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Abstract
Aims Pioneer tree species such as Betula pendula and
Pinus sylvestris encroach soils contaminated with heavy
metals (HMs). This is facilitated by ectomycorrhizal
fungi colonizing tree roots. Thus, we evaluated the
ectomycorrhizal fungal (EMF) communities of
B. pendula and P. sylvestris growing in HM-
contaminated soils compared to non-contaminated soils.
We also studied the effect of HMs and soil properties on
EMF communities and soil fungal biomass.
Methods Roots of B. pendula and P. sylvestris were
collected from three HM-contaminated sites and from
two non-contaminated sites located in Poland. EMF

species were identified using DNA barcoding. Soil fun-
gal biomass was determined by soil ergosterol.
Results B. pendula and P. sylvestris growing in HM-
contaminated soils had similar EMF communities,
where Scleroderma, Rhizopogon and Russula as well
as ectomycorrhizae of the long-distance exploration
type dominated. Among all of the examined soil factors
studied, toxicity index (TITotal) was the most significant
factor shaping the composition of EMF communities.
Despite significant differences in the structure of the
EMF communities of trees growing in HM-
contaminated sites compared to control sites, no differ-
ences in overall diversity were observed.
Conclusions Only well-adapted EMF species can sur-
vive toxic conditions and form ectomycorrhizal symbi-
osis with encroaching trees facilitating the forest suc-
cession on contaminated soils.

Keywords Ectomycorrhiza . Next generation
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Introduction

The southern part of Poland has been a centre of the lead
and zinc industry since theMiddle Ages (Grodzińska et al.
2000). This region has been ranked as one of the most
polluted regions in Europe (Piekut et al. 2019). Several
smelters, associated industrial plants, and ore mines are
still in use resulting in the accumulation of high levels of
toxic heavy metals (HMs) in soils, particularly in the
upper soil layers (Augustyniak et al. 2014), where the
highest density of fine root (Jackson et al. 1996) and
ectomycorrhizal root tips (Rosling et al. 2003) occurs.

The uptake and accumulation of heavy metals in
plant tissues causes various adverse morphological,
physiological and biochemical responses (Doğanlar
and Atmaca 2011). HMs induce the production of reac-
tive oxygen species (ROS) which hinder cell metabo-
lism and have multiple toxic effects, including lipid
peroxidation and damage to proteins and DNA
(Pongrac et al. 2009). HMs also block and displace
essential functional groups in biomolecules
(Schützendübel and Polle 2002). As a consequence,
HMs can inhibit photosynthesis and diminish water
and nutrient uptake, resulting in chlorosis, growth inhi-
bition, browning of root tips, and eventual plant death
(Seregin and Ivanov 2001).

Several pioneer tree species occur naturally or are
intentionally introduced in HMs polluted areas. The most
common trees in polluted soils in Eastern Europe are
silver birch (Betula pendula Roth.) (Prach and Pyšek
2001) and Scots pine (Pinus sylvestris L.) (Picon-
Cochard et al. 2006). Long-lived organisms such as trees
can overcome high (i.e. toxic) concentrations of HMs in
soils through resistance (sensu Levitt 1980) mechanisms
including ectomycorrhizal symbiosis (Wilkinson and
Dickinson 1995). Jourand et al. (2010) and Gonçalves
et al. (2009) postulated that HM-resistant EMF ecotypes
strongly enhance the growth of host plants on nickel-
contaminated areas. Elevated concentrations of HMs in
ectomycorrhizal root tips indicate that the fungal mantle
is an effective barrier that prevents transport of these
elements to roots of higher branch order, shoots, and
leaves (Leyval et al. 1997; Turnau et al. 2002). For

example, Blaudez et al. (2000) stated that binding Cd in
the cell walls of fungal hyphae and HM accumulation in
the vacuolar compartment of fungal cells should be con-
sidered as two essential HM-detoxification mechanisms
in ectomycorrhizal fungi (EMF). Courbot et al. (2004)
reported an increase in glutathione (GSH) concentration
in Paxillus involutus mycelia growing under Cd-stress
conditions as glutathione can form highly stable com-
plexes with Cd and other thiophilic HMs such as Hg, Cu,
and Zn (Rubino 2015). Additionally, metallothioneins
(MTs), cysteine-rich heavy metal-binding peptides, have
also been found in EMF tissues (Courbot et al. 2004;
Ramesh et al. 2009). Moreover, ectomycorrhizal fungi
can secrete several compounds into the soil that can
immobilize HMs outside the mycelium (Ahonen-
Jonnarth et al. 2000). Although EMFs possess many
mechanisms responsible for HM resistance, Pennanen
et al. (1996) observed a reduction in the fungal biomass
in HM-contaminated soils.

Several studies have investigated the EMF commu-
nities occurring in HM-contaminated sites (Huang et al.
2012; Krpata et al. 2008; López-García et al. 2018;
Regvar et al. 2010) so far. However, none of these
studies has compared the EMF species communities
and associated fungal biomass between two naturally
growing tree species. Therefore, this study characterized
and compared the EMF communities of Betula pendula
(silver birch) and Pinus sylvestris (Scots pine) growing
around zinc-lead smelters and compared themwith non-
contaminated (control) sites. Additionally, the effects of
HMs and associated soil properties on EMF communi-
ties and soil fungal biomass were also investigated.

We hypothesized that EMF communities associated
with B. pendula and P. sylvestris growing in HM-
contaminated soils should be more similar to each other
than EMF communities associated with the same tree
species growing in non-contaminated areas. The expect-
ed similarity of EMF communities of silver birch and
Scots pine growing in HM-contaminated sites would be
due to an increased contribution of specific, probably
HM-resistant, EMF species.

Material and methods

Study sites

The study was carried out in three HM-contaminated
sites located in the close vicinity of large non-ferrous
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metal smelters in southern Poland (Fig. 1): Szopienice
(50° 15′ 46”N, 19° 04′ 23″E; 256 m asl), Miasteczko
Śląskie (50° 30′ 12”N, 18° 56′ 08″E; 301 m asl), and
Bukowno (50° 16′ 22”N, 19° 28′ 31″E; 346 m asl). The
area around the Szopienice smelter has been exposed to
HM pollution for over 170 years (Augustyniak et al.
2014). Miasteczko Śląskie and Bukowno sites have
been under constant and increasing heavy metal pollu-
tion since 1967 when both smelters were established
(Azarbad et al. 2015). The control sites (non-
contaminatedwith heavymetals) were located in Kórnik
(52° 14′ 22”N, 17° 04′ 46″E; 85 m asl), central Poland,
and in Złoty Potok (Parkowe Reserve) (50° 42′ 14”N,
19° 25′ 24″E; 316 m asl), southern Poland. We chose
these control sites according to their well-known man-
agement history and their use in other similar studies
(e.g. Łukasik 2006: Rudawska et al. 2011).

Three plots of B. pendula and three of P. sylvestris,
ranging in age from 25 to 35 years old, were established
in the Bukowno andMiasteczko Śląskie sites. Two plots
of B. pendula and two of P. sylvestris, ranging in age
from 20 to 25 years old were established at the
Szopienice site. Similarly, two plots of B. pendula and
two plots of P. sylvestris ranging between 20 and
35 years old were established at each of the control sites,
Kórnik and Złoty Potok. Each of the established plots
was approximately 100 m2 and was located from 10 to
300 m from each other. The soils of Miasteczko Śląskie,
Kórnik and Złoty Potok are characterised as Podzols
(Jaśniska-M’Bodj 2015; Misiorny 2009; Wierzbicki
2012), while soils from Bukowno and Szopienice are
described as Technosols (Górniak 2010; Szeremeta
2010).

Sample collection and processing

Five soil samples (approximately 500 g each) were
collected randomly in September 2015 and 2016 from
each plot at the study sites for a total of 120 samples.
Soil samples were collected from a depth of 0–15 cm
after removing litter, stored in closed plastic bags, and
refrigerated for no longer than 24 h until processed. Two
subsamples (100 g) were taken from each of the collect-
ed samples, homogenized (mixed and sieved to <2mm),
and either air-dried for chemical analysis or stored at
−20 °C for fungal biomass assessment.

Simultaneously, other soil samples (20 cm long ×
20 cm wide × 15 cm deep) were collected and stored in
sealed plastic bags and placed at −20 °C for

ectomycorrhizal evaluation. Roots in thawed samples
were gently extracted from the soil with tweezers and
washed under tap water over a 1 mm sieve. Tightly
adhering materials were removed manually with forceps
under a stereomicroscope (Olympus, zoom 0.67–40).
The number of healthy-looking ectomycorrhizal root
tips of B. pendula and P. sylvestris were recorded sep-
arately. Exploration types of ectomycorrhizae were clas-
sified based on Agerer (2001). Ectomycorrhizae of
Russula, Lactarius, and Hygrophorus, of which their
species-specific information was unavailable, were
grouped together and described as a separate category
(contact/short/medium-smooth, c/s/ms).

Approximately 50 g of fresh B. pendula leaves and
P. sylvestris needles were collected from five randomly
selected trees three times during the growing season in
2015 and 2016. Leaves and needles were used to assess
the degree of plant HM-contamination in each site.

Chemical analyses

Soil pH was measured using a 1:2.5 soil to 1 M KCl
solution ratio. Organic matter content expressed as car-
bon (C) content was measured using the loss of ignition
method. Total nitrogen (N) content was determined by
the Kjeldahl method. The content of available phospho-
rus (P) was measured using the Egner-Riehm method.
The total concentrations of HMs (Cd, Pb, Zn, Cu, Ni)
and Ca were analyzed according to the methodology
proposed by Sastre et al. (2002) and was obtained by
mineralization of 0.25 g of soil in 8 ml of concentrated
HNO3 and 2 ml of 30% H2O2 in a microwave oven
(Milestone Ethos One, Italy) at 190 °C. After minerali-
zation, samples were diluted to 25 ml with deionized
water and filtered. The fraction of available HMs was
obtained by shaking a soil sample (1:10 soil to solution
ratio) with 0.01 M CaCl2 for 2 h (Wójcik et al. 2014).
The content of HMs was measured using flame absorp-
tion spectrometry (Thermo Scientific iCE 3500, USA).
All of the analyses included blank samples (distilled
water) and certified reference materials (NCS DC
77302, China National Analysis Centre for Iron and
Steel) to ensure the quality of the analyses.

Leaves and needles were rinsed three times with
distilled water, dried at 105 °C, and homogenized in
an agate mill (Retsch, Germany). Powder samples were
then divided into three 0.25 g subsamples and each were
mineralized in 8 ml of 65% HNO3 and 2 ml of 30%
H2O2 in a microwave oven (Milestone Ethos One, Italy)
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at 190 °C. After mineralization, samples were diluted to
25 ml with deionized water and filtered. The HM con-
tent in each sample was determined using flame absorp-
tion spectrometry (Thermo Scientific iCE 3500, USA).
Only Cd, Pb, Zn, and Cu were determined in plant
material. Ni was not included because its concentration
in leaves and needles was below the detection limit. All
of the analysis procedures included blank samples (dis-
tilled water) and certified reference material (Oriental
Basma Tobacco Leaves [INCT-OBTL-5], Institute of
Nuclear Chemistry and Technology, Poland) to ensure
the quality of the analyses.

DNA extraction and next generation sequencing

A total of 15,800 root tips collected from B. pendula and
9744 from P. sylvestris were analyzed (Table S1). Be-
fore molecular analysis, ECM root tips were pooled by
plot and analyzed separately. Ectomycorrhizal root tips
collected from each plot were placed in 2 ml tubes
containing Lysing Matrix A (MP Biomedicals, USA).
After the addition of 450μl of ATL lysis buffer (Qiagen,
Germany), samples were homogenized three times for
40 s at a speed of 6.5 m s−1 using a FastPrep-24 homog-
enizer (MP Biomedicals). Proteinase K (Bio Basic,

Canada) was added to the solution to a final concentra-
tion of 0.2 mgml−1 and samples were then incubated for
24–48 h at 56 °C. Subsequently, 100 μl of the lysate
from each sample was used to isolate total genomic
DNA using the ZR-69 Quick-gDNA MiniPrep Kit
(Zymo Research).

The Internal transcribed spacer 1 (ITS1) was PCR-
amplified using ITS1 (TCCGTAGGTGAACC
TGCGG) and ITS2 (GCTGCGTTCTTCATCGATGC)
primers (White et al. 1990) and fused with Ion Torrent
double indexed adapters. PCRs were prepared in two
technical replicates, each in a reaction volume of 5 μl
containing Type-it Microsatellite Kit (Qiagen), 2.5 μM
of each primer, and 1 μl of DNA template. The ampli-
fication program was as follows: 95 °C for 5 min,
followed by 35 cycles of 30 s at 95 °C, 60 s at 50 °C
and 30 s at 72 °C with a final extension step at 72 °C for
7 min.

Technical replicates were merged and diluted with
10 μl of deionized water. 5 μl of the diluted PCR
mixture was electrophoresed on a 1.5% agarose gel to
check amplification efficiency. Then, all amplicons
were pooled in equimolar amounts, size-selected on a
3% agarose gel and purified using QIAquick Gel Ex-
traction Kit (Qiagen) according to the manufacturer’s

Fig. 1 General geographical map
describing the location of the
study sites
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protocol. DNA concentration and fragment length dis-
tribution of the library was established with the use of a
High Sensitivity D1000 Screen Tape assay on 2200
Tape Station system (Life Technologies, USA). Clonal
template amplification was performed using the Ion
Torrent One Touch System II and the Ion PGM Hi-Q
View OT2 Kit (Life Technologies, USA) according to
the manufacturer’s instructions. The library was se-
quenced using an Ion PGM Hi-Q View Sequencing
Kit, Ion 318 chip and the Ion PGM system (Life
Technologies).

Bioinformatics analysis

Sequence reads <200 bp were removed from the dataset
in Geneious R11.1.5 (Biomatters Ltd.). Then, the Fastx
toolkit (Hannon 2010) was used to extract sequences
having a minimum of 50% of bases with a quality
score ≥ 25. In Geneious R11.1.5, quality filtered se-
quences were separated into individual combinations
of indices representing each site. Chimeras were re-
moved using two approaches: the default settings in
UCHIME version 4.2.40 (Edgar 2016), and the SILVA
database for ARB for small subunit ribosomal RNAs
version 132 (Glöckner et al. 2017) as implemented in
Geneious R11.1.5 (Biomatters Ltd.). Operational taxo-
nomic unit (OTU) clustering was performed at 97%
similarity in USEARCH version 11.0.667 (Edgar
2010). Singletons (<5 reads) were removed, and OTUs
were then clustered using the –cluster_OTUs algorithm
(Edgar 2013). Fungal OTU consensus sequences were
compared to the Unite (Kõljalg et al. 2013) and
MycoBank (Robert et al. 2013) databases to identify
EMF species using a 97% identity threshold (Table S2).

Fungal biomass in soils

Ergosterol concentration was used as an indicator of
total living fungal (saprophytic and mycorrhizal) bio-
mass in soils (Olsson et al. 1996). This indicator ac-
counts also for both Ascomycetes and Basidiomycetes
(Olsson et al. 2003). Analysis was performed according
to the method previously described by Gong et al.
(2001) with a few modifications proposed by de
Ridder-Duine et al. (2006). One gram of soil and 6 ml
of methanol was added to a 20 ml scintillation vial
containing 2 g of acid-washed glass beads (1 g of
500 μm diameter and 1 g of 1000 μm diameter) and
then intensively shaken for 1 h. Subsequently, a 1.5 ml

aliquot from each sample was transferred into a plastic
tube and centrifuged for 15 min at 14000 rpm. Ergos-
terol concentration was measured by HPLC (Merck-
Hitachi, Germany) with a LiChrospher® RP-18 HPLC
Column (4 × 250 mm) using pure methanol (HPLC
grade) as a mobile phase at a flow rate of 1 ml min−1.
The DAD detection (Merck-Hitachi, Germany) was set
at 282 nm. As a standard ≥95.0% Ergosterol HPLC
grade (Sigma-Aldrich) was used.

Statistics

The level of HM contamination was characterized using
the toxicity indices for both total (TITotal) and available
(TIBio) concentrations of heavy metals (Stefanowicz
et al. 2008):

TI ¼ ∑
n

i
Ci=EC50ið Þ

whereCi is the concentration of heavy metal i in soil and
EC50i is the concentration of that heavy metal causing a
50% reduction in dehydrogenase activity (EC50Cd = 90,
EC50Cu = 35, EC50Ni = 100, EC50Pb = 652, EC50Zn =
115 mg kg−1) according to Welp (1999), where EC
(effective concentration) values were estimated with
the Levenberg-Marquardt algorithm and a Weibull dis-
tribution of data to calculate nonlinear regressions. Ex-
periment was performed with soil material from the
plough layer (0–30 cm) of a loess soil (FAO: haplic
luvisol), passed through a 2-mm sieve.

Rarefaction curves were generated using PAST ver.
3.25 (Hammer et al. 2001) in order to evaluate the
representativeness of our sampling effort. Diversity of
EMF communities was expressed using taxa richness,
Shannon’s, dominance (D =Σ(pi)

2, where pi is the rel-
ative number of sequences of taxon i), evenness and
Margalef diversity, indices were determined using
PAST ver. 3.25 (Hammer et al. 2001). Taxonomic di-
versity and taxonomic distinctness was analyzed ac-
cording to Warwick and Clarke (1998), using taxonom-
ic division, class, order and family as group information.
The relative abundance (%) of EMF species were cal-
culated based on the number of sequence reads of each
particular EMF species out of all sequence reads at each
plot, or site, expressed as 100%. These calculations were
done separately for silver birch and Scots pine.

The normality of distribution of analyzed data was
studied using the Kolomogorov-Smirnov test.
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Homogeneity of variance between the studied groups
(contaminated vs. non-contaminated sites; B. pendula
vs. P. sylvestris) was analyzed with the Levene test. In
the case of a lack of normal distribution of raw data, the
Box-Cox transformation was performed. Differences in
soil chemical parameters, the EMF diversity indices,
and soil ergosterol concentration between both tree spe-
cies and contaminated vs. non-contaminated sites were
analyzed using a one-way ANOVA followed by a
Tukey’s post-hoc test at α = 0.05. To verify the effect
of locality a two way nested ANOVA test was per-
formed with factors “tree”, “contamination” plus the
factor “locality” nested in the factor “tree”. The above
statistical analyses were performed using Statistica v.
13.0 (Dell Inc.).

Differences among EMF communities were tested
using permutational multivariate analysis of variance
(PERMANOVA) with 999 permutations. Non-metric
multidimensional scaling (NMDS) based on the Bray-
Curtis dissimilarity index was used to visualize the
similarity between the EMF communities. The above
multivariate analyses were carried out in PAST ver. 3.25
(Hammer et al. 2001).

Canonical Correspondence Analysis (CCA) was per-
formed to study the relationships between the EMF
species as well as exploration types and soil parameters
(only variables with Variance Inflation Factor (VIF) >
20 were included). Scaling was based on inter-species
distances using a biplot scaling type. The relative im-
portance and statistical significance of each soil param-
eter in the ordination model was assessed by a forward
selection procedure and the Monte Carlo permutation
test (n = 999 permutations), and only significant param-
eters were used for the CCA. Analyzed data were stan-
dardized (log(n + 1)) prior to analysis. The multivariate
analyses were performed using CANOCO ver. 4.5 (ter
Braak and Šmilauer 2002).

Results

Soil and leaf/needle chemistry

The soils in the HM contaminated sites ranged from
acidic (Miasteczko Ś ląskie) through neutral
(Bukowno) to alkaline (Szopienice), while the soils in
the control sites (Kórnik and Złoty Potok) were acidic
(Table S3). Soils in the contaminated sites had both a
total concentration of HMs and a toxicity index (TITotal)

higher than soils in the control sites. Only soils in the
Bukowno andMiasteczko Śląskie sites had significantly
higher concentrations in both the bioavailable fraction
of HMs and the TIBio than those in the control sites. The
concentrations of Cd, Pb, and Zn were 41 to 107, 29
to84, and 38 to173 times higher, respectively, in the
contaminated sites then those in the control sites. The
concentrations of Cu, Mn, and Ni were 7 to 28, 0.4 to 5
and 2 to 9 times higher, respectively, in the soils of
contaminated sites compared to soils from the control
sites. Most of the sites were macroelement-poor as
evidenced by relatively low C, N and P levels
(Table S3). Differences between concentration of HMs
in soils from plots of B. pendula and P. sylvestris were
not statistically significant according to nested ANOVA
(Table 1). However, there were differences in CuBio, C,
N, and P concentrations and soil pH. Moreover, nested
ANOVA indicated that the concentrations of HMs and
other soil properties differed significantly between
B. pendula and P. sylvestris within location.

A strong correlation, ranging from 0.5 to 0.8, was
observed between the concentration of heavy metal
contaminations in soils and the concentration of heavy
metals in leaves/needles (data not shown). Leaves of
B. pendula and needles of P. sylvestris collected in the
Miasteczko Śląskie site contained the highest concen-
tration of HMs (Table S4). The lowest concentration of
HMs was found in leaves and needles collected from
trees in both control sites.

Ectomycorrhizal fungal communities

Analysis of the rarefaction curve showed that the read
depth was sufficient to recover all EMF species in the
tested sites (Fig. S1). A total of 65 EMF species were
identified of which 64 were found in B. pendula and 54
in P. sylvestris (Table 2). In total, 25 EMF species were
found in the contaminated soils, while 49 were identi-
fied in the non-contaminated (control) sites. A total of
53 EMF species were members of the Basidiomycota,
while 12 were Ascomycota. The greatest number of
identified species belonged to the family Russulaceae
(17 species in total) with 13 species identified in the
contaminated sites and 11 species in the control sites.

Scleroderma citrinum , Scleroderma sp.01,
Rhizopogon sp.01, Russula decolorans, and Russula
depallens were the most abundant among EMF com-
munities associated with B. pendula in contaminated
sites, while R. decolorans and Lactarius tabidus were
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dominant in B. pendula growing in the control sites
(Table 2). Similarly, Rhizopogon sp.01 and S. citrinum
dominated in P. sylvestris growing in the contaminated
sites, while Suillus sp.01 and Russula vinosa dominated
in P. sylvestris roots growing in the control sites.

A higher EMF richness was found in B. pendula and
P. sylvestris growing in control sites than in the contam-
inated sites (Table 3). However, Shannon’s diversity
and dominance indices, did not differ significantly be-
tween contaminated and non-contaminated sites for ei-
ther B. pendula (F = 1.174, p = 0.4 and F = 1.212, p =
0.385 respectively) and P. sylvestris (F = 1.732, p =
0.247 and F = 1.186, p = 0.395 respectively). Only the
EMF community of B. pendula in the Bukowno site had
a significantly higher evenness index (F = 4.337, p =
0.04) and lower Margalef diversity index (F = 10.437,
p = 0.004). Moreover, we have found that taxonomic
diversity and taxonomic distinctness did not differ sig-
nificantly between contaminated and non-contaminated

sites for either B. pendula (F = 1.424, p = 0.418 and F =
1.82, p = 0.338 respectively) and P. sylvestris (F =
0.741, p = 0.593 and F = 0.862, p = 0.531 respectively)
(Table 4).

The NMDS ordination clearly separated the EMF
communities of contaminated from non-contaminated
sites, irrespective of tree species (Fig. 2). More precise-
ly, EMF communities of B. pendula (F = 1.685, p =
0.024) and P. sylvestris (F = 1.607, p = 0.047) differed
significantly between contaminated and non-
contaminated sites based on the PERMANOVA test.
The EMF communities also differed between
B. pendula and P. sylvestris growing in the control sites
(F = 1.584, p = 0.031), but no significant difference was
observed between B. pendula and P. sylvestris growing
in the contaminated sites (F = 0.919, p = 0.528).

The soil parameters (TITotal, TIBio, C/N ratio, Ca and
P content, pH, and ergosterol concentration) used in the
ordination (canonical correspondence analysis, CCA)

Table 1 Results of two-way nested ANOVA; Tree – tree species (Betula pendula vs. Pinus sylvestris), Contamination – type of site
(contaminated vs. non-contaminated), Tree (Locality) – effect of the site nested in tree species (within site effect)

Tree Contamination Tree (Locality)

F p F p F p

Total metals (mg kg−1)

Cd 0.689 0.410 1642.078 0.000* 12.464 0.000*

Pb 0.697 0.407 2006.752 0.000* 26.829 0.000*

Zn 1.605 0.210 5030.055 0.000* 69.559 0.000*

Cu 0.461 0.500 1040.092 0.000* 18.469 0.000*

Mn 2.087 0.154 33.138 0.000* 70.121 0.000*

Ni 3.965 0.051 742.764 0.000* 23.763 0.000*

TITotal 1.340 0.252 4510.340 0.000* 49.260 0.000*

Bioavailable metals (mg kg−1)

Cd 0.146 0.704 5135.326 0.000* 11.426 0.000*

Pb 0.035 0.853 201.468 0.000* 36.349 0.000*

Zn 3.739 0.058 5684.195 0.000* 30.084 0.000*

Cu 7.681 0.007 * 1.601 0.211 35.754 0.000*

TIBio 0.526 0.471 5702.127 0.000* 12.698 0.000*

C (%) 5.534 0.022* 22.550 0.000* 18.770 0.000*

N (%) 15.794 0.000* 5.901 0.018* 17.750 0.000*

C/N 4.575 0.037* 13.033 0.001* 48.367 0.000*

P (mg P2O5 kg
−1) 52.021 0.000* 9.741 0.003* 48.141 0.000*

Ca (g kg−1) 18.354 0.000* 328.679 0.000* 96.678 0.000*

pH 20.470 0.000* 916.590 0.000* 167.69 0.000*

Ergosterol (μg g−1) 1.761 0.190 47.845 0.000* 6.005 0.000*

Significant differences (p ≤ 0.05) are marked with *
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explained 77.25% of the total EMF variation (Fig. 3).
The only significant factor was TITotal, which explained
17.86% (F = 1.76, p = 0.001) of the variability. The
CCA analysis further indicated that Scleroderma
citrinum, Scleroderma sp.01, Rhizopogon sp.01,
Rhizopogon roseolus, Russula sp.05, Russula sp.06,
Russula sp.07, Russula sp.08, Cortinarius sp.06, were
associated with high HM concentrations in the soil.

Exploration types of ectomycorrhizae

The composition of the ECM exploration types
expressed as their relative abundance (%) varied among
sites (Fig. 4). Long-distance exploration type was the
most abundant in the contaminated sites (from 70.9% to
92.2%), except B. pendula in Bukowno where c/s/ms

exploration type dominated (65.3%). In the control sites,
the most abundant were ectomycorrhizae of the c/s/ms

type (from 70.0% to 99.1%) except P. sylvestris in
Kórnik where long-distance exploration type dominated
(72.0%). The first two axes of the CCA ordination based
on soil parameters (TITotal, TIBio, C/N ratio, Ca and P
content, pH, and ergosterol concentration) and ECM
exploration types explained 93.66% of the species var-
iance (Fig. 5). The only significant soil factors were
TITotal, which explained 54.81% (F = 9.80, p = 0.002)
of the variability, and the P content, which explained
17.05% (F = 4.18, p = 0.020). The relative abundance of
long-distance type was correlated with the TITotal, soil
pH and Ca concentration.

Soil fungal biomass

CCA analysis (Fig. 3) indicated that the concentration of
ergosterol was negatively correlated with TIBio (R =
−0.73). However, no clear evidence was obtained, that
indicated that the concentration of ergosterol was sig-
nificantly lower in contaminated sites than in control
sites (Fig. S2). Only in the case of B. pendula in
Bukowno and P. sylvestris in Miasteczko Śląskie was
the concentration of ergosterol significantly lower than
in the other sites (F = 9.222, p < 0.000 and F = 18.132; p
< 0.000, respectively).

Discussion

To the best of our knowledge, this is the first study that
has comprehensively examined the effect of heavy

metals (as measured by toxicity index, TI) and associ-
ated soil properties on the composition of fungal com-
munities associated with naturally established, pioneer
B. pendula and P. sylvestris trees. Toxicity index was
used because it most accurately reflects the combined
effect of multiple HMs present in different proportions
on soil microorganisms (Deng et al. 2015). In our study
TI coefficients well reflected the influence of heavy
metals on microorganisms. The results showed a statis-
tically significant negative correlation between dehydro-
genase activity and TITotal (R = -0.534, p < 0.05) and
TIBio (R = −0.478, p < 0.05) (data unpublished). This is
also confirmed by Stefanowicz et al. (2008), Azarbad
et al. (2015) in studies conducted on similar sites.

The availability of HMs to microorganisms and
higher plant species depends to a large extent on the
soil properties and in particular on soil pH (e.g. Bąba
et al. 2016). As the alkalinity of soil increases, the
mobility and thus bioavailability of HMs decreases
due to increased precipitation and displacement from
the sorption complex by alkaline ions e. g. Ca and Mg
(e.g. Ragnarsdottir and Hawkins 2006). For this reason,
relatively high soil pH (7.5) at the HM contaminated
Szopienice site resulted in TIBio being comparable to
that of the control sites. Nested ANOVA indicated that
locality had a significant influence on differences of soil
properties between B. pendula and P. sylvestris, which
suggests that our results may be to some extent depen-
dent on site selection.

The TITotal coefficient was found to be the most
important determinant shaping EMF communities.
However, other factors, like soil pH, may also have an
influence on EMF communities. Trees growing at the
contaminated sites have been constantly exposed to high
concentrations of HMs for at least 20 years. Although an
overall decline in EMF diversity was not observed
(Table 3), significant differences in the structure of
EMF communities between HM contaminated and con-
trol sites were found irrespective of the tree species,
while such differences were evident when these tree
species were growing in the control (non-
contaminated) sites as shown by the PERMANOVA
test. The similarity of EMF communities of B. pendula
and P. sylvestris growing in the contaminated sites can
be associated with the adaptation of some EMF species
to high concentrations of HMs in soil (Colpaert et al.
2011). Other researchers postulate that sharing the same
soil conditions also contributes significantly to the es-
tablishment of similar EMF species communities (Cline

Plant Soil



et al. 2005; Trocha et al. 2012) as the soil is a strong
filter for ECM fungi as proposed by Jumpponen and
Egerton-Warburton (2005). This may also explain the
differences between EMF communities observed in
both B. pendula and P. sylvestris growing in

contaminated compared with control sites. In contrast
to our results, Huang et al. (2014) reported a low simi-
larity in the EMF communities ofPinus massoniana and
Quercus fabri growing inMn contaminatedmine waste-
land, which can be explained by host identity, one of the
strongest factors shaping EMF communities (Ishida
et al. 2007). More studies comparing EMF communities
associated with different tree species on HM contami-
nated sites are needed to better understand the impact of
soil factors as opposed to tree identity.

No significant differences were observed in the di-
versity of EMF communities between contaminated and
non-contaminated soils in either B. pendula or
P. sylvestris. Results of similar studies in sites contam-
inated with HMs are inconclusive. Some studies, like
ours, indicate that there is no reduction in biodiversity of
EMF communities. For example Hrynkiewicz et al.
(2008) found that naturally established Salix caprea
trees on former ore-bearing sites rich in Zn and Cu had
EMF communities with a similar level of biodiversity as
the fungal communities of S. caprea trees growing in
soils not contaminated with HMs. Additionally, no sig-
nificant changes in the diversity and richness of EMF
communities associated with Pinus massoniana were
observed at Pb-Zn mine sites in central-south China
(Huang et al. 2012). Other in situ studies revealed a
signif icant reduction in the biodiversi ty of
ectomycorrhizal fungi. For example, Staudenrausch
et al. (2005) reported low diversity in EMF communities

Table 3 Means (± SE) of species richness, dominance, Shannon-
diversity, evenness and Margalef diversity indices of EMF com-
munities associated with Betula pendula and Pinus sylvestris at
contaminated (Bukowno, Miasteczko Śląskie, and Szopienice)

and non-contaminated (Kórnik and Złoty Potok) sites; values
within each column followed by the same letter are not signifi-
cantly different according to Tukey’s test at the α = 0.05 signifi-
cance level

Site Species richness Dominance Shannon diversity Evenness Margalef diversity

Betula pendula

Bukowno 5 0.55 (0.10) a 0.78 (0.19) a 0.76 (0.01) a 0.32 (0.07) a

Miasteczko Śląskie 9 0.47 (0.03) a 1.06 (0.06) a 0.55 (0.10) b 0.81 (0.10) ab

Szopienice 17 0.23 (0.02) a 1.73 (0.07) a 0.49 (0.11) b 1.45 (0.12) b

Kórnik 17 0.63 (0.36) a 0.85 (0.78) a 0.25 (0.14) b 1.05 (0.21) ab

Złoty Potok 16 0.43 (0.20) a 1.26 (0.44) a 0.32 (0.10) b 1.39 (0.30) b

Pinus sylvestris

Bukowno 16 0.52 (0.11) a 0.94 (0.17) a 0.38 (0.11) a 0.86 (0.17) a

Miasteczko Śląskie 14 0.58 (0.16) a 0.83 (0.31) a 0.57 (0.13) a 0.61 (0.29) a

Szopienice 17 0.58 (0.29) a 0.93 (0.52) a 0.41 (0.30) a 1.22 (0.27) a

Kórnik 20 0.35 (0.16) a 1.51 (0.39) a 0.39 (0.17) a 1.55 (0.01) a

Złoty Potok 28 0.23 (0.05) a 1.82 (0.20) a 0.38 (0.12) a 1.79 (0.08) a

Table 4 Means (± SE) of taxonomic diversity and taxonomic
distinctness of EMF communities associated with Betula pendula
and Pinus sylvestris at contaminated (Bukowno, Miasteczko
Śląskie, and Szopienice) and non-contaminated (Kórnik and Złoty
Potok) sites; values within each column followed by the same
letter are not significantly different according to Tukey’s test at the
α = 0.05 significance level

Site Taxonomic
diversity

Taxonomic
distinctness

Betula pendula

Bukowno 1.44 (0.40) a 3.19 (0.21) a

Miasteczko
Śląskie

1.39 (0.16) a 2.42 (0.06) a

Szopienice 1.44 (0.52) a 2.47 (0.07) a

Kórnik 2.24 (0.92) a 3.16 (0.93) a

Złoty Potok 0.31 (0.26) a 1.99 (0.76) a

Pinus sylvestris

Bukowno 1.56 (0.50) a 3.14 (0.30) a

Miasteczko
Śląskie

1.31 (0.19) a 2.43 (0.33) a

Szopienice 1.67 (0.78) a 2.86 (0.57) a

Kórnik 2.54 (0.16) a 3.23 (0.05) a

Złoty Potok 1.75 (0.82) a 2.46 (0.68) a
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associated with Betula pendula growing at a site that
was a former bare uranium heap. On the other hand,

Populus tremula growing around a former Pb/Zn smelt-
er was reported to have EMF communities that were
highly diverse (H′ = 2) (Krpata et al. 2008). We, also
postulate, similar to Huang et al. (2014), that some EMF
species are well-adapted to high concentrations of HMs
in soils and significantly impact the level of diversity of
EMF communities in contaminated soils. However, as
there is no consistency in the results obtained by differ-
ent studies, there is an urgent need for further, more
comprehensive empirical research.

The EMF communities associated with B. pendula
and P. sylvestris growing in the contaminated sites
studied were mainly composed of Russulaceae, Sclero-
derma spp., and Rhizopogon sp. (Table 2; Fig. 3). CCA
analysis also indicated that the occurrence of some
species belonging to the genus Russula is associated
with high TITotal and high soil pH. Higher relative
abundance of Russula species may reflect a higher HM
resistance threshold of these fungi. Russula spp. have
the ability to accumulate large amounts of HMs
(Borovička and Řanda 2007; Busuioc and Elekes
2013). One of the mechanisms that enables Russula
fungi to accumulate HMs is the synthesis of proteins
similar to metallothioneins (low molecular mass intra-
cellular peptides rich in cysteine that are capable of
binding heavy metals) (Coyle et al. 2002) and the
cysteine- and histidine-rich proteins (Leonhardt et al.

Fig. 2 Non-metric multidimensional scaling (NMDS) of the EMF
communities associated with Betula pendula (Bp) and Pinus
sylvestris (Ps) at contaminated (red marks) and non-

contaminated (green marks) sites. K – Kórnik; ZP – Złoty Potok;
B – Bukowno; MS – Miasteczko Śląskie; SZ – Szopienice

Fig. 3 CCA diagram of EMF species (green diamonds) associat-
ed with Betula pendula (Bp) and Pinus sylvestris (Ps) driven by
environmental variables (red arrows). The red box indicates a
statistically significant variable. EMF taxa whose relative abun-
dance was <5% were excluded from the analysis. The abbrevia-
tions of species names are expanded in Table 2. K – Kórnik; ZP –
Złoty Potok; B – Bukowno; MS – Miasteczko Śląskie; SZ –
Szopienice
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2014) . Karpat i e t a l . (2011) , inves t igat ing
ectomycorrhizae of Quercus rubra growing in urban
soils, reported that Russula species are able to tolerate
a wide range of environmental conditions, including
high levels of HMs and salts.

Results of our study also indicated Scleroderma
citrinum, Scleroderma sp.01, and Scleroderma sp.03
were associated with high levels of HMs (Fig. 3).
Scleroderma species are ubiquitous in temperate forests
and their fruiting bodies are often found in disturbed
habitats (Gonzalez-Chavez et al. 2009; Krupa and

Kozdrój 2007), including mine tailings containing high
concentrations of HMs (Howe et al. 1997). We also
observed ectomycorrhizae of Rhizopogon spp. abundant
on contaminated sites in our study (Table 2). Turnau
et al. (1996) demonstrated that R. roseolus has several
mechanisms to tolerate HMs, such as binding HMs to
polyphosphate granules and other amorphous or granu-
lar structures containing phosphorus, present in vacuole
production of metal-binding pigments. Turnau et al.
(1996) suggested that oxalate and carbonate crystals
found on the surface of the R. roseolus mantle could
also bind toxic metals, which was confirmed by
Ahonen-Jonnarth et al. (2000).

The exploration types of ectomycorrhizae, based on
the amount of emanating hyphae and the presence and
differentiation of rhizomorphs, may mirror EMF eco-
logical function (Agerer 2001). Results of our study
indicated that the long-distance ectomycorrhizae domi-
nated in HM-contaminated sites. Long-distance
ectomycorrhizae, due to large amounts of emanating
hyphae, may explore and take up nutrients as well as
HMs from a vast soil volume. This ability may allow
metal–tolerant EMF species to act like natural filters
preventing toxic metals transfer to the host tree and
helping them with nutrient supply (Colpaert et al.
2011). However, medium-fringe and contact explora-
tion types were found dominating in other HM-
contaminated s i tes (Rudawska et al . 2011;
Hrynkiewicz et al. 2008, respectively). Rudawska
et al. (2011) suggested that ectomycorrhizae of a
medium-fringe exploration typewere able to absorb vast
amounts of toxic metals thus preventing their entrance
into the host plant. On the other hand, Hrynkiewicz et al.
(2008) postulated that ectomycorrhizae of contact

Fig. 4 Relative abundances (%) of different exploration types of
ectomycorrhizae collected in the study sites. K – Kórnik; ZP –
Złoty Potok; B – Bukowno; MS – Miasteczko Śląskie; SZ –

Szopienice; Bp – Betula pendula; Ps – Pinus sylvestris; c/s/ms-
Russula, Lactarius, and Hygrophorus can be either contact (c),
short (s),or medium-smooth (ms) depending on the species

Fig. 5 CCA diagram of ECM exploration types (blue dots) driven
by environmental variables (red arrows). The red boxes indicate
statistically significant variables. K – Kórnik; ZP – Złoty Potok; B
– Bukowno; MS – Miasteczko Śląskie; SZ – Szopienice; Bp –
Betula pendula; Ps – Pinus sylvestris; c/s/ms- Russula, Lactarius,
and Hygrophorus can be either contact (c), short (s) or medium-
smooth (ms) depending on the species
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exploration type, having small absorption surface area,
were able to significantly reduce heavy-metals uptake.

The concentration of ergosterol was negatively cor-
related with the soil toxicity index, soil pH and Ca
content (Fig. 3), which is in agreement with previous
research (Bååth et al. 2005; Rousk et al. 2009). One of
the reasons that soil fungal biomass decreased in soils
containing high concentrations of HMs could be due to
a deficiency of living fine roots, an essential factor in
forming an ectomycorrhizal symbiotic relationship. Al-
so, a lower biomass of saprotrophic fungi could result
from lower amounts of good quality leaf litter and soil
contamination. The negative correlation between soil
fungal biomass and soil toxicity levels, pH and Ca
content suggests that despite the tolerance of some
EMF species to HM contaminated soils, high levels of
HMs combined with specific soil conditions (high soil
pH and Ca content in Bukowno and Szopienice), sig-
nificantly reduces fungal biomass (Rousk et al. 2009).
On the other hand, the presence of HMs in the soil may
lead to changes in the community structure of soil
microorganisms, causing an increase of saprophytic
fungi over bacterial biomass, which is manifested by
an increased concentration of ergosterol (Chander et al.
2001; Khan and Joergensen 2006).

Conclusions

Although species of tree is considered to be the major
factor shaping the EMF community, phylogenetically
distant tree species, such as B. pendula and P. sylvestris,
growing in HM contaminated soils share similar EMF
communities. This finding suggests that only well-
adapted EMF species with specific functional traits, like
long-distance extrametrical mycelium, can survive toxic
conditions and form ectomycorrhizal relationships with
resident plant hosts. Among all of the examined soil
factors studied, toxicity index (TITotal) was the most
significant factor shaping the composition of EMF com-
munities and ECM functional traits. Despite significant
differences in the structure of the EMF community of
trees growing in HM-contaminated sites compared to
control sites, as well as differences in the amount of soil
fungal biomass in the two different types of sites, no
differences in overall diversity were observed. Results
of the present study contribute to our understanding of
the ecological response of ectomycorrhizal fungi and
their hosts to heavy metal contamination, which is still

a serious problem in historically industrialized areas and
could benefit our ability to remediate these sites.
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