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PRACE M ATEM ATYCZN E  II, 1972

K AZIM IERZ SZYM ICZEK

The integer solutions of the equation a x 2+ b $ 2+ c z 2= 0 
in quadratic fields

In a recent paper [1] L. J. MORDELL has given a theorem on the 
solvability of the equation

(1 ) ax2+ b y 2+ c  =  0

in integers of a quadratic field. W e shall prove here by M ORDELL’S 
method an analogous theorem for the equation

(2) ax2Jrby2 +  cz2 =  0.

This equation is of a particular importance in number theory and so it 
may be of interest to find some elementary necessary and sufficient con
ditions for its solvability in quadratic fields.

THEOREM. Let a ,b, c be rational integers and (a, b )= (b , c )= (c , a )= l .  
Then non-trivia l integer solutions of the equation (2) exist in a quadratic 
field K  =  Q (&) if  and only if  there exist rational integers p, q, r, d, dt 
such that

(3) ap2+ b q 2 =  d, (ap, bq) =  du d is a divisor of abcr2 and & satisfies the 
equation

(4) ■&1 +  abk2/dx2 +  cr2/d =  0,

where k is a rational integer such that abk2 idx2 +  cr2/ d is an integer. I f  
these conditions are satisfied, then

(5) x  =  p# +  bqk/dj, y — q& — apk!dx, z =  r

is a solution of (2).

P r o o f .  As is well-known, every integer a of a quadratic field 

K  =  Q (V/D), where D  is a square-free rational integer, is o f the form 

a =  u+vco, where u, v are rational integers and œ =  (1 + V d )/2 or y/'D 
according as D =  1 (mod 4) or D =  2, 3 (mod 4), respectively. Because of



homogeneity of the equation (2) we can restrict ourselves to the solutions 

of the form u +  v \/ D. Next, if  a, (l, y is a solution of (2) and y is the

conjugate of y, then ay, fly, yy is also a solution of (2) and yy is a rational
integer.

Thus, the equation (2) has an integer solution in a quadratic field 
Q {^ D ) i f  and only if  it has a solution of the form

(6) x  =  pû +  Pt, y =  qû +  qlt z =  r v

where p, q, r lt p1( are rational integers, (p, q )~  1 , & =s \Jp for a suitable
integer s.

Suppose first that (6) is a solution of (2). On substituting in (2) for 
x, y, z from (6), we get

(7) (ap2 +  bq2) û2+ 2  (a p p ^ b q q i) # +  a p ^ + b q ^ + c r i2 =  0.

Since û =  s \Jd , we must have

(8) appi+bqqi =  0.
The solution of (8) for p1( qi can be written as

(9) Pi =  bqk/dlt qt =  — apk/dlt

where k is a rational integer and dt is defined by (3).

Now, using (3), w;e have

api2 +  bq!2 +  crx2 =  abdk 2/di2 +  cr2, 

and (7) can be rewritten as

#2 +  abk2/dis +  cr 2/ d =  0.

Since •& =  s \f D  is an algebraic integer, L  == abk2/dt2 +  cr2/d must be an 
integer. From dt =  (ap, bq), (a, b) =  (p, q) =  1 it follows that dt | ab. 
Thus abL =  (ab/df)2 k2+abcr2/d and (ab/df)2 k2 are integers, and this im
plies that abcr2/d is an integer. From (6) and (9) we obtain (5) and all 
conditions of the theorem are proved.

On the other hand, if (3), (4) hold the coefficient in (4) is an 
integer, then the numbers (5) form an integer solution of the equation (2) 
in the field Q {&). This completes the proof.

There is an obvious connection between the solvability of (1) and (2) 
in integers of a quadratic field K : solvability of (1 ) is equivalent to the 
existence of a solution of (2) with z =  1. Hence from our theorem we 
derive at once the following

COROLLARY. Let a, b, c be rational integers, (a, b) =  (b, c) =  (c, a) =  
=  1. Then integer solutions x  — u + v  D, y =  iq+ U i \J D  (u, v, ui, —  
—  rational integers) of the equation (1) exist in a quadratic field K  =  

=  Q (\/D) =  Q (&) if  and only if  there exist rational integers p, q, d, dt 
such that ap2+ b q 2 =  d, (ap, bq) =  dlt d | abc and



i?2 +  abk2/d\2 +  c/d — 0,

where fc is an integer such that abk2/dj2 +  c/d is an integer. I f  these 
conditions are satisfied, then

x  =  p ■& +  bqfc/d1( y =  q &—apfc/dj

is a solution of ( 1).

This includes the part (A ) of M ORDELL’S theorem [1].

Finally, we shall show that there are quadratic fields in which the 
equation (1 ) has no integer solutions but the corresponding equation (2) 
has a nontrivial solution .

Consider the equation

( 10) 2x 2 +  y2 +  1 =  0.

Here a be =  2, so d =  2p2 -f- q2 | 2 and only two possibilities arise: p =  1,
q =  0 and p =  0, q =  1. In the first case d =  2, d̂  =  2 and the equation
for û takes the form #2 +  (k2 +  l )/2 =  0, where k is an integer such that 
(fc2+l)/2  is an integer. W e have k — 21 +  1, (k2 +  l)/2 =  2l2+ 2 l +  l  and 

+  2£2 +  21 +  1 =  0. In the second case d =  dl =  1 and ■&2 +  2k2 + 1  =  0. 

Hence in both cases û does not belong to Q (\J—2), i.e. the equation (10) 

has no integer solutions in Q ( y/— 2).
Now for

2x2+ y 2+ z 2 =  0

we have f o r p = l ,  q=0 , d = d j= 2  as above, and (4) gives tf2+ (k 2+ r 2)/2 -  
-  0, where k, r  are chosen so that (fc2 +  r2)/2 is an integer. This is the 
case when fc =  8, r =  6 and then â =  5 y —2; formulae (5) give x  =  5 \J—2, 
y =  8, z =  6.

R e m a r k .  There is a known condition for the solubility of (2) in an 
algebraic number field F, namely the HASSE’S principle guarantees the 
existence of a solution in F  when solutions exist in all completions of the 
field F.

Moreover, A. SCHINZEL has kindly informed me that there is a paper 
by T. SKOLEM on this subject: Über die Lôsung der unbestimmten 
Gleichung ax2 +  by2+ cz 2 =  0 in einigen einfachen Rationalitatsbereichen. 
Norsk Mat. Tidsskr. 10, 50— 54, Oslo 1928.

A  second paper concerning the equation (2) is by O. HEMER: On the 
solvability of the Diophantine equation ax2 +  by2+ cz 2 — 0 in imaginary 
Euclidean quadratic fields, A rk iv  for Mat., 2, 57— 82 (1954). Both writers 
consider the equation (2) with coefficients in a quadratic field K  but 

SKOLEM  discusses only the cases when K  =  Q (\/ — 1) and K  =  Q (V  ~ 3) 

and HEMER only when K  = Q (\/~—D), D  =  1, 2, 3, 7, 11.



[1] L . J. M  o r d e 11: The integer solutions o f the equation ax2 +  by2 +  c =  0 in  
quadratic fields. Bulletin o f the London Mathematical Society 1(1969), pp. 43— 44.

K A Z IM IE R Z  SZYM IC ZEK

R O Z W IĄ Z A N IA  R Ó W N A N IA  ax2 +  by2 +  cz2 =  0 W  L IC ZB AC H  
C A ŁK O W IT Y C H  C IA Ł A  KW AD RATO W EG O

S t r e s z c z e n i e  

Udowodniono następujące twierdzenie:
Niech a, b, c będą liczbami całkowitym i w ymiernymi, (a ,b )= (b ,c )= (c ,a )= 1. Rów 

nanie

ax2+ b y 2+ c z 2= 0

posiada nietryw ialne rozwiązanie w liczbach całkowitych ciała kwadratowego K ~  
= Q ($ ) wtedy i tylko wtedy, gdy istnieją liczby całkowite wymierne p, q, r, d, dj 
takie, że ap2+ b q 2—d, (ap ,bq )=d ly d dzieli abcr2 oraz & spełnia równanie

&2+ a b k 2/d12+ c r 2/d=0,

gdzie k jest tak dobraną liczbą całkowitą wymierną, że abk2ld f + c r 2ld jest liczbą 
całkowitą.

Jeśli warunki te są spełnione, to otrzym ujem y następujące rozwiązanie równa
nia: x  =  p& +  bqk/dvy =  q& —  apk/d,, z =  r.

Oddano do Redakcji 4. 4. 1970 r.


