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Wojciech Dzik

REMARKS ON PROJECTIVE UNIFIERS

Abstract

A projective unifier for a unifiable formula « in a logic L is a unifier ¢ for o
(i.e. a substitution making « a theorem of L) such that o b1 o(z) <> z. Using
the result of Burris [3] we observe that every discriminator variety has projective
unifiers. Several examples of projective unifiers both in discriminator and in
non-discriminator varieties are given. As an application we show that logics with
projective unifiers are almost structurally complete, i.e. every admissible rule
with unifiable premises is derivable.

Keywords and phrases: unification, unifiers, projective unifiers, structural
completeness.

1. Introduction

Unification and F-unification of terms is widely used in Computer Sci-
ence, in particular it is fundamental in Automated Deduction and Term
Rewriting Systems (see e.g. [2]).

Given an equational theory F and two terms ¢, (i.e. a “unification
problem”) a substitution o is called a wnifier for ¢1,ty in E, if kg o(t1) =
o(ty). The terms ¢; and to are unifiable if there is a unifier for them. A
substitution o is more general than a substitution 7, 7 < o, if there is
a substitution # such that Fg 6 o ¢ &~ 7; the relation < is reflexive and
transitive.

A most general unifier, a mgu, for t1, 12, is a unifier that is more general
than any unifier for ¢{,%2. It can be interpreted as “the best” solution to
the equation t; =~ t5. An equational theory E has wnitary unification
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if for every two unifiable terms ¢; and %5, there is a mgu ¢ such that
Fg o(t1) =~ o(ty). Unification types can be unitary, finitary, infinitary or
nullary depending on number of maximal w.r.t. =< unifiers, cf [2],][9].

Instead of equational theory FE one considers, equivalently, a corre-
sponding equational class V of algebras (a variety). Boolean algebras have
unitary unification.

Unification theory for equational theories, or for varieties, is translated
to the corresponding logics, cf. [9]-[12]. Roughly speaking Fg t1 = ¢
is translated into g (41 — A) A (Ay — A1), where a formula A; is
obtained from a term ¢; by replacing operations with corresponding logical
connectives and E’ is the logic corresponding to the equational theory E.
Hence a unification problem can be reduced to a single formula « and a
unifier for a formula « in a logic L is a substitution o such that Fp o(a).
A formula o is unifiable in L, if such o exists. If 7, o are substitutions,
then 7 < o, if there is a substitution 0 such that Fp 6(c(2)) & 7(z).

Classical propositional logic C'L has unitary unification. Every formula
a, unifiable (= consistent) in C'L, has a mgu, i.e. a substitution o such
that Fop o(a) and that every unifier 7 for « is a special case of o, i.e.
For 0(o(x)) < 7(x), for some 6. But this is not the case for intuitionistic
logic INT and for some modal logics; S. Ghilardi [10], [11] showed that
INT, K4, §4, S4Grz has finitary (but not unitary) unification,

Projective formulas, formulas corresponding in logic to finitely pre-
sented projective algebras, cf.[9], are used by Ghilardi as a key notion in
[10], [11]. A formula « is projective in a logic L if there is a unifier o for «
in L such that for each z € Var(a),

atpo(z) &z

As stated in [1], 2.3, “a is a projective formula” translates into logic the
fact that the free algebra over Var(«) divided by the congruence generated
by the equation “a = T7 is projective. Such a unifier ¢ is now called a
projective unifier for a, see [1].

For modal logic L over K4, a formula O« is projective in L ', if there
is a unifier o for 00T« such that for each z € Var(a),

Ofalkyo(z) ¢ .

Earlier A. Wronski in [15] considered transparent unifiers in interme-
diate logics which are quite close to projective unifiers. A unifier ¢ is a

ISee S.Ghilardi [11], here 01 denotes Do A cv.
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transparent unifier for oo in L if it is a unifier for « such that for any unifier
7 for o b 7(o(x)) < 7(x) for every variable .

In [5] transparent (in fact projective) unifiers are given for S5.

Every projective unifier is a most general unifier but not vice versa.
Projective unifiers have many advantages over other most general unifiers.
They are preserved under extensions of a logic. They can help in recog-
nizing admissible rules. If every unifiable formula is projective in a logic
L then L is (almost) structurally complete, that is, every admissible rule
(with unifiable premises) is derivable in L. For the notion of structural
completeness see [13].

By going from algebra to logic and back we look at projective unifiers
and their applications. In section 2 we show, by a modification of the proof
of S. Burris [3], that discriminator varieties have projective unifiers given
explicitly by a formula. We give examples of projective unifiers.

Section 3 contains a short survey of results on projective unifiers in:
classical logic, some intermediate logics and some modal logics. The ex-
amples show that projective unifiers given explicitly by one formula may
also appear in non-discriminator varieties. Projective unifiers are applied
to structural completeness and to the problem of admissible rules.

1. Projective unifiers in discriminator varieties

S. Burris [3] showed that unification is unitary in (theories determined
by) discriminator varieties. We slightly modify his argument to show that
discriminator varieties have projective unifiers.

In algebraic considerations we follow the notation and notions of [4], [3],
e.g. a subdirectly irreducible algebra and a simple algebra (i.e. one which
has only two congruences) in a variety V. The classes of those algebras will
be denoted by Vsr and Vg, respectively. We recall some basic facts that are
needed. V(K) denotes a variety generated by a class K, V(K) = HSP(K).

For a given algebra £, a term ¢(z,y, 2) is a discriminator term for 2
if, for a,b,c € A,

c, if a=hb,

t(a7b7c){a7 if a#£b.

A term s(z,y, z,v) is a swilching term for 2L if, for a,b,¢,d € A,

c, if a=b,
3(a7b7c7d){d if a#b
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From a discriminator term one can define a switching term and vice versa.
A variety V is a discriminator variety if there is a class K of algebras
which generates V such that there is a term t(z,y, z) which is a discrim-
inator term for every algebra from K. In fact ¢(x,y, 2) is a discriminator
term for the simple algebras of V, ie. K = Vgr. If Vg5 = Vg, then V is
called semisimple. Fyp(w) (Fp(n)) denotes (n-generated) free algebra of V.

Examples of discriminator varieties:

Boolean algebras, Boolean rings, rings with =z = x, n-valued Post
algebras, monadic algebras, MV -algebras, cylindric algebras of dimension
n, relation algebras.

Let 2 be an algebra and 8 a congruence on 2l. Then the following facts
are known (see e.g. [3]):

(i) 2/0 is a nontrivial simple algebra iff 6 is a maximal congruence.

(ii) If 20 is in a semisimple variety and a,b € A, then

a="biff a/0 =b/0.

(iii) Discriminator varieties are semisimple.

Unification in discriminator varieties.

Let V be a variety. Given two terms p(zy,...,2y,), ¢(z1,...,2,), &
substitution 7, 7(z;) = ¢;, for all ¢ < n, is called a unifier of p and ¢ in V
if the equation p(t1,...,t,) =~ q(t1,...,¢,) holds in V, i.e.

':V p(t17 .. .7tn) I q(th .. .7tn).

If such 7 exists, then the terms p(x1, ..., zy), g(x1, ..., x,) are unifiable
in V. Given two unifiers 7 and o, ¢ is more general than 7 if there is a
substitution £ such that =) 0o ~ 7 ; the relation < is reflexive and
transitive.

For equations p;(z1,...,2n) & ¢(z1,...,2,),i = 1,2, the relation of
semantic entailment =y determined by V is defined as follows:

pi(zy, .. zn) = gz, xy) By po(z, . mn) & gl .. zy)
iff for any 20 € V and any ay,...,a, € A, whenever pi(ay,...,a,) =
qi(ay, ..., ay) is true in 2, then pa(ay,...,an) = q2(aq, ..., a,) is true in
2. If V is semisimple, then it is enough to take 2 € Vg.

A unifier ¢ for p = p(z1,...,2z,) and g = g(x1, ..., x,) is called projec-
tive in Y if

prq By oe(x) &z, forall i < n,

)
or, equivalently, |y p~ g — e(a;) = z;, for all i < n.
We will say that a variety V (or a logic L) have projective unifiers if
for every unifiable terms (formula) a projective unifier exists.
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COROLLARY 1. Projective unifiers are preserved under taking subvarieties
or extending theories (logics).

Note that unitary unification is not preserved under taking subvarieties
or extending theories (logics), see e.g. [12].

Now we observe that the proof of the theorem of S.Burris [3], stating
that discriminator varieties ¥V have unitary unification, can be modified to
prove that V has projective unifiers.

THEOREM 2. Discriminator varieties have projective unifiers. More ex-
actly, for every dicscriminator variety V with a switching term s(z,y, z,v)
for algebras from Vgr, two terms p = p(z1,...,2y) and ¢ = q(z1, ..., 2,)
unifiable in V, let vy, ...,y be terms such that =y p(ty, ... ty) =~ q(t1, ..., tp).
Then

olz;) = s(p, q,zi,73), for all i <n.

is a projective unifier for p and q in V.

Proor: The proof that ¢ is a unifier for p and ¢ in V is the same as in [3].
The idea is that for a maximal congruence 6 of Fy(w), o(p)/0 = o(q)/0 on
the simple algebra 7),/6. Hence, by the facts (ii),(iii), ¢ is a unifier for p
and ¢ in V. To show that

prq By o(x) ~a, foralli <n

assume, for 20 € Vg and ay, ..., a, € A, that play,...,a,) = ¢ayg, ..., ay)
holds in 2. Then, by the definition of s,
o(z;) = s(p, q, zi,a;) = x;, for all ¢ < n, holds in 2. |

As a corollary we provide some examples, in algebra, of projective
unifiers which depend on some ground unifiers, i.e. unifiers for p and ¢ of
the form 75 : Var{p, ¢} — {0,1} (the 2-element Boolean algebra).

COROLLARY 3. Letp and q be unifiable terms and Var{p,q} = {z1,...,z,}.

1. Boolean algebras (B, A, V,",0,1). Let 79 : Var{p,q} — {0,1} be a
ground unifier for p and q, and p+q = (pAq )V (p'ANq). Then a
projective unifier for p and q has the following form:

olz:))=(p+q) Ax) vV ((p+ q) A1o(xy)), for all i < n.

2. Monadic algebras (B, AV, 0,0,1), where (B, A, V,",0,1) is a Boolean

algebra and § satisfies the following axioms: 00 = 0, Oz Vy) =
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Oz V Oy, z < Oz, OO0z = Oz (i.e. a topological closure algebra) and
0(02)' = (02)'

Let 70 @ Var{p,q} — {0,1} be a ground unifier for p and ¢, and
p+qg=(@AN¢)V (p'Aq). Then a projective unifier for p and q has
the following form:

o(z) = ((0p+q)) Azi) vV (Olp + q) Amo(y)), for alli < n.

REMARK. The dual discriminator term on an algebra 2, is a ternary term
g such that, for a,b,c € A: q(a,b,c) = ¢, if a # b, and, q(a,b,¢) = a,
if a = b. Although discriminator varieties enjoy unitary unification the
variety of distributive lattices, which is a dual discriminator variety, has
nullary (“the worst”) unification (Willard 1991).

There are varieties which enjoy unitary unification but such that projec-
tive unifiers do not exist for some unifiable terms; for example, the variety
of KC-algebras (or De Morgan algebras) i.e. Heyting algebras satisfying
additionally the weak law of excluded middle ——xV —x = 1 is such, see the
logic KC in the next section.

2. Projective unifiers in some logics.

Now we provide some examples of logics with projective unifiers, together
with an explicit form of the projective unifiers. The list include examples
1, 2, 3 of logics corresponding to discriminator varieties as well as examples
4, 5, 6, 7 corresponding to which classes of algebras are not discriminator
varieties. A ground unifier is a unifier of the type : Form — {1 T}
(constant falsity and truth, respectively). In examples 1, 2, 3, 4 and 5 a
ground unifier is applied in the definitions of projective unifiers. 2

Examples: For a given logic L in the appropriate language let o be a
unifiable formula in L, with a ground unifier 79. Then a projective unifier
¢ for a in L has the following form, for x € Var(«):

1. Classical logic, in {A,V,—,—},

g(z) = (a— z) A (aV (z)),

2This is not the case in general. For instance, in intuitionistic logic only some formu-
las, e.g. =—2 — z and B — = have projective unifiers e(z) = =z, ¢(z) = (B — ) — =,
respectively, but —z V x does not have a mgu, see [10].
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2. Modal logic S5 = KT4B, in {A,V,—,—, O}, see [5],
g(z) = (Ha = a) A (Oo V o (x)),
3. Modal logic KD4MBI in {A, v, — = O} for n, k > 1, see [6], [7],
g(z) = (0"a - z) A (0" V m(x)),

4. Logic INT{7} of intuitionistic implication, in {—=} (and INT{/\
of intuitionistic implication and conjunction in {—, A}), based on T.
Prucnal [14],

e(z) = (@ — =),

5. Godel-Dummett logic LC = INT + (A — B) Vv (B — A),

in {A,V,—,—}, based on A. Wroniski [15],

g(x) = (a— z) A (—a VvV rp(a),

6. Logic INT{<} of Intuitionistic Equivalence in {<}, see A.Wroriski
[16]; a form of the unifier is not easy to write.

7. Modal logic S4.3 in {A,V, —, =, 0}, the unifiers can not be simply
described as depending on a ground unifier (as in 1,2,3,5), see [8].

Examples 4, 5, 6 and 7 above present logics with projective unifiers
such that their corresponding varieties are not discriminator varieties. For
instance in 5, the variety of Godel algebras is not semisimple.

The logic of weak excluded middle or De Morgan logic, KC, provides
an example of a logic in which every unifiable formula has a mgu but some
formulas are not projective (projective unifiers do not exist).

S.Ghilardi has shown that KC admits unitary unification [10].

COROLLARY 4. The logic KC = INT + —aV—-—a admits unitary unification
but projective unifiers do not exist for some unifiable formulas.

PROOF: Assume, to the contrary, that every unifiable formula has a pro-
jective unifier in KC. Consider the formulas o := (z Ay — 2) — 2V y and
8= (2= )V (2 = y). ois unifiable in KC. Let o be a projective unifier
for oo in KC. Since o Fxe o(z) + z, for © € Var(a), can be extended to
atgo o(y) ¢ v, for any «, we have, in particular a ko o(8) < 8.

It can be shown that the rule «/3 is admissible in KC 2, that is, for
every substitution 7, Fx¢o (o) = Fgreo 7(8). Since o is a unifier for o we

3See [7] for comments; professor A. Wroniski gave a proof based on Kripke semantics
(a private communication).
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get e o(B). From the above, by Modus Ponens, we have o i 8, hence
Fxc o — B, but this is false, i.e. o can not have a projective unifier. [

A formula o = (z — y) — z V z is another non-projective one in KC.
On the other hand, all so called Harrop formulas are projective, see [7].

COROLLARY 5. The variety KC corresponding to INT + —aV——a contains
non-trivial finitely presented algebras which are not projective.

PRrOOF: Such an algebra is given by the quotient Fro(z,y, 2)/a, i.6. the
free KC-algebra Fr ¢ (z,vy, 2), divided by the congruence generated by o :=
(x ANy —=2)—>xVy. O

3. Applications to Structural Completeness

Let U(c) be a set of all unifiers for a formula « in a logic L and U,y (a)
be a set of all maximal w.r.t. = elements from U(a). We consider only
structural (i.e. preserving substitutions) rules of inference.

A logic L is almost structurally complete, if is every admissible rule with
unifiable premises, i.e v : a/8 with U(a) # §, is derivable in L. If every
consistent formula is unifiable in L then “almost structurally complete”
and “structurally complete” (cf. [13]) coincide.

COROLLARY 6. If a logic has projective unifiers then it is almost struc-
turally complete.

This holds for logics determined by discriminator varieties. In Exam-
ples (section 2): (1) classical logic, (4) logic INT1>} and INT1" (5)
Godel-Dummett logic LC are structurally complete; on the other hand,
modal logics (2) S5, (3) KD4[BK and (7) S4.3 are almost structurally
complete but not structurally complete (as some consistent formulas are
not unifiable).

COROLLARY 7. The following conditions are equivalent:

(i) a rule with the schema r : a/f is admissible in L,
(i) bp, 78, for m € U(a), or for 7 € Upaala).
If unification in L is unitary then (i) iff
(#i) by, 78, for a mgu T for a.
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Hence one may check that the following rules are admissible in INT:
o —x—>yVz/(—x—y)V(-ax— z) the Kreisel-Putnam rule, hint: use
two unifiers: o1(y) = (-z = y) = y and 03(2) = (~x — 2) = z;
o ((mz—=2z)> (xV-z))/ (m—xV-x) the Scott rule.
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