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Abstract

Introduction: Among the currently known imaging methods, there exists
hyperspectral imaging. This imaging fills the gap in visible light imaging with
conventional, known devices that use classical CCDs. A major problem in the study
of the skin is its segmentation and proper calibration of the results obtained. For this
purpose, a dedicated automatic image analysis algorithm is proposed by the paper’s
authors.

Material and method: The developed algorithm was tested on data acquired with
the Specim camera. Images were related to different body areas of healthy patients.
The resulting data were anonymized and stored in the output format, source dat
(ENVI File) and raw. The frequency λ of the data obtained ranged from 397 to
1030 nm. Each image was recorded every 0.79 nm, which in total gave 800 2D
images for each subject. A total of 36'000 2D images in dat format and the same
number of images in the raw format were obtained for 45 full hyperspectral
measurement sessions. As part of the paper, an image analysis algorithm using
known analysis methods as well as new ones developed by the authors was
proposed. Among others, filtration with a median filter, the Canny filter, conditional
opening and closing operations and spectral analysis were used. The algorithm was
implemented in Matlab and C and is used in practice.

Results: The proposed method enables accurate segmentation for 36’000 measured
2D images at the level of 7.8%. Segmentation is carried out fully automatically based
on the reference ray spectrum. In addition, brightness calibration of individual 2D
images is performed for the subsequent wavelengths. For a few segmented areas,
the analysis time using Intel Core i5 CPU RAM M460@2.5GHz 4GB does not
exceed 10 s.

Conclusions: The obtained results confirm the usefulness of the applied method
for image analysis and processing in dermatological practice. In particular, it is
useful in the quantitative evaluation of skin lesions. Such analysis can be
performed fully automatically without operator’s intervention.

Keywords: Hyperspectral imaging, Image processing, Measurement automation,
Segmentation, Dermatology, Calibration
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Introduction
Hyperspectral imaging is now one of the most developed methods of visible light im-

aging [1,2]. It enables to acquire data of an object in any spectral range set in the cam-

era. This method is entirely non-contact and non-invasive, and measurements can be

carried out remotely. With these advantages, hyperspectral cameras are used in many

fields of technology and medicine [3-7]. In particular, they are used in dermatology.

The issue of dermatological research concerns spectral skin analysis in almost all cases.

This analysis is usually carried out on the basis of data recorded by a camera and saved

in dat or raw format, or another one dependent on the type of camera used [8,9]. These

data are further analysed in the software provided directly by the camera manufacturer

or, less often, in another software. The latter option is rarely used as there is a need to

meet the following requirements:

� the possibility to analyse large amounts of data - analysis of files that are a few or

tens of gigabytes in size,

� the need to correctly read data, most often in dat or raw format,

� calibration of the results obtained.

A large amount of data prevents simple applications from analysing such large images

- a typical file size is several gigabytes, as mentioned earlier. The data in the file are

saved in 32 or 16-bit format depending on its type, dat or raw. Consequently, this leads

to differences in the file volume and the quality of the resultant image. Regardless of

the format of data record, a sequence of hyperspectral images requires calibration. Due

to the different brightness of lighting (from the definition of linear spectral characte-

ristics), calibration of images in the range from black (0% brightness) to white (100%

brightness) is necessary. This goal is achieved in different ways. In the simplest case, it

is a white stripe, pattern, taken as 100% brightness, that is placed next to the imaged

skin. Subsequent images are calibrated with respect to it. The calibration stage ends

with suitable linear adjustment of brightness levels. Placing a white stripe pattern at the

top of the image is sometimes used and recommended by Specim Company and LOT-

Quantum Design Company. Automatic its analysis here is not done in a dedicated pro-

gram ENVI. Therefore, it is not possible implementation of automatic calibration.

The second major area of problems related to hyperspectral imaging is image ana-

lysis. On the one hand, typical image analysis and processing in visible light can be ap-

plied. On the other hand, the acquisition of a separate image for each length of the

spectrum gives much wider possibilities of analysis. Typical tasks, most commonly used

in dermatology, include segmentation of skin areas. In general, morphological methods

[10-15], statistical methods [16-18] and algorithms profiled to selected applications are

known from hyperspectral imaging. Among the morphological methods, there are clas-

sical approaches [1,13,14] and those profiled to the analysis of an image sequence

[12,15]. In the statistical methods, there dominates texture analysis [17-21] used as a

set of features for classification and recognition. Profiled algorithms have been applied

so far to face recognition [22], analysis of skin areas [23], and others [24-27]. These

methods are mainly related to segmentation of specific objects [28]. On the basis of

segmented objects, their morphometric measurements or their texture analysis are car-

ried out [18]. However, for skin areas, an important feature is their location in the
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image, which is vital, inter alia, in the assessment of efficacy and safety of treatments in

aesthetic medicine [29-31]. A description of this type of automatic method preceded by

automatic calibration is presented below.
Material
The study used images of human healthy skin obtained with the Specim camera PFD-

V10E. The measured body areas were lit using a typical lamp with flat spectral charac-

teristics in the required range (based on HgAr emission for the VNIR spectral range).

The images were obtained retrospectively during routine medical (dermatological) ex-

aminations, performed in accordance with the Declaration of Helsinki. In connection

with the described algorithm, no research or experiments were carried out on humans.

The acquired data were anonymised and stored in the output format, source dat (ENVI

File) and raw. The frequency λ of the data obtained ranged from 397 to 1030 nm. Each

image was recorded every 0.79 nm, which in total gave 800 2D images for each patient.

The resolution M ×N (number of rows and columns) of each image for the selected

frequency was varied depending on the scan area. It was usually M ×N = 899 ×

1312 pixels. The number of rows N was changed most often and was in the range

N∈(15,899). Regardless of the distance of the camera from the object and selected fo-

cusing parameters, one pixel covered a square area in the range of 130 μm× 130 μm. A

total of 36’000 2D images were obtained for 45 hyperspectral images. These images

were subjected to further analysis.
Method
Hyperspectral image analysis method is associated with three stages:

� Pre-processing of images in which filtration is the main element,

� Calibration linked to the automatic recognition of the pattern position,

� Processing of images enabling proper segmentation of the skin areas.

Details of these three stages are described below.
Pre-processing

Image pre-processing concerns correct reading and interpretation of the data recorded

by the camera PFD-V10E in dat and raw format. This camera records information for

each line (each row) N and at the same time registers a full spectral range. In this case,

λ∈(397, 1030) nm is equivalent to the adopted spectral distance with the registration of

800 lines. This process is shown in Figure 1. Depending on the type of data, raw or dat,

each pixel is recorded at 32 or 16 bits of data. The exact number of rows and columns

is stored in a file with the extension hdr that contains all the typical header informa-

tion. This is information relating to a particular frequency of the spectral range, type of

data storage, sensor type, and others. For the analysed data, the image resolution M ×N

was varied in the range from 15 × 1312 to 899 × 1312 pixels. The range of changes was

strictly dependent on the scan area. This area was limited mainly due to image acquisi-

tion time of 12 seconds for the registration of the spectrum at the maximum resolution

and in the full range. A dynamic error related to the possible displacement of the scan



Figure 1 Block diagram of the acquisition and organization of *.dat and *.raw *data. Data are
recorded at the same time for each image line for all wavelengths λ. In this way, to create a two-
dimensional image M × N for a particular wavelength λ, every M-th row should be read in the *.dat or *.raw
file. This process is carried out at the stage of pre-processing and data acquisition.
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area during measurements was minimized by mechanical stops and skin area orienta-

tion ensuring patient’s comfort.

The images LGRAY(m,n,k), where m-row, n-column and k–the next wavelength λ

(k∈(1,K)), read from the files with the extension dat or raw were further filtered. For

each image in the sequence, a median filter with a mask h sized Mh ×Nh = 3 × 3 pixels

was used. The mask size was dependent on the amount of pollution and the level of

noise. In the case of recorded images, the noise and artefacts did not exceed the size of

2 pixels per one cluster. For this reason, a sufficient filter mask size was 3 × 3 pixels. In

this way, the noise-free image LM(m,n,k) was subjected to calibration.

Calibration

The acquired images LM(m,n,k) are not calibrated. Calibration involves referring each

pixel of the registered skin area to the white pattern [32-34]. For the registered cases,

the pattern was a white stripe placed at the top- Figure 2. Automatic detection of the

pattern position was implemented in the proposed algorithm. It concerned recognition

of one of the pattern contours using information about the brightness gradient of adja-

cent pixels for each column, i.e.:

LG m; n; kð Þ ¼ 0 if LM m; n; kð Þ− LM mþ 1; n; kð Þð Þ > pr
1 other

�
ð1Þ

for m∈(1,N-1) where pr is a binarization threshold determined automatically according

to Otsu’s formula [35].

The pattern in the form of a white stripe was 20 × 400 mm, which was equivalent to

the number of rows mw = 80 ± 5 for its set distance from the camera lens. The value

of ±5 pixels is associated with a possible image shift or rotation. The number of col-

umns was covered by the pattern in its entirety. Therefore, the searched pattern bound-

ary contour was designated as:



Figure 2 Location of the pattern in the image during calibration. The pattern in the form of a white
stripe sized 20 × 400 mm, was placed in the upper part of the image. For the set distance from the camera
lens it was equivalent to the number of rows mw = 80 ± 5. The area of uncertainty is highlighted in grey
while the pattern area in green. The object, namely the hand, is shown in white.
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WI n; kð Þ ¼ m if LG m; n; kð Þ ¼ 1ð Þ∧ m < mwð Þ
0 other

�
ð2Þ

On this basis, average brightness for each column is calculated, i.e.:
Lw n; kð Þ ¼ 1
WI n; kð Þ ⋅

XWI n;kð Þ

m¼1

LM m; n; kð Þ ð3Þ

Examples of graphs of Lw(n,k) for k = 400, 401 and 402 are shown in Figure 3. The

image Figure 3 a) and its zoom Figure 3 b) show the differences in average brightness
Figure 3 Graph of changes in average brightness values for each column of the pattern. The image
a) and its zoom b) show the differences in average brightness values. The image must be calibrated with
respect to these changes. These values Lw(n,k) are shown for the sample k = 400, 401 and 402. For each
value k, calibration must be performed independently.
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values. The image must be calibrated with respect to these changes. For each value k,

calibration must be performed independently. Calibration of individual images is car-

ried out as:

Lk m; n; kð Þ ¼
LM m; n; kð Þ−min

m;n
LM m; n; kð Þð Þ

Lw n; kð Þ−min
m;n

LM m; n; kð Þð Þ ð4Þ

for: Lw n; kð Þ−min
m;n

LM m; n; kð Þð Þ
� �

≠0
In the case of pixels which exceed the value “1”, adjustment is necessary:

LK m; n; kð Þ ¼ LK m; n; kð Þ if LK m; n; kð Þ≤1
1 other

�
ð5Þ

The image LK(m,n,k) having brightness values in the range from 0 to 1 is further sub-
jected to the next processing steps.

Image processing

The input image LK(m,n,k) after calibration is the basis for the segmentation process.

For this purpose, a sample diagram of brightness changes in a sample ROI was made

for the human skin which mainly consists of water, melanin and haemoglobin. The re-

sults for each k-th image (at different wavelengths) are shown in Figure 4 a), i.e.:

LMED
ROI kð Þ ¼ 1

MROI ⋅NROI

X
m;n∈ ROI

LK m; n; kð Þ ð6Þ

LMIN
ROI kð Þ ¼ min

m;n∈ ROI
LK m; n; kð Þ ð7Þ

LMAX
ROI kð Þ ¼ max

m;n∈ ROI
LK m; n; kð Þ ð8Þ

The ROI was associated with the hand area shown in Figure 2 and included the range
MROI ×NROI = 150 × 150 pixels. In this range, the values LMED
ROI kð Þ ; LMIN

ROI kð Þ; LMAX
ROI kð Þ ,

which are the mean, minimum and maximum values of brightness changes in the

ROI respectively, were calculated. The results obtained shown in Figure 4 a) are
Figure 4 Graph of changes in the average brightness value in the ROI for k of these images in a
series. The graph a) shows changes in the average LMED

ROI , minimum LMIN
ROI and maximum value LMAX

ROI for
individual k-th images in the sequence. These values are calculated in the ROI covering a sample area of
the human hand. The graph b) shows changes in the average LMMED

ROI , minimum LMMIN
ROI and maximum value

LMMAX
ROI for individual k-th images in the sequence but after normalization described in the text.
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also dependent on the individual variability of patients and the method of lighting

and setting the camera angle relative to the patient. The influence of these elements

on the result is revealed by the shift of curves shown in Figure 4 a) up or down, which

increases or decreases the mean brightness value. Therefore, normalization performed

for the entire image sequence with respect to changes for k-th images is necessary, i.e.:

LO m; n; kð Þ ¼
LK m; n; kð Þ− min

k
LK m; n; kð Þ

max
k

LK m; n; kð Þ− min
k

LK m; n; kð Þ
� � ð9Þ

for LK m; n; kð Þ− min
k

LK m; n; kð Þ
� �

≠0
For the images LO(m,n,k) modified in this way the obtained results of the mean,

minimum and maximum values also change in the same sample ROI, i.e.: LMMED
ROI kð Þ;

LMMIN
ROI kð Þ; LMMAX

ROI kð Þ . The results obtained are shown in Figure 4b. The normalized

images LO(m,n,k) also enable automatic segmentation in accordance with the reference

curve of melanin and haemoglobin content for each wavelength. The reference content

of melanin and haemoglobin can be acquired from external sources, for example from

literature data [36], or on the basis of the selected ROI. In the latter case, the result will

be as follows - image LD(m,n), i.e.:

LD m; nð Þ ¼ 1
M⋅N

XK
k¼1

LO m; n; kð Þ−LMMED
ROI kð Þ�� �� ð10Þ

Therefore, the image LD(m,n) contains information about the average error- Figure 5.

It is calculated for individual pixels relative to the reference waveform LMMED
ROI kð Þ . On

this basis, binarization-based segmentation can be performed for the binarization
Figure 5 Image LD(m,n). The image LD(m,n) results from the performed analysis and precedes proper
segmentation. Artificial colour palette highlights the individual pixel values. Each pixel is the average
difference value with respect to the pattern. For the value below about 0.2 of pixel brightness, skin areas
are visible. This fact will be used for further analysis.
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threshold pw designated manually or automatically (the afore-mentioned Otsu formula

[35]). From a practical point of view, the effect of the binarization threshold selection

(provided manually) on the segmentation results obtained is of interest. For this pur-

pose, the impact of changes in the threshold pw on the changes in the surface area

A(pw) of the segmented object was investigated, i.e.:

A pwð Þ ¼ 1
M ⋅N

XM
m¼1

XN
n¼1

LDB m; nð Þ ð11Þ

where:

LDB m; nð Þ ¼ 1 if LD m; nð Þ < pw
0 other

�
ð12Þ

The results obtained are shown in Figure 6. The area optimal from the point of view

of the segmentation results is marked in green. The term “optimal” refers to such a

fragment of the curve A(pw) which is a flat area. For the threshold pw = 0.2 ± 0.9, the

segmentation result is correct. This fact was proven when comparing it with the result

obtained by an expert relying on manual marking (gold standard). The error is here de-

fined as:

δw pwð Þ ¼ A pwð Þ−AZ

AZ
ð13Þ

where AZ is the surface area resulting from the expert’s work.
Figure 6 Graph of changes in the surface area A(pw) for different binarization thresholds pw. The
colours indicate characteristic areas: blue refers to the area of too low threshold value (the object surface is
too small), green highlights the area of changes in binarization threshold giving the best segmentation
results whereas red indicates too high binarization threshold (the resultant segmented object is too large).
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The results obtained from equation (13) it was assumed that the results obtained by

the expert are repetitive and do not differ from results obtained by other experts. Not

in every case, however, it must be so. The exact considerations presented in [37-39].

The results of changes in the error δw for varying pw (pw∈(0.1, 0.3)) are shown in

Figure 7a). From the presented graph and for the case under consideration, the smallest

error (δw ≈ 0) is obtained for pw = 0.23. For automatic selection of the binarization

threshold (Otsu’s formula), the error is 9%. Sample binarization results are shown in

Figure 7b for the thresholds pw∈{0.1, 0.15. 0.2, 0.27}. Visual assessment gives the best

results for pw = 0.23. However, it should be noted here that the adopted binarization

threshold values are the acceptable standard deviation of the reference distribution of

the skin spectrum from the measured pixels (formula (10)). In general, for any image

containing the human skin, the following approaches are possible:

� automatic selection of the binarization threshold according to the Otsu’s formula –

it enables to obtain a binary image of the object,

� manual selection of the binarization threshold pw dependent on the acceptable

tolerance of individual pixels of the image relative to the reference waveform

LMED
ROI - 1% tolerance is pw = 0.01, 10% tolerance is pw = 0.1 respectively, etc.,

� automatic selection of the binarization threshold pw depending on the location of

the ‘flat’ area (Figure 6).

Depending on the desired end result, one of the above methods is selected by an op-

erator. Figure 8 shows a sequence of images LDB(m,n) for pw∈(0,1) changed with 0.2

step from the area of the hand, forearm, finger (thumb) and tattoo.
Results
The results obtained, namely the images LDB(m,n) and LD(m,n) as well as LO(m,n,k), en-

able any segmentation of objects in the image. The division into the object and back-

ground, most commonly used in practice, can be implemented on the basis of the

equation (10). The division into three areas (I, II and III) can be implemented in a
Figure 7 Graph of changes in the error δw for varying binarization thresholds pw. In the presented
graph a) the smallest error (δw ≈ 0) is obtained for the threshold pw = 0.23. Part b) shows some subsequent
results of patient’s hand area binarization. The selected binarization results are for sample thresholds
pw∈{0.1, 0.15. 0.2, 0.27}.



Figure 8 Sequence of images LDB(m,n) for pw∈(0,1). The presented image sequence is for artificial
colour palette for 0.2 step. Sequences for 4 different images are shown: a) image of the hand, b) forearm,
c) thumb and d) tattoo. In all cases, the results obtained for pw = 0.4 covered the object containing the
human skin.
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similar way. This type of result was achieved by modifying the equation (10) to the fol-

lowing form, for example for the area I:

LID ið Þ ¼ 1
M ⋅N

XK
k¼1

LO m; n; kð Þ−LIP kð Þ�� �� ð14Þ

where i – subsequent image pixels, i.e. i∈(1, M∙N), LIP kð Þ – reference values for the

spectrum characteristic for the object I.

The thus designated absolute difference values LID ið Þ; LIID ið Þ; LIIID ið Þ� �
are the basis for

the segmentation of individual objects. Figure 9 b) shows sample reference waveforms

obtained based on the spread spectrum curves known from the literature which are the

pattern [11,36]. Figure 9 c) shows the graph LID ið Þ; LIID ið Þ; LIIID ið Þ for each i-th pixel.

Segmentation in this case concerned the separation of the tattoo area in Figure 8 c)

(Figure 9 a) from the skin and image background - for the adopted accuracy value of

pw = 0.2 for all objects and the background. The results of the comparison of the areas

selected by an expert (of the tattoo, skin and background) with the results obtained

using the presented algorithm is shown in Table 1. In addition to the areas of tattoo,

the skin and the background, there remains an area (19’869 pixels - 6.7%) which is not

assigned to any of the objects. This area is not classified. When increasing accuracy,

namely the value pw, the surface areas of individual areas increase, which may lead to

the overlap of adjacent areas. In this case, free, not classified, areas were formed. The

highest measurement error (61.5%) is related to the tattoo area. This is because of the

absence of additional processing and analysis of the obtained images LDB(m,n). One of



Figure 9 Results obtained for a sample tattoo image. Figure a) shows a sample hyperspectral image for
k = 300. Figure b) shows reference waveforms obtained based on the spread spectrum curves known from
the literature which are the pattern. Figure c) shows a graph LID ið Þ; LIID ið Þ; LIIID ið Þ for each i-th pixel. Figure d)
shows the results of segmentation performed based on the algorithm described in the paper.
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the methods to improve this result involves conditional erosion and dilation. In the

case of a symmetrical structural element SE(mSE,nSE), the relationships of conditional

erosion and dilation are simplified to the following form:

LE Cð Þ m; nð Þ ¼

¼ LDB m; nð Þ for 1−pweð Þ ⋅pmn m; nð Þ≤sre m; nð Þ
min

mSE ;nSE∈SE
LDB mþmSE; nþ nSEð Þð Þ for 1−pweð Þ ⋅pmn m; nð Þ > sre m; nð Þ

8><
>:

ð15Þ

LD Cð Þ m; nð Þ ¼

¼ LDB m; nð Þ for pwd þ 1ð Þ ⋅pmn m; nð Þ≥srd m; nð Þ
max

mSE ;nSE∈SE
LDB m−mSE; n−nSEð Þð Þ for pwd þ 1ð Þ ⋅pmn m; nð Þ < srd m; nð Þ

8><
>:

ð16Þ

where: LE(C)(m,n) – the resulting binary image after subjecting the image LDB to condi-

tional erosion,

LD(C)(m,n) – the resulting binary image after subjecting the image LDB to conditional

dilation,

pwe – the constant that determines erosion effectiveness,

pwd – the constant that determines dilation effectiveness,

pmn(m,n) – the threshold dependent on the coordinates m, n,

sre – the mean value of the analysed area for erosion,

srd – the mean value of the analysed area for dilation.



Table 1 Comparison of segmentation results obtained by an expert with the results obtained from the presented algorithm

Tattoo [pixels] Skin [pixels] Background [pixels] Non-identified
areas [pixels]

Measurement error of
tattoo surface area [%]

Measurement error of
skin surface area [%]

Measurement error of
background surface area [%]

Expert 19411 (6.6% of the
whole image)

136780 (46.3% of the
whole image)

139009 (47.1% of the
whole image)

0 (0%) 61.5% 5.1% 2.6%

Algorithm 31356 (10.6% of the
whole image)

101312 (34.4% of the
whole image)

142663 (48.3% of the
whole image)

19869 (6.7%)
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The mean values sre, srd, for erosion and dilation respectively, were calculated form

the following equations:

sre m; nð Þ ¼
XMSE

mSE¼1

XNSE

nSE¼1

LD mþmSE; nþ nSEð Þ
MSE ⋅NSE

ð17Þ

srd m; nð Þ ¼
XMSE

mSE¼1

XNSE

nSE¼1

LD m−mSE; n−nSEð Þ
MSE ⋅NSE

ð18Þ

The constants pwe and pwd, which determine the effectiveness of erosion and dilation

respectively, take values from the range (0,1), i.e.: pwe∈(0,1) and pwd∈(0,1). The values

from this range arise directly from the condition of the left side of inequality (15), i.e.:

1−pweð Þ ⋅pmn m; nð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

> sre m; nð Þ|fflfflfflfflffl{zfflfflfflfflffl}
II

ð19Þ

The values of pnm∈(0,1), whereas the values (1–pwe) should be non-negative in the
range from 0 to 2. The values (1–pwe) and (1 + pwd) for pwe = pwd = 0 are equal to 1,

which means high intensity of conditional operations. For the other values of thresh-

olds pwe and pwd, for example, for pwe = pwd = 1, there is a complete lack of effectiveness

of the erosion operation and significant effectiveness of dilation. In the present case

pmn(m,n) = const and is independent of the location (pmn ≠ f(m,n)). The shape of the

structural element SE in all these relationships was adopted as round sized 5 × 5 pixels

due to the shape and size of the smallest objects corrected. These properties of condi-

tional erosion and dilation enable to obtain effective correction of the surface of indi-

vidual areas - in this case the tattoo, skin and background. This adjustment involves

sequential implementation of conditional erosion and dilatation (in this case five times)

for the images LDB(m,n) and LD(m,n). The binary image LDBC(m,n), adjusted in this

way, enables to obtain much better results - Table 2. The pixels not allocated to any of

the areas were eliminated owing to the operations of conditional erosion and dilation.

However, the skin area measurement error increased and in this case amounted to

12.9%. This error is closely dependent on the amount of segmented image areas, on the

type and differences in the spectra for individual areas. Finally, the results obtained

have a segmentation error of less than 13% compared to the work of the expert.

Figure 10 shows segmentation errors for 45 hyperspectral image sequences, 36’000 2D

images, analysed with the present method. The average value of the described method

error δK fluctuates around 9% (the maximum value is 23%, minimum - 1%). These re-

sults are in the next section compared with the results obtained by other authors.
Table 2 Comparison of segmentation results obtained by an expert with the results
obtained from the presented algorithm after adjustment with conditional erosion and
dilation

Tattoo
[pixels]

Skin
[pixels]

Background
[pixels]

Non-
identified
areas
[pixels]

Measurement
error of

tattoo surface
area [%]

Measurement
error of

skin surface
area [%]

Measurement
error of

background
surface area [%]

Algorithm 19066
(6.5%)

138365
(46.9%)

138114
(46.8%)

0 (0%) 1.8% 12.9% 1%



Figure 10 Maximum error values obtained for the analysed 45 hyperspectral images (36’000 2D
images). These errors are calculated as a result of the comparison of surface area calculations for individual
images containing the human skin with segmentation performed by an expert. The sequence of images on
the x-axis is random.
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Comparison with other authors’ results
Hyperspectral imaging is the subject of many works on spectrum measurement and its

analysis. In many studies, also simple functions related to image analysis and processing

are used. Compared to conventional monochrome images, hyperspectral imaging con-

tains much more information. This means that typical known methods of image ana-

lysis and processing must be generalized or profiled to their particular application.

Among other things, the fact of having information on the complete spectrum in a spe-

cified range results in the possibility of performing more accurate segmentation than

during typical segmentation. The analysis itself in the known reference works, however,

usually refers to the analysis of the manually selected ROI, e.g. in [28]. There are many

other areas of medicine which use similar manual or semi-automatic selection of the

region of interest. These are, for example, the areas mentioned in [36] - vibrational

hyperspectral imaging Filik J. [40], laparoscopic digital light processing – Olweny EO

[41], blood stains at the crime scene – Edelman G. [42], prostate cancer detection –

Akbari H. [43], histopathological examination of excised tissue - Vasefi F, diabetic foot

ulcer - Yudovsky D [44], cancer detection - Akbari H [45], and others. In medicine, the

use of hyperspectral imaging to assess the creation time of a bruise is also known –

Stam B. [46]. The inaccuracy found is 2.3% for fresh bruises and 3 to 24% for bruises

up to 3 days old. In conclusion, colour inhomogeneity of bruises can be used to deter-

mine their age. The experiment results in the work of Li Q [28] show that the hyper-

spectral based method has the potential to identify the spinal nerve more accurately

than the traditional method as the new method contains both the spectral and spatial

information on nerve sections. A strong resemblance of hyperspectral imaging to

monochrome imaging means that typical methods such as morphological operations

can be applied here. They are used in the classification of different types of artefacts
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visible in images [1,13,15] in SVM (support vector machines) [14], Gauss-Markov

model [16] or wavelet analysis [18]. For example, in the work of Dicker et al. [31] spec-

tral library was generated with 12 unique spectra that were used to classify specimens

where sample preparation was varied. The work of Benediktsson J. et al. [11] presents

results for the sequential use of morphological opening and closing for the increased

size of the structural element. This methodology is similar to the use of conditional

erosion and dilation, as in [13] and G. Rellier’s work [17]. These known methods of

image analysis and processing do not enable fully automatic segmentation of the skin

area, especially in conjunction with the prior automatic calibration.

Critical summary
The paper presents the method of calibration and segmentation of selected skin areas

in hyperspectral imaging. The characteristics of the method described, whose block dia-

gram is shown in Figure 11, include:

� the possibility of automatic calibration with the use of a white pattern placed in the

upper part of the image (in the present case, the pattern was rectangular),

� the possibility of automatic segmentation of the skin area,
Figure 11 Block diagram of the proposed algorithm for spectral image analysis and processing. The
sequence of images is converted from *.dat or *.raw format to a three-dimensional image matrix, and
then there follows median filtration, automatic image calibration, segmentation of the skin areas and
final analysis.
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� the possibility of automatic segmentation of several areas, including those visible in

the same image on the basis of ray spectrum,

� measurement repeatability owing to full elimination of operator’s intervention in

the study,

� the possibility of any quantitative (not qualitative) assessment of the results

obtained - the surface area of the segmented areas and others,

� time analysis of a sequence of images does not exceed 10 s using Intel Core i5 CPU

M460 @2.5GHz 4GB RAM.

The presented method can be extended to:

� full analysis of the expert’s impact on the result. In the described case, there was

one expert. In future studies, repeatability of the expert’s work and possible

differences in the work of several experts should be verified.

� analysis of the impact of the hyperspectral camera operator on the result. Individual

operator’s habits, placing an object on the stage may be vital for the results

obtained.

� analysis of the portability of this algorithm to other medical institutions. The

impact of image resolution on the result, the impact of specific settings of the

algorithm - its parameters.

Therefore, the discussed algorithm for image analysis and processing does not fully

cover the issue. In terms of application, the techniques from spectral methods [47-49],

analysis of microscopic images [50,51] and others [52-59] can also be used. This type of

analysis will be carried out by the authors in future studies in this area.
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