

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: Classical subtheories and intuitionism

Author: Krzysztof Szymanek

Citation style: Szymanek Krzysztof. (1989). Classical subtheories and intuitionism. "Bulletin of the Section of Logic" (Vol. 18, no. 3 (1989), s. 112115).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Bulletin of the Section of Logic
Volume 18/3 (1989), pp. 112-115
reedition 2006 [original edition, pp. 112-115]

Krzysztof Szymanek

CLASSICAL SUBTHEORIES AND INTUITIONISM

By S we shall denote the set of all formulas in the language $\{\neg, \&, \vee$, $\Rightarrow\}$ and by C the classical consequence over S. The set of all theories we denote as $\mathbf{T h} . \mathbf{T h}_{0}$ is the set of all theories T such that $T=C(\alpha)$, for some $\alpha \in S$. By $\mathbf{T h}_{1}$, we denote the set $\mathbf{T h} \backslash \mathbf{T h}_{0}$. The set of all complete theories we denote as Cpl. For a given $T \in \mathbf{T h}$ let $L_{T}=\{Y \subseteq T: Y \in \mathbf{T h}\}$. It is obvious that for every $T \in \mathbf{T h}$ the system $<L_{T}, \subseteq>$ is a lattice. It is evident that in this lattice $X \sqcup Y=C(X \cup Y)$ and $X \sqcap Y=X \cap Y$, for any $X, Y \in L_{T}$.

In [1] and [2] Dzik has proved among others that the lattice $<L_{S}, \subseteq>$ is an implicative lattice and its content (i.e. the set of all formulas in the language $\{\vee, \&, \Rightarrow, \neg\}$ which are valid in the lattice $<L_{S}, \sqcup, \sqcap, \Rightarrow, \rightarrow>$) is equal to the set $I N T$ of all formulas provable in the intuitionistic calculus. Here we will prove the following two theorems:

Theorem 1. If $T \in \mathbf{T h} \backslash\{C(\emptyset)\}$, then $<L_{T}, \subseteq>$ is an implicative lattice and its content it equal to $I N T$.

ThEOREM 2. Let $T_{0} \in \mathbf{T h}_{0} \backslash\{C(\emptyset)\}$ and $T_{1} \in \mathbf{T h}_{1}$. Then for every $T \in \mathbf{T h}$ the lattice $<L_{T}, \subseteq>$ is isomorphic with one of the following lattices:

$$
<L_{C(\emptyset)}, \subseteq>,<L_{T_{0}}, \subseteq>,<L_{T_{1}}, \subseteq>
$$

We define the function $J: \mathcal{P}(S) \longrightarrow \mathcal{P}(\mathbf{C p l})$ by:

$$
J(X)=\{Z \in \mathrm{Cpl}: X \nsubseteq Z\}, \text { for any } X \subseteq S
$$

Lemma 1. (cf. [1], proof of Theorem 27).
(a) $J(C(X))=J(X)$, for any $X \subseteq S$
(b) $J(X)=\bigcup\{J(\alpha): \alpha \in X\}$, for any $X \subseteq S$
(c) $J(\neg \alpha)=\mathbf{C p l} \backslash J(\alpha)$, for any $\alpha \in S$
(d) $J(\alpha \& \beta)=J(\alpha) \cup J(\beta)$, for any $\alpha, \beta \in S$
(e) $J(X)=\emptyset$ iff $X \subseteq C(\emptyset)$, for any $X \subseteq S$
(f) if $\emptyset \neq \mathcal{R} \subseteq \mathcal{P}(S)$), then $J(\bigcup \mathcal{R})=\bigcup\{J(X): X \in \mathcal{R}\}$
(g) $J(X) \cap J(Y)=J(C(X) \cap C(Y))$, for any $X, Y \subseteq S$
(h) if $T_{1}, T_{2} \in \mathbf{T h}$, then $T_{1} \subseteq T_{2}$ iff $J\left(T_{1}\right) \subseteq\left(T_{2}\right)$.

Note that from (a), (b) and (c) of the above Lemma it follows that the function J is an information function in the sense of [5]. Observe that by virtue of (e), (c), (f) and (g) of Lemma 1 the family $\mathcal{T}=\{J(X): X \subseteq$ $S\}$ is a topology in the set Cpl. By \mathcal{W} we denote the topological space $<\mathrm{Cpl}, \mathcal{T}\rangle$. If $\mathcal{Z} \subseteq \mathrm{Cpl}$ and $\mathcal{T}_{\mathcal{Z}}=\{\mathcal{Z} \cap J(X): X \subseteq S\}$, then naturally the system $\mathcal{W}_{\mathcal{Z}}=<\mathcal{Z}, \mathcal{T}_{\mathcal{Z}}>$ is a subspace of \mathcal{W}.

Lemma 2. (cf [1], Theorem 27). Let $T \in \mathbf{T h}$. Then the lattice $<L_{T}, \subseteq>$ is isomorphic with the lattice $<\mathcal{T}_{J(T)}, \subseteq>$.
Proof. Let $T \in \mathbf{T h}$. Let us consider the mapping $H: L_{T} \longrightarrow \mathcal{T}_{J(T)}$ given by $H(Y)=J(Y)$, for every $Y \in L_{T}$. It is evident that H is an injection. We shall prove that it is a surjection. Let $\mathcal{Z} \in \mathcal{T}_{J(T)}$, i.e. \mathcal{Z} is an open set in the space $\mathcal{W}_{J(T)}$. Since $J(T)$ is an open set in \mathcal{W}, then \mathcal{Z} is also an open set in \mathcal{W}. From the definition of the space \mathcal{W} there is a set $X \subseteq S$ such that $J(X)=\mathcal{Z}$. By Lemma 1 (a), (h) we conclude that $C(X) \in L_{T}$ and $H(C(X))=\mathcal{Z}$. From Lemma $1(\mathrm{~h})$ it follows that H is an isomorphism.

Lemma 3. \mathcal{W} is homeomorphic with the Cantor space.
Proof. From Lemma 1 (b), (c) it follows that the set $\{J(\alpha): a \in S\}$ is a basis of the space \mathcal{W} and it consists of closed-open sets. Hence \mathcal{W} is a zero-dimensional space. We easily prove that \mathcal{W} is a regular space with a countable basis, so it is a metric space. Besides \mathcal{W} is dense-initself and compact. It is well-known that every zero-dimensional metric, dense-in-itself, compact space is homeomorphic with the Cantor space.

We note that the set $B_{J}=\{J(\alpha): \alpha \in S\}$ is a Boolean algebra of all closed-open subsets of the Cantor space (see Lemma 7 (a)). Note also that B_{J} is isomorphic with the Lindenbaum-Tarski algebra $S / C(\emptyset)$.

Connections between Boolean algebras and the Cantor space are considered in [4].

Lemma 4. If $T \in \mathbf{T h} \backslash\{C(\emptyset)\}$, then the lattice $<\mathcal{T}_{J(T)}, \subseteq>$ is implicative and its content is equal to INT.

Proof. Let $T \in \mathbf{T h} \backslash\{C(\emptyset)\}$. Then $\mathcal{W}_{J(T)}$ is a non-empty, open subspace of \mathcal{W}. So $\mathcal{W}_{J(T)}$ is a dense-in-itself, metric space. The lattice $<\mathcal{T}_{J(T)}, \subseteq>$ of all open sets of \mathcal{W} is implicative and, according to the well-known result of McKinsey and Tarski (see [3], chapter IX, Theorem 3.2), its content is equal to $I N T$.

Proof of Theorem 1 follows from Lemmas 2 and 4.
Now we are going to prove Theorem 2.
Lemma 5. Any two non-empty, closed-open subsets of the Cantor space are homeomorphic. Any two open, but not closed subsets of the Cantor space are homeomorphic.

The next Lemma is an easy consequence of Lemmas 5 and 3:
Lemma 6. If $\mathcal{Z}_{1}, \mathcal{Z}_{2} \subseteq \mathbf{C p l}$ are both non-empty, closed-open sets in \mathcal{W} or they are both open, but not closed sets in \mathcal{W} then the lattices $<\mathcal{T}_{\mathcal{Z}_{1}}, \subseteq>$ and $<\mathcal{T}_{\mathcal{Z}_{2}}, \subseteq>$ are isomorphic.

Lemma 7. Let $\mathcal{Z} \subseteq \mathbf{C p l}$ be an open set in \mathcal{W} and let $T \in \mathbf{T h}$ be such that $J(T)=\mathcal{Z}$. Then
(a) \mathcal{Z} is closed-open iff $T \in \mathbf{T h}_{0}$
(b) \mathcal{Z} is open, but not closed iff $T \in \mathbf{T h}_{1}$.

Proof of Theorem 2. Let $T_{0} \in \mathbf{T h}_{0} \backslash\{C(\emptyset)\}$ and $T_{1} \in \mathbf{T h}_{1}$. Take up an arbitrary $T \in \mathbf{T h}$. If $T \in \mathbf{T h}_{0} \backslash\{C(\emptyset)\}$, then $J(T)$ is a non-empty, closed-open set in \mathcal{W} (see Lemma 1 (e) and Lemma 7). Hence by Lemmas 6 and 2 the lattice $<L_{T}, \subseteq>$ is isomorphic with the lattice $<L_{T_{0}}, \subseteq>$. We analogously prove that if $T \in \mathbf{T h}_{1}$, then $\left.<L_{T}, \subseteq\right\rangle$ is isomorphic with $<L_{T_{1}}, \subseteq>$.

References

[1] W. Dzik, On the content of lattices of logics. Part I, Reports on Mathematical Logic, No 13, (1981), pp. 17-28.
[2] W. Dzik, On the content of lattices of logics. Part II, Reports on Mathematical Logic, No 14, (1982), pp. 29-47.
[3] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, PWN Warszawa 1970.
[4] R. Sikorski, Boolean algebras, Berlin-Heidelberg-New York, 1964.
[5] K. Szymanek, On information functions. Part One: basic formal properties, Bulletin of the Section of Logic 18:1 (1989).

Institute of Philosophy
Silesian University
ul. Bankowa 11
40-007 Katowice
POLAND

