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Abstract
Treelines have long been recognized as important ecotones and likely harbingers of climate change. However, 
over the last century many treelines have been affected not only by global warming, but also by the interac-
tions of climate, forest disturbance and the consequences of abrupt demographic and economic changes. 
Recent research has increasingly stressed how multiple ecological, biophysical, and human factors interact 
to shape ecological dynamics. Here we highlight the need to consider interactions among multiple drivers 
to more completely understand and predict treeline dynamics in Europe.
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Introduction

Treelines have long been recognized as impor-
tant ecotones and likely harbingers of climate 
change (Stevens & Fox 1991). Important work 
in Europe and elsewhere has elucidated the 
effects of temperature and precipitation 
on tree establishment and growth at eleva-
tional and latitudinal limits (Körner & Paulsen 
2004; Harsch et al. 2009). However, over the 
last century in Europe, as well as on other 
continents, most shifts in treelines have 
occurred in response to both global warm-
ing and abrupt demographic and economic 
changes at high elevations (Hofgaard 1997; 
Motta et al. 2006). In this context, some lines 
of research have increasingly stressed how 
multiple ecological, biophysical, and human 
factors interact to shape ecological dynam-
ics, including those at treeline. Here we do 
not aim to review the extensive literature 
on treeline dynamics, rather we highlight the 
need to consider interactions among multiple 
drivers to more completely understand and 
predict treeline dynamics in Europe. 

Climatic drivers of treeline 
position

At broad spatial scales, positions of treeline 
globally have long been understood to be 
a function of climate with temperature and/
or precipitation limiting tree establishment 
and growth (Troll 1973). In particular, summer 
temperatures during the vegetation growing 
period are considered as critical for treeline 
position worldwide because the lower thresh-
old of temperature for tissue growth and 
development is thought to be in a restricted 
range of 5.5-7.5°C (Körner 1998). However, 
other climatic parameters such as winter tem-
peratures (Kullman et al. 2007), precipitation 
(Daniels & Veblen 2003; Ohse et al. 2012) 
or the duration of snow cover (Hallinger et al. 
2010; Barbeito et al. 2012) may be as impor-
tant for tree survival and treeline positions 
as summer temperatures. For example, tree 
survival and height growth have been shown 

to require different environmental condi-
tions and even small changes in the duration 
of snow cover, in addition to changes in tem-
perature, have been shown to strongly impact 
tree survival and growth patterns at tree-
line (Barbeito et al. 2012; Li & Yang 2004). 
Because of the importance of these climatic 
drivers, treeline dynamics are widely associ-
ated with changing temperatures (e.g., Hage-
dorn et al. 2014) and/or precipitation (Ohse 
et al. 2012), which are being used to model 
future treeline dynamics (Dullinger et al. 
2004; Paulsen & Koerner 2014). The relative 
importance of different climatic drivers varies 
spatially across different species and compo-
sitions of tree-lines in Europe. Although most 
treeline in Europe is dominated by coniferous 
species (mainly spruce, larch and pine), broad-
leaf species (especially beech) are also region-
ally important (e.g. in the Apennines and the 
Carpathians; Czajka et al. 2015b).

The relative importance of climatic and 
other drivers for treeline position changes 
during the lifetime of a tree. Early seedling 
establishment is often limited by the availabil-
ity of seeds, by the quality of seedbeds and 
by interactions with herbaceous vegetation 
(Dullinger et al. 2004; Grau et al. 2012). Young 
tree seedlings tend to be highly susceptible 
to drought, high radiation during daytime 
and cold night-time temperatures (Smith et al. 
2009). Furthermore, during cold but snow-
free periods, reduced wind speed close to the 
ground, relatively warm soil temperatures 
close to the soil surface, as well as terrestrial 
thermal radiation increase the effective tem-
peratures for seedlings compared to taller 
trees with deeper roots (Grace et al. 1989). 
When tree seedlings grow taller, the relative 
importance of variables for tree mortality 
and growth can change rapidly, especially 
when tree height exceeds snow cover (Bar-
beito et al. 2012), at which point the stems 
increasingly become more exposed to sur-
rounding air temperatures and to mechani-
cal damage and abrasion caused by wind 
and blowing snow or ice (Aulitzky et al. 1982; 
Kharuk et al. 2010). With increasing size, 
taller seedlings and younger trees become 
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increasingly more vulnerable to cold air and 
soil temperatures, while differences in the 
microsite become increasingly less important 
(Körner 2012). For older trees at treeline, the 
relative importance of drought as a limit-
ing factor may increase again, in particular 
where competition or biogenic disturbances 
are also important (Allen et al. 2010; Schus-
ter & Oberhuber 2013). Therefore, the effects 
of climate on mortality and growth should 
be carefully evaluated according to the age 
of the trees, with explicit recognition of the 
changing relative importance of critical driv-
ers during the developmental stages of the 
tree as well as the ecosystem in question. 

Beyond the direct influence 
of climate

Although climate is clearly important for 
treeline dynamics, recent research has 
increasingly expanded the focus beyond 
climate being the only important variable 
(Fig. 1). For example, in the context of global 
climate change, CO2 concentrations have 
been shown to interact with warming tem-
peratures to promote growth of some 
treeline species in Switzerland (Dawes et al. 
2011, 2013). While broad-scale treeline posi-
tion is largely associated with temperature, 

much of the finer-scale variation in treeline 
reflects a combination of thermal variables, 
physiological stress, landuse, and natural 
disturbances (Körner 1998; Case & Dun-
can 2014). Similarly, even if climate changes 
to allow upward expansion of treeline, that 
potential may be limited by physiographic set-
ting or geomorphic processes (Garbarino et al. 
2009; Holtmeier & Broll 2012; Macias-Fauria 
& Johnson 2013). Furthermore, the complex-
ity and interactions of treeline drivers include 
interactions between climate and pathogens. 
For example, the 2000s bark beetle outbreak 
in Western Carpathians initially only affected 
low elevation planted spruce forest, but even-
tually spread to subalpine forests, including 
the treeline ecotone, which is also influenced 
by climate (Fig. 2).

The position of treeline can also vary locally 
due to disturbances such as snow avalanches, 
fires, or pathogens, which can suppress tree-
lines below their climatic limit (Figs. 3, 4) (Bebi 
et al. 2009; Barbeito et al. 2013; Johansson & 
Granstrom 2014). As most natural disturbanc-
es are driven by climate, it follows that climate 
can affect treeline dynamics not only directly 
(e.g. by temperature or precipitation affecting 
tree demography) but also indirectly by alter-
ing disturbance regimes. In fact, in European 
temperate mountain ranges it is likely that 

Figure 1. Treeline is determined by complex interactions among climatic, topographic, landuse, and 
other drivers – each of which directly affects treeline and also affects the other drivers
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future climate change could result in changes 
in snowfall and temperature, which may affect 
local avalanche regimes, especially in lower 
elevation subalpine forest. Future climate 
scenarios may also be characterized by lower 
overall precipitation and higher temperatures, 
which may fundamentally alter fire regimes 
and outbreaks of tree-killing insects and path-
ogenic fungi, even in regions that have not 
been affected by these disturbances over the 
past decades to centuries. Consequently, such 
changes in these disturbance regimes may set 
the stage for novel interactions among distur-
bances that could affect treeline position and 
ecosystem trajectories. Additionally, regen-
eration following these altered disturbance 
regimes may also be affected by the direct 
effects of climate on tree demography. Thus, 
changes in climatically-driven disturbances, 
including fires and insect outbreaks are criti-
cal to treeline dynamics but are likely to dif-
fer between broadleaf and coniferous species 
(Piermattei et al. 2012).

Influence of human activities 
on treeline shifts

In addition to potential changes in climat-
ically-driven disturbances, changes in lan-
duse and forest management also affect 
the dynamics of many European treelines. 

For example, while avalanches can suppress 
treeline below its climatically-determined 
limit, anthropogenic suppression of avalanch-
es by the construction of snow-supporting 
structures can dampen this effect, leading 
to a greater influence of climate on tree 
growth near treeline (Kulakowski et al. 2006) 
and an overall upward expansion of treeline 
(Fig. 3) (Kulakowski et al. 2011).

Agricultural use of alpine and subalpine 
areas has an important effect on treelines. 
For example, wild and domesticated ungu-
lates can interact with climate to impact tree-
line dynamics (Dufour-Tremblay & Boudreau 
2011; Herrero et al. 2012; Munier et al. 
2014). Over the Holocene, treeline vegetation 
in Switzerland has been affected by a combi-
nation of anthropogenic fire, human land-
use, and climate (Berthel et al. 2012; Rey 
et al. 2013; Schwö rer et al. 2014). Across 
the European continent, treeline dynamics 
continue to be affected by browsing in many 
areas (Speed et al. 2011). However, as agri-
culture becomes less profitable in developed 
countries, browsing and grazing pressure 
from domesticated ungulates is decreasing. 
This change in herbivore pressure can reduce 
constraints on climatically-determined posi-
tion of treeline (Gehrig-Fasel et al. 2007; Kula-
kowski et al. 2011; Czajka et al. 2015a). Simi-
larly, following cessation of logging at high 

Figure 2. The complexity and interactions of treeline drivers include interactions between climate, snow 
avalanches and pathogens. Here, the 2000s bark beetle outbreak in the Western Carpathians, which 
initially only affected low elevation planted spruce forest, but eventually spread to subalpine forests, 
including the treeline ecotone, which is also influenced by climate (Photo by R. Kaczka)
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elevations, climate has been shown to drive 
forest expansion (Carlson et al. 2014; Kaczka 
et al. 2015a). However, in some less devel-
oped regions such as the Eastern Carpathi-
ans of Ukraine and Romania, the deforesta-
tion of subalpine forests has increased due 
to commercial logging and growth of tourist 
infrastructure (Mihai et al. 2007; Kuemmerle 
et al. 2009; Knorn et al. 2012). 

Beside the direct influence of land-use on 
trees, the legacies of former land-use can 
include altered site conditions or succession 
pathways. For example, a gradual decrease of 
grazing pressure can lead to relatively dense 

shrub vegetation, which can inhibit the estab-
lishment of trees and subsequent expansion 
of treelines, even if temperatures become 
more favorable for tree growth (Spatz 1980; 
Motta et al. 2006). A recent re-assessment 
of a 40 year old survey of treeline trees in the 
Dischmatal in the Swiss Alps has shown that 
treeline expansion occurred mainly during time 
periods after the cessation of intensive grazing 
pressure and before the establishment of dense 
dwarf-shrub vegetation (Erdle 2013). Legacies 
of extreme anthropogenic air pollution includ-
ing sulfur, nitrogen (causing acid rain) and dim-
ming or brightening of the atmosphere (Stanhill 

Figure 3. The position of treeline can vary due to the effects of disturbances such as snow avalanches 
(left), fires (right), or pathogens, which can suppress treelines below their climatic limit (Photo by P. Bebi)

Figure 4. While avalanches can suppress treeline below its climatically-determined limit (right), 
anthropogenic suppression of avalanches by the construction of snow-supporting structures can dampen 
this effect, leading to a greater influence of climate on tree growth near treeline and an overall upward 
expansion of treeline (left) 

Source: Photo courtesy of Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Institute 
for Snow and Avalanche Research (SLF)
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& Cohen 2001; Wild et al. 2005) can likewise 
interact with climate to affect pathways of tree 
establishment near treeline. One of the striking 
examples of this is at the border of Poland and 
the Czech Republic, where forest dieback due 
to pollution was especially extensive (Mazurski 
1986; Schulze 1989; Renner 2002; Treml & 
Migoń 2015). 

Understanding present-day 
treelines across spatial and 
temporal scales

Recent data from monitoring networks, 
including National Forest Inventories, 
remotely sensed data from satellite images 
or airborne light detection and ranging 
(LIDAR) cover large areas and facilitate moni-
toring and studying treeline dynamics. How-
ever, most of these data sets currently cover 
a relatively short duration. Where they are 
available, historical data, including dendro-
ecological approaches, repeated aerial pho-
tographs, or historical maps (Coop & Givin-
ish 2007; Ameztegui et al. 2010; Kulakowski 
et al. 2011; Mathisen et al. 2014; Kaczka et al. 
2015b) can be combined with recent data 
sets to shed light on treeline dynamics over 
the past decades or centuries. Landscape 
models can then leverage these spatiotempo-
ral data to predict potential future changes 
in treeline position.

Conclusions

Important advances are being made in under-
standing how non-climatic variables interact 
with climatic ones to shape treelines across 

Europe. Taken together, this literature indi-
cates that to more completely understand 
changes in treeline over time, it is impor-
tant to consider not only individual drivers 
of change, but also the interacting effects 
of multiple drivers, including ecological, physi-
ographic, and human ones (Fig. 1). It is likely 
that future treeline dynamics will be shaped 
not only by the direct effects of climate 
change, but also by the indirect effects of cli-
mate change, including altered disturbance 
regimes. The importantly, the relative impor-
tance of individual driving factors, as well 
as the nature of their interactions, should 
be expected to vary over space and time. 
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