). O

We say that ~ is a selection function for K (cf. [3], [4]), if
(i) v:{Kla:ae St — P(P(K))
(ii) v(K La) is a non-empty subset of K 1o whenever K 1a £ ()
(iii) if Kla = then y(K La) = {K}
It is obvious that v(K La) = {K} iff « € Taut or « € S\ K.

THeOrREM B.6. (cf. [3]) A function K— : S — P(K) is contraction
function over K iff there exists a selection function v for K such that:

K= a=N~v(KLla), for any ¢ € S.

Proor.  Assume that K— is a contraction function over K and let
I be a determinant of K—. For every o € K\Taut and =z € F(a)
we put UY = J(K)\{z} and v(Kla) = {con(US) : z € Fla)}. If
a € S\(K\Taut), then let v(KLla) = {K}. The function v is well-
founded, for if K Lo = K18 then a «» 8 € Taut and F(a) = F(3), hence
v(KLa) =~(KL1p3). By lemma B.3 v is a selection function for K. Next we
have: Ny(KLa) = N{eon(UZ) 1z € Fla)} = con((WUS : 2z € Fla)}) =
con(J(K)\F(a)) = K= o, for any o € K\Taut. If oo € S\(K\Taut), then
naturally ((v(KLla) =K = K- a.

To prove the converse implication let for every a € S : F(a) =
JKNJ (N v(K L)), where « is a selection function for K. We will ex-
amine that F' satisfies the conditions (a)—(d) of lemma B.2.

(a) From the definition of F' and lemma A.5. of [1] we have: F'(a) =
e JK)=JNv(KLla) e K=Nv(Kla) & v(Kla)={K} e ac
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S\K or a € Taut. Hence F(a) # 0 iff @ € K\Taut.

(b) If @ € S\(K\Taut) then from (a) follows F(a) =0 C J(a). Sup-
pose & € K\Taut. By lemma B.5.: J(K N C(-«a)) C J((v(KLa)) hence
Flo) = JIENJ(Ny(K L)) C© J(KNJ(K N C(=a)) = JIENJ(K) N

) =
J(ﬁa())) J({)().\(J(K) (WAJ(e))) = J(e).
(d)  con(J(K\F(a)) = con[J(K\(J(KNJ(Ny(KLa)))] =
con(J(Nv(KLa)))=Nv(KLla)=K=-a O

We say that a contraction function K— is determined by selection
function v iff K— o = (v(K La), for any oo € S (cf. [3]).

Now we shall consider two special kinds of contraction functions. First,
we say that contraction function K — is a maxichoice contraction function

iff selection function v determining K — satisfies condition v(K La) = 1,
for any o € K\Taut (cf [3]). Second, K— is a full meet contraction
function iff selection v determining K — satisfies v(K La) = K Lo, for any
a € K\Taut (cf. [3]).

REMARK B.7. From lemmas B.2. and B.3. it follows that K— is a
maxichoice contradiction function iff K — has exactly one determinant F,

for which F'(a) = 1, for any oo € K\Taut. Likewise, K= is a full meet
contraction if it has determinant F' such that Fi(«) = J(a), for any o € K.
O

The full meet contraction function over K will be denoted as K ~.
It easily results from lemma B.5. that K ~ a = K N C(—«), whenever
a € K\Taut.

THEOREM B.8. (cf. [2]) Let K— be any contraction function over K.
Then

(a) K— 4s a mazichoice contraction function iff C((K— a)U{-a}) €
Cpl, for any o € K\Taut

(b) K- is a full meet contraction function iff C((K— a)U{-a}) =
C(—a), for any o € K\Taut.

Proof is based on the equation: C((K— «)U {-a}) = con(W\F(a)), for
any o € K\Taut. O
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THEOREM B.9. Let K— be any contraction function over K. Then for
every o € S one of the following conditions is satisfied:
(a) there exists B € S such that o« — € Taut and K— a=K~j
(b) there exists a sequence {3;}icn such that
(b1) P =«,B; — B; € Taut whenever i <j
(b2) K~p3; C K~ p3; wheneveri < j
(b3) K— a=|{K~p;:i€ N}.

The clause (a), which clearly implies (b), has been separately stated merely
to make (b) more intuitive. O
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