

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Classical subtheories and intuitionism

Author: Krzysztof Szymanek

Citation style: Szymanek Krzysztof. (1989). Classical subtheories and intuitionism. "Bulletin of the Section of Logic" (Vol. 18, no. 3 (1989), s. 112-115).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Bulletin of the Section of Logic Volume 18/3 (1989), pp. 112–115 reedition 2006 [original edition, pp. 112–115]

Krzysztof Szymanek

CLASSICAL SUBTHEORIES AND INTUITIONISM

By S we shall denote the set of all formulas in the language $\{\neg, \&, \lor, \Rightarrow\}$ and by C the classical consequence over S. The set of all theories we denote as **Th**. **Th**₀ is the set of all theories T such that $T = C(\alpha)$, for some $\alpha \in S$. By **Th**₁, we denote the set **Th****Th**₀. The set of all complete theories we denote as **Cpl**. For a given $T \in$ **Th** let $L_T = \{Y \subseteq T : Y \in$ **Th**\}. It is obvious that for every $T \in$ **Th** the system $\langle L_T, \subseteq \rangle$ is a lattice. It is evident that in this lattice $X \sqcup Y = C(X \cup Y)$ and $X \sqcap Y = X \cap Y$, for any $X, Y \in L_T$.

In [1] and [2] Dzik has proved among others that the lattice $\langle L_S, \subseteq \rangle$ is an implicative lattice and its content (i.e. the set of all formulas in the language $\{\lor, \&, \Rightarrow, \neg\}$ which are valid in the lattice $\langle L_S, \sqcup, \sqcap, \Rightarrow, \rightarrow \rangle$) is equal to the set INT of all formulas provable in the intuitionistic calculus. Here we will prove the following two theorems:

THEOREM 1. If $T \in \mathbf{Th} \setminus \{C(\emptyset)\}$, then $\langle L_T, \subseteq \rangle$ is an implicative lattice and its content it equal to INT.

THEOREM 2. Let $T_0 \in \mathbf{Th}_0 \setminus \{C(\emptyset)\}$ and $T_1 \in \mathbf{Th}_1$. Then for every $T \in \mathbf{Th}$ the lattice $\langle L_T, \subseteq \rangle$ is isomorphic with one of the following lattices:

$$< L_{C(\emptyset)}, \subseteq >, < L_{T_0}, \subseteq >, < L_{T_1}, \subseteq >.$$

We define the function $J : \mathcal{P}(S) \longrightarrow \mathcal{P}(\mathbf{Cpl})$ by:

 $J(X) = \{ Z \in \mathbf{Cpl} : X \not\subseteq Z \}, \text{ for any } X \subseteq S.$

LEMMA 1. (cf. [1], proof of Theorem 27).

Classical Subtheories and Intuitionism

(a) J(C(X)) = J(X), for any $X \subseteq S$ (b) $J(X) = \bigcup \{J(\alpha) : \alpha \in X\}$, for any $X \subseteq S$ (c) $J(\neg \alpha) = \mathbf{Cpl} \setminus J(\alpha)$, for any $\alpha \in S$ (d) $J(\alpha \& \beta) = J(\alpha) \cup J(\beta)$, for any $\alpha, \beta \in S$ (e) $J(X) = \emptyset$ iff $X \subseteq C(\emptyset)$, for any $X \subseteq S$ (f) if $\emptyset \neq \mathcal{R} \subseteq \mathcal{P}(S)$), then $J(\bigcup \mathcal{R}) = \bigcup \{J(X) : X \in \mathcal{R}\}$ (g) $J(X) \cap J(Y) = J(C(X) \cap C(Y))$, for any $X, Y \subseteq S$ (h) if $T_1, T_2 \in \mathbf{Th}$, then $T_1 \subseteq T_2$ iff $J(T_1) \subseteq (T_2)$. \Box Note that from (a) (b) and (a) of the above Lemma it for

Note that from (a), (b) and (c) of the above Lemma it follows that the function J is an information function in the sense of [5]. Observe that by virtue of (e), (c), (f) and (g) of Lemma 1 the family $\mathcal{T} = \{J(X) : X \subseteq S\}$ is a topology in the set **Cpl**. By \mathcal{W} we denote the topological space $\langle \mathbf{Cpl}, \mathcal{T} \rangle$. If $\mathcal{Z} \subseteq \mathbf{Cpl}$ and $\mathcal{T}_{\mathcal{Z}} = \{\mathcal{Z} \cap J(X) : X \subseteq S\}$, then naturally the system $\mathcal{W}_{\mathcal{Z}} = \langle \mathcal{Z}, \mathcal{T}_{\mathcal{Z}} \rangle$ is a subspace of \mathcal{W} .

LEMMA 2. (cf [1], Theorem 27). Let $T \in \mathbf{Th}$. Then the lattice $\langle L_T, \subseteq \rangle$ is isomorphic with the lattice $\langle \mathcal{T}_{J(T)}, \subseteq \rangle$.

PROOF. Let $T \in \mathbf{Th}$. Let us consider the mapping $H : L_T \longrightarrow \mathcal{T}_{J(T)}$ given by H(Y) = J(Y), for every $Y \in L_T$. It is evident that H is an injection. We shall prove that it is a surjection. Let $\mathcal{Z} \in \mathcal{T}_{J(T)}$, i.e. \mathcal{Z} is an open set in the space $\mathcal{W}_{J(T)}$. Since J(T) is an open set in \mathcal{W} , then \mathcal{Z} is also an open set in \mathcal{W} . From the definition of the space \mathcal{W} there is a set $X \subseteq S$ such that $J(X) = \mathcal{Z}$. By Lemma 1 (a), (h) we conclude that $C(X) \in L_T$ and $H(C(X)) = \mathcal{Z}$. From Lemma 1 (h) it follows that H is an isomorphism. \Box

LEMMA 3. W is homeomorphic with the Cantor space.

PROOF. From Lemma 1 (b), (c) it follows that the set $\{J(\alpha) : a \in S\}$ is a basis of the space \mathcal{W} and it consists of closed-open sets. Hence \mathcal{W} is a zero-dimensional space. We easily prove that \mathcal{W} is a regular space with a countable basis, so it is a metric space. Besides \mathcal{W} is dense-initself and compact. It is well-known that every zero-dimensional metric, dense-in-itself, compact space is homeomorphic with the Cantor space. \Box

We note that the set $B_J = \{J(\alpha) : \alpha \in S\}$ is a Boolean algebra of all closed-open subsets of the Cantor space (see Lemma 7 (a)). Note also that B_J is isomorphic with the Lindenbaum-Tarski algebra $S/C(\emptyset)$. Connections between Boolean algebras and the Cantor space are considered in [4].

LEMMA 4. If $T \in \mathbf{Th} \setminus \{C(\emptyset)\}$, then the lattice $\langle \mathcal{T}_{J(T)}, \subseteq \rangle$ is implicative and its content is equal to INT.

PROOF. Let $T \in \mathbf{Th} \setminus \{C(\emptyset)\}$. Then $\mathcal{W}_{J(T)}$ is a non-empty, open subspace of \mathcal{W} . So $\mathcal{W}_{J(T)}$ is a dense-in-itself, metric space. The lattice $\langle \mathcal{T}_{J(T)}, \subseteq \rangle$ of all open sets of \mathcal{W} is implicative and, according to the well-known result of McKinsey and Tarski (see [3], chapter IX, Theorem 3.2), its content is equal to INT. \Box

PROOF OF THEOREM 1 follows from Lemmas 2 and 4.

Now we are going to prove Theorem 2.

LEMMA 5. Any two non-empty, closed-open subsets of the Cantor space are homeomorphic. Any two open, but not closed subsets of the Cantor space are homeomorphic. \Box

The next Lemma is an easy consequence of Lemmas 5 and 3:

LEMMA 6. If $\mathcal{Z}_1, \mathcal{Z}_2 \subseteq \mathbf{Cpl}$ are both non-empty, closed-open sets in \mathcal{W} or they are both open, but not closed sets in \mathcal{W} then the lattices $\langle \mathcal{T}_{\mathcal{Z}_1}, \subseteq \rangle$ and $\langle \mathcal{T}_{\mathcal{Z}_2}, \subseteq \rangle$ are isomorphic. \Box

LEMMA 7. Let $\mathcal{Z} \subseteq \mathbf{Cpl}$ be an open set in \mathcal{W} and let $T \in \mathbf{Th}$ be such that $J(T) = \mathcal{Z}$. Then

- (a) \mathcal{Z} is closed-open iff $T \in \mathbf{Th}_0$
- (b) \mathcal{Z} is open, but not closed iff $T \in \mathbf{Th}_1$. \Box

PROOF OF THEOREM 2. Let $T_0 \in \mathbf{Th}_0 \setminus \{C(\emptyset)\}$ and $T_1 \in \mathbf{Th}_1$. Take up an arbitrary $T \in \mathbf{Th}$. If $T \in \mathbf{Th}_0 \setminus \{C(\emptyset)\}$, then J(T) is a non-empty, closed-open set in \mathcal{W} (see Lemma 1 (e) and Lemma 7). Hence by Lemmas 6 and 2 the lattice $\langle L_T, \subseteq \rangle$ is isomorphic with the lattice $\langle L_{T_0}, \subseteq \rangle$. We analogously prove that if $T \in \mathbf{Th}_1$, then $\langle L_T, \subseteq \rangle$ is isomorphic with $\langle L_{T_1}, \subseteq \rangle$. \Box

References

[1] W. Dzik, On the content of lattices of logics. Part I, Reports on Mathematical Logic, No 13, (1981), pp. 17–28.

[2] W. Dzik, On the content of lattices of logics. Part II, **Reports** on Mathematical Logic, No 14, (1982), pp. 29–47.

[3] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, PWN Warszawa 1970.

[4] R. Sikorski, **Boolean algebras**, Berlin-Heidelberg-New York, 1964.

[5] K. Szymanek, On information functions. Part One: basic formal properties, Bulletin of the Section of Logic 18:1 (1989).

Institute of Philosophy Silesian University ul. Bankowa 11 40–007 Katowice POLAND