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Wo jciech Dzik

REMARKS ON PROJECTIVE UNIFIERS

Abstract

A projective unifier for a unifiable formula a in a logic L is a unifier a for a 
(i.e. a substitution making a a theorem of L) such that a —L a(x) o x. Using 
the result of Burris [3] we observe that every discriminator variety has projective 
unifiers. Several examples of projective unifiers both in discriminator and in 
non-discriminator varieties are given. As an application we show that logics with 
projective unifiers are almost structurally complete, i.e. every admissible rule 
with unifiable premises is derivable.

Keywords and phrases: unification, unifiers, projective unifiers, structural 
completeness.

1. Introduction

Unification and E -unification of terms is widely used in Computer Sci­
ence, in particular it is fundamental in Automated Deduction and Term 
Rewriting Systems (see e.g. [2]).

Given an equational theory E and two terms t1 , t2 (i.e. a “unification 
problem”) a substitution a is called a unifier for t1,t2 in E, if -E a(t1) « 
a(t2). The terms t1 and t2 are unifiable if there is a unifier for them. A 
substitution a is more general than a substitution t, t a, if there is 
a substitution 6 such that -E 6 ◦ a « t; the relation is reflexive and 
transitive.

A most general unifier, a mgu, for t1 , t2 , is a unifier that is more general 
than any unifier for t1, t2. It can be interpreted as “the best” solution to 
the equation t1 « t2. An equational theory E has unitary unification
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if for every two unifiable terms t1 and t2, there is a mgu a such that 
—E a(ti) « a(t2). Unification types can be unitary, finitary, infinitary or 
nullary depending on number of maximal w.r.t. A unifiers, cf [2],[9].

Instead of equational theory E one considers, equivalently, a corre­
sponding equational class V of algebras (a variety). Boolean algebras have 
unitary unification.

Unification theory for equational theories, or for varieties, is translated 
to the corresponding logics, cf. [9]-[12]. Roughly speaking —E t1 = t2 

is translated into —E (A1 A2) A (A2 A1), where a formula Ai is
obtained from a term ti by replacing operations with corresponding logical 
connectives and E' is the logic corresponding to the equational theory E. 
Hence a unification problem can be reduced to a single formula a and a 
unifier for a formula a in a logic L is a substitution a such that —L a(a). 
A formula a is unifiable in L, if such a exists. If t, a are substitutions, 
then t A a, if there is a substitution 6 such that —L 6(a(x)) H t(x).

Classical propositional logic CL has unitary unification. Every formula 
a, unifiable (= consistent) in CL, has a mgu, i.e. a substitution a such 
that —CL a(a) and that every unifier t for a is a special case of a, i.e. 
-CL 6(a(x)) H t(x), for some 6. But this is not the case for intuitionistic 
logic INT and for some modal logics; S. Ghilardi [10], [11] showed that 
INT , K4, S4, S4Grz has finitary (but not unitary) unification,

Projective formulas, formulas corresponding in logic to finitely pre­
sented projective algebras, cf.[9], are used by Ghilardi as a key notion in 
[10], [11]. A formula a is projective in a logic L if there is a unifier a for a 
in L such that for each x e Var(a),

a —L a(x) H x.

As stated in [1], 2.3, “a is a projective formula” translates into logic the 
fact that the free algebra over V ar(a) divided by the congruence generated 
by the equation “a = T” is projective. Such a unifier a is now called a 
projective unifier for a, see [1].

For modal logic L over K4, a formula D+a is projective in L 1, if there 
is a unifier a for D+a such that for each x e Var(a),

□+a —l a(x) H x.

Earlier A. Wronski in [15] considered transparent unifiers in interme­
diate logics which are quite close to projective unifiers. A unifier a is a

1See S.Ghilardi [11], here 'a denotes □a A a.
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transparent unifier for a in L if it is a unifier for a such that for any unifier 
t for a: \-L t(a(x)) t(x) for every variable x.

In [5] transparent (in fact projective) unifiers are given for S5.
Every projective unifier is a most general unifier but not vice versa. 

Projective unifiers have many advantages over other most general unifiers. 
They are preserved under extensions of a logic. They can help in recog­
nizing admissible rules. If every unifiable formula is projective in a logic 
L then L is (almost) structurally complete, that is, every admissible rule 
(with unifiable premises) is derivable in L. For the notion of structural 
completeness see [13].

By going from algebra to logic and back we look at projective unifiers 
and their applications. In section 2 we show, by a modification of the proof 
of S. Burris [3], that discriminator varieties have projective unifiers given 
explicitly by a formula. We give examples of projective unifiers.

Section 3 contains a short survey of results on projective unifiers in: 
classical logic, some intermediate logics and some modal logics. The ex­
amples show that projective unifiers given explicitly by one formula may 
also appear in non-discriminator varieties. Projective unifiers are applied 
to structural completeness and to the problem of admissible rules.

1. Pro jective unifiers in discriminator varieties

S. Burris [3] showed that unification is unitary in (theories determined 
by) discriminator varieties. We slightly modify his argument to show that 
discriminator varieties have projective unifiers.

In algebraic considerations we follow the notation and notions of [4], [3], 
e.g. a subdirectly irreducible algebra and a simple algebra (i.e. one which 
has only two congruences) in a variety V . The classes of those algebras will 
be denoted by VSI and VS, respectively. We recall some basic facts that are 
needed. V(K) denotes a variety generated by a class K, V(K) = HSP(K).

For a given algebra A, a term t(x,y, z) is a discriminator term for A 
if, for a, b, c e A,

t(a,b,c) = ca,, if a = b, 
if a = b.

A term s(x, y, z, v) is a switching term for A if, for a, b, c, d e A,

s(a, b, c, d) = c, if a = b,
d, if a = b.
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From a discriminator term one can define a switching term and vice versa.
A variety V is a discriminator variety if there is a class K of algebras 

which generates V such that there is a term t(x, y, z) which is a discrim­
inator term for every algebra from K . In fact t(x, y, z) is a discriminator 
term for the simple algebras of V, i.e. K = VSI . If VSI = VS, then V is 
called semisimple. Fy (w) (Fy(n)) denotes (n-generated) free algebra of V.

Examples of discriminator varieties:
Boolean algebras, Boolean rings, rings with xn = x, n-valued Post 

algebras, monadic algebras, MVn-algebras, cylindric algebras of dimension 
n, relation algebras.

Let A be an algebra and 6 a congruence on A. Then the following facts 
are known (see e.g. [3]):

(i) A/6 is a nontrivial simple algebra iff 6 is a maximal congruence.
(ii) If A is in a semisimple variety and a,b E A, then
a = b iff a/6 = b/6.
(iii) Discriminator varieties are semisimple.

Unification in discriminator varieties.
Let V be a variety. Given two terms p(x1, . . . , xn), q(x1, . . . , xn), a 

substitution t, t(xi) = ti, for all i < n, is called a unifier of p and q in V 
if the equation p(t1,... ,tn) « q(t1,... ,tn) holds in V, i.e.

=V p(t1j . . . , tn) ~ q(t1j . . . , tn).
If such t exists, then the terms p(x1, . . . , xn), q(x1, . . . , xn) are unifiable 

in V. Given two unifiers t and a, a is more general than t if there is a 
substitution £ such that =y £ ◦ a ~ t ; the relation is reflexive and 
transitive.

For equations pi(x1 , ...,xn) « qi(x1,..., xn), i = 1, 2, the relation of 
semantic entailment |=V determined by V is defined as follows:

P1(x1, . . . ,Xn) « q1(x1,...,Xn) P2(x1, . . . ,Xn) « q2 (X1, .. . , Xn)
iff for any A E V and any a1, . . . , an E A, whenever p1(a1, . . . , an) =
q1(a1, . . . , an) is true in A, then p2(a1, . . . , an) = q2(a1, . . . , an) is true in
A. If V is semisimple, then it is enough to take A E VS .

A unifier £ for p = p(x1, . . . , xn) and q = q(x1, . . . , xn) is called projec­
tive in V if

p « q =y £(xi) ~ xi, for all i < n,

or, equivalently, =y P ~ q £(xi) ~ xi, for all i < n.
We will say that a variety V (or a logic L) have projective unifiers if 

for every unifiable terms (formula) a projective unifier exists.
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Corollary 1. Projective unifiers are preserved under taking subvarieties 
or extending theories (logics).

Note that unitary unification is not preserved under taking subvarieties 
or extending theories (logics), see e.g. [12].

Now we observe that the proof of the theorem of S.Burris [3], stating 
that discriminator varieties V have unitary unification, can be modified to 
prove that V has projective unifiers.

Theorem 2. Discriminator varieties have projective unifiers. More ex­
actly, for every dicscriminator variety V with a switching term s(x, y, z, v) 
for algebras from VSI, two terms p = p(x1, ..., xn) and q = q(x1, ..., xn) 
unifiable in V, let ri,...,rn be terms such that =y p(ti,. .. ,tn) « q(ti,. .. ,tn).Then V

a(xi) = s(p, q,xi,ri), for all i < n.

is a projective unifier for p and q in V.

Proof: The proof that a is a unifier for p and q in V is the same as in [3]. 
The idea is that for a maximal congruence 6 of Fy(w), a(p)/6 = a(q)/6 on 
the simple algebra Fy/6. Hence, by the facts (ii),(iii), a is a unifier for p 
and q in V. To show that

p « q =y a(xi) « xi, for all i < n

assume, for A e VS and a1, . . . , an e A, that p(a1, . . . , an) = q(a1, . . . , an) 
holds in A. Then, by the definition of s,

a(xi) = s(p, q, xy, ai) = xi, for all i < n, holds in A. □

As a corollary we provide some examples, in algebra, of projective 
unifiers which depend on some ground unifiers, i.e. unifiers for p and q of 
the form t0 : V ar {p, q} {0,1} (the 2-element Boolean algebra).

Corollary 3. Letp and q be unifiable terms and Var{p, q} = {x1, . . . , xn}.

1. Boolean algebras (B, A, V,', 0,1). Let t0 : Var{p, q} {0, 1} be a
ground unifier for p and q, and p + q = (p A q') V (p' A q). Then a 
projective unifier for p and q has the following form:

a(xi) = ((p + q)' A Xi) V ((p + q) A To(z»)), for all i < n.

2. Monadic algebras (B, A, V,', ♦, 0,1), where (B, A, V,', 0,1) is a Boolean 
algebra and ♦ satisfies the following axioms: ♦0 = 0, ♦(x V y) =
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♦x V ♦y, x < ♦x, ♦♦x = ♦x (i.e. a topological closure algebra) and 
♦ (♦x)' = (♦x)'.
Let to : Var{p,q} {0,1} be a ground unifier for p and q, and
p + q = (p A q') V (p' A q). Then a projective unifier for p and q has 
the following form:

a(xi) = ((♦(p + q))' A xi) V (♦(p + q) A to(xź)), for all i < n.

Remark. The dual discriminator term on an algebra A, is a ternary term 
q such that, for a, b, c e A: q(a, b, c) = c, if a = b, and, q(a, b, c) = a, 
if a = b. Although discriminator varieties enjoy unitary unification the 
variety of distributive lattices, which is a dual discriminator variety, has 
nullary (“the worst”) unification (Willard 1991).

There are varieties which enjoy unitary unification but such that projec­
tive unifiers do not exist for some unifiable terms; for example, the variety 
of KC-algebras (or De Morgan algebras) i.e. Heyting algebras satisfying 
additionally the weak law of excluded middle ­ ­ x V ­ x = 1 is such, see the 
logic KC in the next section.

2. Pro jective unifiers in some logics.

Now we provide some examples of logics with projective unifiers, together 
with an explicit form of the projective unifiers. The list include examples 
1, 2, 3 of logics corresponding to discriminator varieties as well as examples 
4, 5, 6, 7 corresponding to which classes of algebras are not discriminator 
varieties. A ground unifier is a unifier of the type : Form {±, T}
(constant falsity and truth, respectively). In examples 1, 2, 3, 4 and 5 a 
ground unifier is applied in the definitions of projective unifiers. 2

2This is not the case in general. For instance, in intuitionistic logic only some formu­
las, e.g. ——x x and B x have projective unifiers e(x) = ——x, e(x) = (B x) x, 
respectively, but —x V x does not have a mgu, see [10].

Examples: For a given logic L in the appropriate language let a be a 
unifiable formula in L with a ground unifier t0. Then a projective unifier 
£ for a in L has the following form, for x e V ar (a):

1. Classical logic, in {A, V,

£(x) = (a x) A (a V to(x)),
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2. Modal logic S5 = KT4B, in {A, V, —, □}, see [5],

£(x) = (□a x) A (□a V tc(x)),

3. Modal logic KD4[n]B[k], in {A, V, ^, —, □} for n, k > 1, see [6], [7],

£(x) = (□na x) A (□na V tc(x)),

4. Logic INT' '' of intuitionistic implication, in {^} (and INT{ }

of intuitionistic implication and conjunction in {^, A}), based on T. 
Prucnal [14],

£(x) = (a x),

5. Godel-Dummett logic LC = INT + (A B) V (B A),
in {A, V, ^, —}, based on A. Wroński [15],

£(x) = (a x) A (——a V tc(x)),

6. Logic INT'''' of Intuitionistic Equivalence in {^}, see A.Wronski 
[16]; a form of the unifier is not easy to write.

7. Modal logic S4.3 in {A, V, ^, —, □}, the unifiers can not be simply 
described as depending on a ground unifier (as in 1,2,3,5), see [8].

Examples 4, 5, 6 and 7 above present logics with projective unifiers 
such that their corresponding varieties are not discriminator varieties. For 
instance in 5, the variety of Goodel algebras is not semisimple.

The logic of weak excluded middle or De Morgan logic, KC, provides 
an example of a logic in which every unifiable formula has a mgu but some 
formulas are not projective (projective unifiers do not exist).

S.Ghilardi has shown that KC admits unitary unification [10].

Corollary 4. The logic KC = INT + —aV——a admits unitary unification 
but projective unifiers do not exist for some unifiable formulas.

Proof: Assume, to the contrary, that every unifiable formula has a pro­
jective unifier in KC. Consider the formulas a := (x A y z) x V y and 
P := (z x) V (z y). a is unifiable in KC. Let a be a projective unifier 
for a in KC. Since a -KC a(x) x, for x E Var(a), can be extended to 
a -KC a(Y) Y, for any y, we have, in particular a -KC a(P) p.

It can be shown that the rule a/P is admissible in KC 3, that is, for 
every substitution t, -KC t(a) -KC t(P). Since a is a unifier for a we

3See [7] for comments; professor A. Wroński gave a proof based on Kripke semantics 
(a private communication).
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get —KC a(P). From the above, by Modus Ponens, we have a —KC P, hence 
—KC a P, but this is false, i.e. a can not have a projective unifier. □

A formula a = (x y) x V z is another non-projective one in KC. 
On the other hand, all so called Harrop formulas are projective, see [7].

Corollary 5. The variety KC corresponding to INT+ ­ aV­ ­ a contains 
non-trivial finitely presented algebras which are not projective.

Proof: Such an algebra is given by the quotient FKC(x,y,z)/a, i.e. the 
free KC-algebra FKC(x, y, z), divided by the congruence generated by a := 
(x A y z) x V y. □

3. Applications to Structural Completeness

Let U(a) be a set of all unifiers for a formula a in a logic L and Umax(a) 
be a set of all maximal w.r.t. elements from U(a). We consider only 
structural (i.e. preserving substitutions) rules of inference.

A logic L is almost structurally complete, if is every admissible rule with 
unifiable premises, i.e r : a/P with U(a) = 0, is derivable in L. If every 
consistent formula is unifiable in L then “almost structurally complete” 
and “structurally complete” (cf. [13]) coincide.

Corollary 6. If a logic has projective unifiers then it is almost struc­
turally complete.

This holds for logics determined by discriminator varieties. In Exam­
ples (section 2): (1) classical logic, (4) logic INT' '' and INT' A} (5) 
Godel-Dummett logic LC are structurally complete; on the other hand, 
modal logics (2) S5, (3) KD4[n]B[k] and (7) S4.3 are almost structurally 
complete but not structurally complete (as some consistent formulas are 
not unifiable).

Corollary 7. The following conditions are equivalent:

(i) a rule with the schema r : a/P is admissible in L,
(ii) -L tP, for t e U(a), or for t e Umax(a).

If unification in L is unitary then (i) iff
(iii) —L tP, for a mgu t for a.
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Hence one may check that the following rules are admissible in INT:
• —x y V z / (—x y) V (—x z) the Kreisel-Putnam rule, hint: use
two unifiers: a1(y) = (—x y) y and a2(z) = (—x z) z;
• ((——x x) (x V —x)) / (——x V —x) the Scott rule.
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