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Fractal dimensions of cave for exemplary gypsum cave-mazes 
of Western Ukraine
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Abstract: Gypsum labyrinthine caves are characterized by a complex spatial structure, which can be treated as fractals and can be studied using appro-
priate mathematical tools. Capacitance and correlation fractal dimensions of largest gypsum caves of the Western Ukraine (as well as the World’s largest 
ones) were calculated. The results were used to predict findings of new, undiscovered cave mazes parts.
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Introduction

Natural objects possessing enough complicated spa-
tial structure can be treated as fractals. What is important, 
calculations of so-called fractal dimensions can be per-
formed in most typical cases. There are many different 
types of fractal dimensions named as: capacity, correla-
tion, informative, topological, boxed, Hausdorff, Lyapun-
ov, to mention widely used terms or synonyms. However, 
a common feature for all types of these fractal quantitative 
measures, is that the fractal dimension counts a self-sim-
ilarity of an object at different spatial scales. In other 
words, a fractal dimension measures directly geometrical 
complexity of an object as a whole or additionally can be 
sensitive to uniformity of spatial distribution existing in 
a given object. Especially, a  fractal dimension can keep 
information about surface roughness and edges complex-
ity. Obviously, in order to perform proper analysis any in-
formation of interest should be collected in a form of an 
image for further numerical processing.

Regions and karst objects, including caves, usu-
ally have complicated spatial structure and possess 
a self-similarity property enabling treatment of them as 
fractals. Good examples of karst fractals are: the karst 
landscape densely dotted by craters and karst depres-
sions, often overlapping each other, the corroded walls 
in caves covered by micro-forms, the rock massifs cut 
by nets of karsified fissures, and others structures. The 
problem is not discussed in details in scientific literature, 
there are only a few works devoted to fractal problemat-
ics in karst (Curl 1986, Laverty 1987, Kusumayudha et 

al. 2000, Finnesand, Curl 2009, Piccini 2011, Skoglund, 
Lauritzen 2011).

A specific example of a  spatial, genetic, fractal-like 
organization are maze cave systems created in hypogenic 
circumstances forming enormous and dense nets of un-
derground channels and corridors. Due to their spatial 
complexity such systems can be analyzed as fractal ob-
jects. Obviously, this fractal characteristics of labyrinthine 
caves – as specific natural objects – is interesting and this 
is a novelty in the field. However, the important question 
is: if such analysis has enough deep sense, which fractal 
dimension is optimally suitable for that purpose? Authors 
argue that this type of analysis makes sense and try to 
specify one of a  possible field of application, namely, 
for prediction of existence of not discovered yet (not ex-
plored) parts of cave nets. This aspect of research has both 
theoretical importance, as well as, has practical meaning 
for speleologists trying to discover new unknown cave 
regions.

In opinion of authors, the mentioned above goal is 
optimally fulfilled by the use of capacity and correlation 
fractal dimensions. These dimensions characterize frac-
tal geometrical complexity of objects and may indicate 
onto internal regularities, or onto level of heterogeneity 
providing information about a genetic complexity (mono- 
or multi-factorial origin) manifested oneself as a specific 
spatial realization of mazes. Thus, a capacity dimension 
enables estimation of the general level of structural com-
plexity, a variety of an object as a whole. The lower is its 
value, the greater is spatial multiplicity of a given cave 
(or its part). On the other hand, a correlation dimension 
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additionally senses variations in a cave structural distribu-
tion. Additionally, an important source of information can 
come from a comparison between both fractal dimensions 
what will be discussed below.

Studied objects – cave mazes

Analytical studies were performed for four labyrinth 
caves chosen from the set (Fig. 1) of largest gypsum caves 
(in brackets a total channels length in km): Optymistychna 
(188), Ozerna (111), Zoloushka (90), Kryshtaleva (22) 
(Klimchouk et al. 2009). 

All the mentioned caves are located in West Ukraine 
(Podole and Bukowina regions) and are created in a Mi-
ocenic gypsum layer of 20–25  m thickness. The caves 
have similar hypogenic origin, were created in phreatic 
circumstances as a result of underground waters being un-
der pressure acting on dense nets of fissures, located in 
gypsum, causing corrosion-like expansion of the latter. At 
the cave maps (Fig. 2), significantly extended fissures (up 
to dimensions of channels), created in different eras, and 
made by various geological mechanisms, are seen. Un-
derground waters acting during speleogenesis, that is dur-
ing penetration of features gypsum layer, caused diverse 
internal structures. These structures were formed (before 
speleogenesis) by subsequent overlapping of fracturing 
systems, of different origin, represented by lithogenet-
ic and/or tectonic fissures, and importantly, represented 
by geometrical features (polygons, crosses, etc.). On the 
maps an uncommon complexity of nets roughness is visi-
ble. However, inside corridor webs, some regularities are 
easily distinguishable – the uniformities generated by fis-
sure systems. For every cave, considered here, individual 
combinations (configurations) of overlapping polygons 
(lithogenetic) or crosses (tectonic) systems, influenced 
and extended by underground waters are distinguishable.

Using fractal analysis for quantitative description of 
complex caves, it might be possible, for the concrete cave, 
to estimate an initial role of the given fissure system dur-
ing speleogenesis, or influence of any individual initial 
fissure systems onto evolution of the subsequent structur-
al systems.

Basic facts and research methodology

Fractals dimensions, including capacity and corre-
lation ones, are quantities describing in some situations 
normal figures, like lines, squares, cubes, providing nor-
mal integer values of these objects, that is: 1, 2, 3, re-
spectively. A capacity dimension is based on counting of 
unit-boxes covering an object (Fig. 3a, b). During a pro-
cedure boxes of down-scaled dimension are applied. The 
log-log dependence between number of boxes covering 
an object and a box size is linear within some range of 
variables. A capacity dimension is equal to a slope of that 

linear dependence. A capacity dimension of a normal fig-
ure, like a triangle, equals 2.

A correlation dimension methodology is similar to 
that of capacity dimension, as it is equal to a slope of lin-
ear log-log dependence between a correlation factor and 
unit-circles radii covering randomly chosen components 
of an object (Fig. 3c). If points in a  2-dimensional ob-
ject, for example in a triangle, are distributed complete-
ly randomly, then the correlation dimension equals 2. 
Importantly, a  correlation dimension senses small-scale 
variations of an image, while a capacity dimension is not 
sensitive for local irregularities and represent uniquely 
an image as a whole (Baker, Gollub 1998, Peitgen et al. 
2004).

Every dimension can be calculated from counting pro-
cedure of spatial unit objects of a  length ε covering the 
measured object of the length L (Fig. 3a). If the proce-
dure provides N(ε) counted, squared objects (Fig. 3b), the 
capacity dimension can be calculated from the following 
expression

	 L = N(ε) ∙ ε,	 (1)

for a single dimensional object, or from the following for-
mula

	 capcap dd
NL �� �� )( ,	 (2)

if the capacity dimension dcap is larger than 1. Taking loga-
rithms of Eq. 2 one obtains

Fig. 1. Configurations and relative dimensions of some cave 
fields of the largest gypsum caves of Western Ukraine (in-
cluding investigated caves). All contours are pictured at the 
same scale (Klimchouk et al. 2009)
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In practice, the capacity dimension can be derived 
from a linear log-log dependence between number of box-
es N(ε) and the square size ε, being the fractional part n 
of the analyzed size L. Thus, the slope of that dependence 
equals
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Another type of fractal dimension is the correlation 
one. That type of dimension employs a correlation factor, 
which counts mutual distances of randomly distributed 
points, lying on an analyzed object. Every point lies in 
a center of a circle of radius R (Fig. 3c). For increasing 
radius the C(R) factor grows, however for enough large 
R-values the factor saturates since analyzed region can be 

completely included and covered by circles. The correla-
tion factor is defined as follows

	 ,	
(5)

where Nis the number of points, and H [R – │xi – xj│]  is 
the Heaviside step function

	 .	
(6)

Since the correlation factor is proportional to a radius, 
C(R) = const ∙ Rdcor, via the correlation dimension dcor, then 
the latter can be calculated from the following expression

	 ,	
(7)

Fig. 2. Maps of caves: Optymistychna (a), Ozerna (b), Kryshtaleva (c), Zoloushka (d) 
Note: spatial scales are different for the provided cases

a) b)

c)

d)
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and the dimension can be, in practice, calculated from the 
following expression
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,	
(8)

that is, can be derived from the linear log-log dependence 
between corresponding values.

Interpretation of results and conclusions

Performed image analysis of mono-colored maps en-
abled calculations of the capacity fractal dimension (Fig. 
4) and the correlation fractal dimension (Fig. 5). Final re-
sults are given in tables 1 and 2.

The most fractal-like character has Optymistychna 
cave – the capacity and correlation dimensions are signif-
icantly different from other three cases – since calculat-
ed values of the capacity dimension, and the correlation 
dimension are equal to 1.71, and 1.76, respectively, and 
are the relatively smallest values for the considered caves. 
That fact shows onto a  relatively more complex gener-
al geometrical structure. From a geomorphological point 
of view, it indicates also onto the significant participation 
in speleogenesis of both lithogenetic and tectonic factors 
associated with polygonal and crossing-like fissures sys-
tems. Significantly less complicated structure of Zoloush-
ka and other caves indicates onto domination of one ge-
netic factor (lithogenic or tectonic), which made a shape 
somehow more ordered. The regular features, represented 
by dominating number of passages, are clearly noticeable 
in Ozerna cave (in chosen parts) and in Kryshtaleva cave 
(as a whole). 

This conclusion is confirmed by values of correlation 
dimension, which is sensitive for structure uniformity. 
Also, what is normal, it is slightly higher than that of a ca-
pacity one. From that perspective, the smallest correlation 
dimension of the Optymistychna cave (1.76) indicates 
onto larger spatial irregularities in a structure that in the 
Kryshtaleva cave (1.83), what is clearly visible in provid-
ed pictures. 	

Also, as it was mentioned, the important meaning 
for a quantitative description have a difference between 
capacity and correlation dimensions. In general, a  larg-
er value of a  correlation dimension, in respect to a  ca-
pacity one, thus existence of a difference between these 
dimensions, is something normal, since it results from 
mathematical structure of calculations, is natural for most 
dynamical systems and possesses geometrical origin. 
However, comparable values, or even equal ones, might 
suggest that normal rules are somehow deviated, thus it 
can inform about aberrations from a  fractal mechanism 
characterizing a building structure. In a spatio-structural 
language this can mean that some parts of cave are not yet 
discovered or, at least, not included in graphical charts. 
Just from this hypothesis results a predictive importance 

of a comparative analysis of both dimensions. How much 
it is correct, that will be revealed by future speleological 
investigations of caves.

a)

c)

d)

b)

Fig. 3. An explanation of principles leading to capacity (a, b) and 
correlation (c) fractal dimensions
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Thus, from the presented point of view, Ozerna cave 
really stands out. Thus, looking onto cave picture, and 
taking into an account the fact that the correlation and 
the capacity dimensions are comparable (the difference 
equals 0.01), it might indicate onto not discovered yet 
parts, which should complete structural morphology and 
increase correlation dimension to the higher value of 

about 0.05–0.07, under the assumption, that a difference 
between both dimensions is a solid rule for caves. A larger 
difference and smaller “reservoir” for undiscovered parts 
has Zoloushka (the difference equals 0.02–0.04), next Op-
tymistychna cave (0.03–0.05), a finally the smallest pos-
sibility for undiscovered part might reveal Kryshtaleva 
cave (0.04–0.07).

As a  curiosity of described caves we would like to 
present a  hypothetical cave, with no internal structure, 
possessing a single compact volume, derived graphically 
from Ozerna cave (Fig. 6.). For this case, both the capaci-
ty and correlation dimensions are now grater, more closer 
to the numerical value of 2, and both the dimension are 
equal within the obtained accuracy of calculations.
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Fig. 4. The dependence between number of boxes covering analyzed pictures of caves and a box dimension (a). The capacity dimensions 
can be determined from linear fitting to linear dependence regions (b)
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Fig. 5. The dependence between correlation factor and radii of circles associated with randomly distributed points representing caves 
(a). The correlation dimensions can be determined from fitting using linear regression (b)

Table 1. Summary of results for studied caves

Cave Capacity dimension dcap Uncertainty of dcap Correlation dimension dcorr Uncertainty of dcorr

Optymistychna 1.71 0.02 1.76 0.03
Ozerna 1.78 0.03 1.79 0.03
Kryshtaleva 1.76 0.03 1.83 0.03
Zoloushka 1.76 0.02 1.80 0.03

Table 2. Spatial scales for pixels in analyzed images

Cave Pixel size  
(m)

Picture dimension 
(pixels)

Optymistychna 2.22 3295 × 2952
Ozerna 2.22 1936 × 1437
Kryshtaleva 0.39 4048 × 2983
Zoloushka 2.22 6263 × 3749
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All analyzed caves can be treated like fractals and 
their capacity and correlation fractal dimension were cal-
culated. It is a hope of authors, that presented calculations 
of fractal dimensions provided a lot of information, which 
interpreted from this methodology perspective, will sup-
port future speleomorphologic and speleogenetic investi-
gations. 
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Fig. 6. Hypothetical cave derived from Ozerna Cave. Its fractal 
dimensions are equal to 1.84±0.02, and 1.84±0.02, for the ca-
pacity dimension and correlation dimension, respectively




