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Featured Application: PEG library for Python.

Abstract: Grammatical inference (GI), i.e., the task of finding a rule that lies behind given words,
can be used in the analyses of amyloidogenic sequence fragments, which are essential in studies of
neurodegenerative diseases. In this paper, we developed a new method that generates non-circular
parsing expression grammars (PEGs) and compares it with other GI algorithms on the sequences
from a real dataset. The main contribution of this paper is a genetic programming-based algorithm
for the induction of parsing expression grammars from a finite sample. The induction method has
been tested on a real bioinformatics dataset and its classification performance has been compared to
the achievements of existing grammatical inference methods. The evaluation of the generated PEG
on an amyloidogenic dataset revealed its accuracy when predicting amyloid segments. We show that
the new grammatical inference algorithm achieves the best ACC (Accuracy), AUC (Area under ROC
curve), and MCC (Mathew’s correlation coefficient) scores in comparison to five other automata or
grammar learning methods.

Keywords: classification; genetic programming; grammatical inference; parsing expression grammar

1. Introduction

The present work sits in the scientific field known as grammatical inference (GI), automata
learning, grammar identification, or grammar induction [1,2]. The matter under consideration is
the set of rules that lie behind a given sequence of words (so-called strings). The main task is to
discover the rule(s) that will help us to evaluate new, unseen words. Mathematicians investigate
infinite sequences of words and for this purpose they proposed a few inference models. In the most
popular model, Gold’s identification in the limit [3], learning happens incrementally. After each
new word, the algorithm returns some hypothesis, i.e., an automaton or a grammar, and a entire
process is regarded as successful when the algorithm returns a correct answer at a certain iteration
and does not change it afterwards. However, very often in practice we deal only with a limited
number of words (some of them being examples and others counter-examples). In such cases the
best option is to use a selected heuristic algorithm, among which the most recognized instances
include: evidence driven state merging [4], the k-tails method [5], the GIG method [6], the TBL (tabular
representation learning) algorithm [7], the learning system ADIOS (automatic distillation of structure)
[8], error-correcting grammatical inference [9], and alignment-based learning [10]. However, all of these
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methods output classical acceptors like (non)deterministic finite state automata (FSA) or context-free
grammars (CFG). FSAs are fast in recognition but lack in expressiveness. CFGs, on the other hand,
are more expressive but need more computing time for recognizing. We propose here using parsing
expression grammars (PEGs), which are as fast as FSAs and can express more than CFGs, in the sense
that they can represent some context-sensitive grammars. To the best of our knowledge no one else
devised a similar induction algorithm before. As far as non-Chomsky grammars are considered for
representing acceptors, Eyraud et al. [11] applied a string-rewriting system to the GI domain. However,
as the authors claimed, pure context-sensitive languages can probably not be described with their
tool. PEGs are relatively new, but have been implemented in few applications (e.g., Extensible Markup
Language schema validation using Document Type Definition automatic transformation [12] and a
text pattern-matching tool [13]).

The purpose of the present proposal is threefold. The first objective is to devise an induction
algorithm that will suit well real biological data-amyloidogenic sequence fragments. Amyloids are
proteins capable of forming fibrils instead of the functional structure of a protein, and are responsible
for a group of serious diseases. The second objective is to determine that the proposed algorithm is
also well suited for the benchmark data as selected comparative grammatical inference (GI) algorithms
and a machine learning approach (SVM). We assume that the given strings do not contain periodically
repeated substrings, which is why it has been decided to build up non-circular PEGs that represent
finite sets of strings. The last objective is to write a Python library for handling PEGs and make it
available to the community. Although there are at least three other Python packages for generating PEG
parsers, namely Arpeggio (http://www.igordejanovic.net/Arpeggio), Grako (https://bitbucket.org/
neogeny/grako), and pyPEG (https://fdik.org/pyPEG), our implementation (https://github.com/
wieczorekw/wieczorekw.github.io/tree/master/PEG) is worth noting for its simple usage (integration
with Python syntax via native operators) and because it is dozens of times faster in processing long
strings, as will be shown in detail in Section 3.3. In addition to Python libraries, to enrich the research,
a library named EGG (https://github.com/bruceiv/egg/tree/deriv) written in C++ was used for
comparison, in which an expression has to be compiled into machine code before it is used [14].

This paper is organized into five sections. Section 2 section introduces the notion of parsing
expression grammars and also discusses their pros and cons in comparison with regular expressions
and CFGs. Section 3 describes the induction algorithm. Section 4 discusses the experimental results.
Section 5 summarizes the collected results.

2. Definition of PEGs

PEGs reference regular expressions (RE) and context-free grammars (CFGs), both derivative from
formal language theory. We briefly introduce the most relevant definitions.

An alphabet Σ is a non-empty set of symbols (characters without any meaning). A string or word
(s, w) is a finite sequence of symbols. The special case of the string is an empty string ε (the empty
sequence of symbols). The example of the alphabet is a set {a, b, c} and an example of strings over
the alphabet is {a, aa, ab, ba, abc}. A formal language L over an alphabet Σ is a subset of Σ∗ (Kleene
star, all strings over Σ). A regular expression is a formal way of describing the class of languages
called regular language. Let r, r1, and r2 be the regular expression over Σ, and a, b ∈ Σ; the following
operations are allowed in syntax:

• ε, the empty string;
• a, symbol or string occurrence;
• r∗, zero or more repetitions of regular expression;
• a+, one or more repetitions;
• a | b, non-deterministic choice of symbol, formally defined as a+b;
• r1r2, concatenation;
• (r), parenthesis for grouping of expressions.

http://www.igordejanovic.net/Arpeggio
https://bitbucket.org/neogeny/grako
https://bitbucket.org/neogeny/grako
https://fdik.org/pyPEG
https://github.com/wieczorekw/wieczorekw.github.io/tree/master/PEG
https://github.com/wieczorekw/wieczorekw.github.io/tree/master/PEG
https://github.com/bruceiv/egg/tree/deriv
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Given an alphabet Σ = {a, b}, a formal language L = {w ∈ Σ∗ | w begins with a and ends with a} can
be expressed as the regular expression a(a | b)∗a. CFG is a tuple of G = (V, Σ, R, S), where V is the final
set of nonterminal symbols, Σ is the final set of terminal symbols disjoint from V, R is a finite relation
V → (V ∪ Σ) and defines rules, and S is the start symbol, chosen from V. The most common R is
defined as the production rule notation; for example, for formal language: L = {w ∈ Σ∗ | wnwn n > 1},
the equivalent context-free grammar is G = ({S}, {a, b}, P, S) with the productions:

S→ aSa

S→ bSb

S→ a | b

The word aba can be accepted using the first production and the third one. The book by
Hopcroft et al. [15] contains more information related to the formal language field.

The formalism of PEGs was introduced by Bryan Ford in 2004 [16]. However, herein we give
definitions and notation compatible with the provided PEG library. Let us start with an informal
introduction to parsing expression grammars (PEGs).

A parsing expression grammar (PEG) is a 4-tuple G = (V, T, R, s), where V is a finite set of
nonterminal symbols, T is a finite set of terminal symbols (letters), R is a finite set of rules, s is a
parsing expression called the start expression, and V ∩ T = ∅. Each rule r ∈ R is a pair (A, e), which we
write as A ⇐ e, where A ∈ V and e is a parsing expression. For any nonterminal A, there is exactly
one e such that A ⇐ e ∈ R. We define parsing expressions inductively as follows. If e, e1, and e2 are
parsing expressions, then so is:

1. ε, the empty string;
2. a, any terminal, a ∈ T;
3. A, any nonterminal, A ∈ V;
4. e1 � e2, a sequence;
5. e1 | e2, prioritized choice;
6. +e, one or more repetitions;
7. ∼e, a not-predicate.

The choice of operators�, |, +, ∼, and⇐ is caused by being consistent with our Python library.
The operators have their counterparts in Python (>>, |, +, ˜, and <=) with the proper precedence. Thus
the reader is able to implement expressions in a very natural way, using the native operators.

A PEG is an instance of a recognition system, i.e., a program for recognizing and possibly
structuring a string. It can be written in any programming language and looks like a grammar
combined with a regex, but its interpretation is different. Take as an example the following regex:
(a | b)+b. We can write a “similar” PEG expression: +(a | b)� b. The regex accepts all words over the
alphabet {a, b} that end with the letter b. The PEG expression, on the contrary, does not recognize any
word since PEGs behave greedily, so the part +(a | b) will consume all letters, including the last b. An
appropriate PEG solution resembles a CFG:

A⇐ a | b

E⇐ b� ∼A | A� E

The sign⇐ associates an expression to a nonterminal. The sign� denotes concatenation. What makes
a difference is the ordered choice | and not-predicate ∼. The nonterminal E first tries to consume the
final b; then, in the case of failure, it consumes a or b and recursively invokes itself. In order to write
parsing expressions in a convenient way we will freely omit unnecessary parentheses assuming the
following operators precedence (from highest to lowest): ∼, +,�, |,⇐. The Kleene star operation can
be performed via +e | ε (Python does not have a unary star operator and the PEG implementation
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library had to be adjusted). The power of PEGs is clearly visible in fast, linear-time parsing and in the
possibility of expressing some context-sensitive languages [17].

From now on we will use the symbols a, b, and c to represent pairwise different terminals, A, B,
C, and D for pairwise different nonterminals, x, x1, x2, y, and z for strings of terminals, where |x1| =
k (k ≥ 0), |x2| = m (m ≥ 0), and e, e1, and e2 for parsing expressions. To formalize the syntactic
meaning of a PEG G = (V, T, R, s), we define a function consume(e, x), which outputs a nonnegative
integer (the number of “consumed” letters) or nothing (None):

1. consume(ε, x) = 0.
2. consume(a, ax) = 1; consume(a, bx) = None; consume(a, ε) = None.
3. consume(A, x) = consume(e, x) if A⇐ e.
4. If consume(e1, x1x2y) = k and consume(e2, x2y) = m, then the following holds: consume(e1 �

e2, x1x2y) = k + m; if consume(e1, x) = None, then consume(e1 � e2, x) = None; if
consume(e1, x1y) = k and consume(e2, y) = None, then we can be sure that consume(e1 �
e2, x1y) = None.

5. If consume(e1, x1y) = k, then consume(e1 | e2, x1y) = k; if consume(e1, x1y) = None and
consume(e2, x1y) = k, then consume(e1 | e2, x1y) = k; if consume(e1, y) = None and
consume(e2, y) = None, then consume(e1 | e2, y) = None.

6. If consume(e, x1y) = k and consume(+e, y) = n, then consume(+e, x1y) = k + n; if
consume(e, x) = None, then consume(+e, x) = None; if consume(e, x1y) = k and
consume(+e, y) = None, then consume(+e, x1y) = k.

7. If consume(e, x) = None, then consume(∼e, x) = 0; if consume(e, x1y) = k, then
consume(∼e, x1y) = None.

The language L(G) of a PEG G = (V, T, R, s) is the set of strings x for which consume(s, x) 6=
None. Please note that the definition of the language of a PEG differs fundamentally from the much
more well-known CFGs: in the former it is enough to consume any prefix of a word (including the
empty one) to accept it, and in the latter the whole word should be consumed to accept it. Direct
(like A⇐ A� e) as well as indirect left recursions are forbidden, since it can lead to an infinite loop
while performing the consume function. It is worth emphasizing that the expression ∼(∼e) works as
non-consuming matching. As a consequence, we can perform language intersection L(G1) ∩ L(G2) by
writing ∼(∼s1) � s2 if only G1 = (V1, T, R1, s1), G2 = (V2, T, R2, s2), and V1 ∩ V2 = ∅. Interestingly,
it is not proven yet that there exist context-free languages that cannot be recognized by a PEG.

In the next section we deal with non-circular PEGs that will have to be understood as grammars
without any recursions or repetitions. Note that such a non-circular PEG, say G = ({A}, T, {A ⇐
e}, A), can be written as a single expression e with no nonterminal and no + operation.

3. Induction Algorithm

The proposed algorithm is based on the genetic programming (GP) paradigm [18]. In it, machine
learning can be viewed as requiring discovery of a computer program (an expression in our case) that
produces some desired output (the decision class in our case) for particular inputs (strings representing
proteins in our case). When viewed in this way, the process of solving problems becomes equivalent to
searching a space of possible computer programs for a fittest individual computer program. In this
paradigm, populations of computer programs are bred using the principle of survival of the fittest and
using a crossover (recombination) operator appropriate for mating computer programs.

This section is split into two subsections. In the first subsection, we will describe the scheme of
the GP method adapted to the induction problem. In the second, a deterministic algorithm for the
obtaining of an expression matched to the data will be presented. This auxiliary algorithm is used to
feed an initial population of GP with promising individuals.
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3.1. Genetic Programming

Commonly, genetic programming uses a generational evolutionary algorithm. In generational
GP, there exist well-defined and distinct generations. Each generation is represented by a population
of individuals. The newer population is created from and then replaces the older population.
The execution cycle of the generational GP—which we used in experiments—includes the following
steps:

1. Initialize the population.
2. Evaluate the individual programs in the current population. Assign a numerical fitness to

each individual.
3. Until the emerging population is fully populated, repeat the following steps:

• Select two individuals in the current population using a selection algorithm.
• Perform genetic operations on the selected individuals.
• Insert the result of crossover, i.e., the better one out of two children, into the emerging population.

4. If a termination criterion is fulfilled, go to step 5. Otherwise, replace the current population with
the emerged population, saving the best individual, and repeat steps 2–4 (elitism strategy).

5. Present the best individual as the output from the algorithm.

In order to put the above procedure to work, we have to define the following elements and
routines of GP: the primitives (known in GP as the terminal set and the function set), the structure of
an individual, the initialization, genetic operators, and the fitness function.

Individuals are parse trees composed of the PEG’s operators ∼, �, and |, and terminals are
elements of Σ ∪ {ε}, where Σ is a finite alphabet (see an example in Figure 1).

�

a �

b |

|

�

c ∼

d

b

a

Figure 1. Example of a genetic programming individual coded as the expression a� b� (c� ∼d | b | a).

An initial population is built upon S+ (positive strings, examples) and S− (negative strings,
counterexamples) so that each tree is consistent with a randomly chosen k-element subset, X, of S+

and a randomly chosen k-element subset, Y, of S−. An expression forming an individual in an initial
population is created by means of a deterministic algorithm given further on. In a crossover procedure,
two expressions given as parse trees are involved. A randomly chosen part of the first tree is replaced
by another randomly chosen part from the second tree. The same operation is performed on the
second tree in the same manner. We also used tournament selection, in which r (the tournament
size) individuals are chosen at random and one of them with the highest fitness is returned. Finally,
the fitness function measures an expression’s accuracy based on an individual e, and the sample
(S+, S−) with Equation (1):

f (t) =
|{w ∈ S+ : w ∈ L(G(e))}|+ |{w ∈ S− : w 6∈ L(G(e))}|

|S+|+ |S−|
, (1)
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where G(e) is a non-circular PEG G(e) = ({A}, Σ, {A⇐ e}, A).

3.2. Deterministic Algorithm Used in Initializing a GP Population

For a set of strings, S, and a letter, r, by a left quotient, denoted by r−1S, we will mean the set
{w : rw ∈ S}, i.e., a−1{ax, ax1, x2} = {x, x1}. Let X and Y be pairwise disjoint, nonempty sets of words
over an alphabet Σ. Our aim is to obtain a compact non-circular PEG G satisfying the following two
conditions: (i) X ⊆ L(G), (ii) Y ∩ L(G) = ∅. The Algorithm 1 (function I(X, Y)) does it recursively.

Algorithm 1: Inferring a single expression

1 function I (X, Y)
2 A← FirstLetters (X); // set of first letters
3 B← FirstLetters (Y);
4 Declare e as an empty expression;
5 foreach a ∈ A do
6 if a /∈ B then
7 Append e with | a or with a if e is empty;
8 else
9 Append e with | a� I (a−1X, a−1Y);

10 if e is an empty expression then
11 return ∼(a | b | c | . . .); // {a | b | c | . . .} = B

12 if X has the empty string then
13 Append e with | ∼(a | b | c | . . .)� ε;

14 return e;

The “Append” method used in lines 7, 9, and 13 in Algorithm 1 concatenates the existing rule e
with a new expression. The recursive call I in line 9 cuts sets X and Y to words that start with terminal
symbol a and then all words that satisfy this condition are passed with words without the first symbol
a (according to the left quotient). Line 10 is used when set A is empty. The execution of the algorithm
is shown by the following example. The input is X = {abba, bbbb, abaa, abbb, bbaa, bbab}, Y ={baaa,
aaab, babb, aaba, aaaa, baba}. Figure 2 shows the successive steps of the algorithm. At the beginning set,
A and B are determined. The first symbols in the sets of words X, Y are equal to {a, b}. The terminal
symbol a of the set A belongs to the set B. The string a � is added to the rule e and the method is
recursively invoked with left quotients a−1X and a−1Y (left leaf from the root in the Figure 2). In the
next step, the a symbol is not in the set B. From the recursive call, the b symbol is returned and added
to the e rule. After returning, the same procedure is repeated for the symbol b.

The algorithm has the following properties: (i) the X, Y sets in successive calls are always
nonempty, (ii) word lengths can be different, (iii) it always halts after a finite number of steps and
returns some PEG, (iv) the resultant PEG is consistent with X (examples) and Y (counter-examples),
and (v) for random words output PEGs are many times smaller than the input. Properties from (i) to
(iii) are quite obvious, (iv) will be proven, and we have checked (v) in a series of experiments, and
detailed results are given in the next subsection.

Let n = |X| + |Y|, m = |Σ|, the length of every word (from X and Y) not exceed d, and T
be the running time of the algorithm. Then, for random input words, we can write T(n, m, d) =

O(n) + mT(n/m, m, d− 1), which leads to O(mmin{d,log n}n). In practice, m and d are small constants,
so the running time of I(X, Y) is usually linear with respect to n.

Lemma 1. Let Σ be a finite alphabet and X, Y be two disjoint, finite, nonempty sets of words over Σ. If x ∈ X
and e is a parsing expression returned by I(X, Y) then consume(e, x) 6= None.

Proof. We will prove the above by induction on k, where k ≥ 0 is the length of x.
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Basis: We use k = 0 as the basis. Because k = 0, x = ε. Let us consider two cases: (1) ε is the only
word in X, and (2) |X| ≥ 2. In the first case, lines 5–9 of the algorithm are skipped and (in line 11)
e = ∼(a | b | c | . . .) is returned, where a, b, c, . . . are the first letters of Y (since ε is in X, Y has to
contain at least one nonempty word). consume(a | b | c | . . . , ε) = None implies consume(e, ε) = 0.
In the second case, the loop in lines 5–9 and line 13 are executed, so the returned expression e (in line
14) has the following form: α1 | α2 | · · · | αj | ∼(a | b | c | . . .) � ε, where αi is a single letter, say ri,
or ri � βi with βi being some parsing expression. For such an e, consume(e, ε) = 0 holds too.

Induction: Suppose that |x| = k + 1 and that the statement of the lemma holds for all words of length
j, where 0 ≤ j ≤ k. Let x = uw, where u ∈ Σ. Obviously |w| = k. Again let us consider two cases:
(1) u /∈ B, and (2) u ∈ B. In the first case, e, which is returned in line 14, has the form u | α or α | u | β

or α | u, where α and β are some expressions. In either case consume(e, uw) ≥ 0 (at least u will not
fail for x = uw). In the second case, e, which is returned in line 14, is a sequence of addends, one of
which is u � α, where α = I(u−1X, u−1Y). Suffix w is an element of the set u−1X so we invoke the
inductive hypothesis to claim that consume(α, w) 6= None. Then consume(e, uw) 6= None, because
of the properties of the sequence and the prioritized choice operators (at least u � α will not fail
for x).

Lemma 2. Let Σ be a finite alphabet and X, Y be two disjoint, finite, nonempty sets of words over Σ. If y ∈ Y
and e is a parsing expression returned by I(X, Y) then consume(e, y) = None.

a b b a

b b b b

a b a a

a b b b

b b a a

b b a b

A = {a, b}

X =

b a a a

a a a b

b a b b

a a b a
a a a a

b a b a

B = {a, b}

Y =

b b a

b a a

b b b

A = {b}

X =
a a b

a b a
a a a

B = {a}

Y =

b b b

b a a

b a b

A = {b}

X =

a a a

a b b

a b a

B = {a}

Y =

e = a� b | b� b

a ∈ B → a� I(a−1X, a−1Y ) b ∈ B → b� I(b−1X, b−1Y )

b /∈ B → a� b b /∈ B → b� b

Figure 2. Example of the proposed Induction algorithm.

Proof. We will prove the above by induction on k, where k ≥ 0 is the length of y.
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Basis: We use k = 0 as the basis, i.e., y = ε. Because ε /∈ X, the returned (in line 13) expression e has
the following form: α1 | α2 | · · · | αj, where αi is a single letter, say ri, or ri � βi with βi being some
parsing expression. For such an e, consume(e, ε) = None.

Induction: Suppose that |y| = k + 1 and that the statement of the lemma holds for all words of length
j, where 0 ≤ j ≤ k. Let y = uw, where u ∈ Σ. Naturally |w| = k. There are two main cases to
consider: (1) A is empty (that happens only when X = {ε}), and (2) A is not empty. In the first
case, e = ∼(a | b | c | . . . | u | . . .) is returned, where a, b, c, . . ., u, . . . are the first letters of Y
(the position of u in the sequence is not important). consume(a | b | c | . . . | u | . . . , uw) = 1 implies
consume(e, y) = None. In the second case (i.e., A is not empty), let us consider four sub-cases: (2.1)
u ∈ A and ε ∈ X, (2.2) u ∈ A and ε /∈ X, (2.3) u /∈ A and ε ∈ X, and (2.4) u /∈ A and ε /∈ X. As for
(2.1), the returned expression e is of the following form: α1 | α2 | · · · | αj | ∼(a | b | c | . . . | u | . . .)� ε,
where αi is a single letter, say ri, or ri � βi with βi being some parsing expression. Exactly one of αi has
the form u� βi (exactly one ri = u), where βi = I(u−1X, u−1Y). Suffix w is an element of the set u−1Y
so by the induction hypothesis consume(βi, w) = None. Then consume(e, uw) = None. Notice that the
last addend—i.e., the one with ε—will also fail due to consume(∼(a | b | c | . . . | u | . . .), uw) = None.
Sub-case (2.2) is provable similarly to (2.1). When u /∈ A (sub-cases 2.3 and 2.4), none of ri is u and it is
easy to see that consume(e, y) = None.

Theorem 1. Let Σ be a finite alphabet and X, Y be two disjoint, finite, nonempty sets of words over Σ. If e is
a parsing expression returned by I(X, Y) and G is a non-circular PEG defined by G = ({A}, Σ, {A⇐ e}, A)

then X ⊆ L(G) and Y ∩ L(G) = ∅.

Proof. This result follows immediately from the two previous Lemmas.

3.3. Python’s PEG Library Performance Evaluation

In order to assess the fifth property of Algorithm 1 (for random words output PEGs are many
times smaller than the input), we created random sets of words with different sizes, lengths and
alphabets. Table 1 shows our settings in this respect.

Table 1. The settings of the generator of random input for our PEG algorithm.

No. |Σ| |X| |Y| dmin dmax

1 2 10 10 1 10
2 2 100 100 2 20
3 4 500 500 3 30
4 4 1000 1000 4 40
5 8 5000 5000 5 50
6 8 6000 6000 6 60
7 16 7000 7000 7 70
8 16 8000 8000 8 80
9 32 9000 9000 9 90

10 32 10,000 10,000 10 100

Naturally, |X| and |Y| denote the number of examples and counter-examples, while words’
lengths vary from dmax to dmin. Those datasets are publicly available along with the source code of our
PEG library. Figure 3 depicts the number of symbols in a PEG and the number of letters in a respective
test set.

The number of letters in an input file simply equals ∑w∈X∪Y (|w|+ 1), where +1 stands for a new
line sign (i.e., words’ separator). As for PEGs, the symbol� has not been counted, since it may be
omitted. Outside the Python language, concatenation of two symbols, for instance a and b, can be
written as ab instead of a� b. Notice also that in Figure 3 the ordinates are in the logarithmic scale,
because the differences are large.
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The runtime of Python implementation of the proposed PEG library was benchmarked against
comparable libraries, i.e., Arpeggio and Grako. The pyPEG library was rejected, because we
were unable to define more complex expressions with it. As a testbed we have chosen Tomita’s
languages [19]. This test set contains seven different expressions that serve as rules for the generation
of words over a binary alphabet. Their description in a natural language can be found in Table 2.
Seven regular expressions appropriate to the rules were created, and then the generators of random
input words were implemented. Thus, for every language we had two sets: matching (positive)
and non-matching (negative) words to a particular regular expression. These expressions take the
following forms:

1. a*
2. (ab)*
3. ((b|(aa))|(((a(bb))((bb)|(a(bb)))*)(aa)))*((a?)|(((a(bb))((bb)|(a(bb)))*)(a?)))
4. a*((b|bb)aa*)*(b|bb|a*)
5. (aa|bb)*((ba|ab)(bb|aa)*(ba|ab)(bb|aa)*)*(aa|bb)*
6. ((a(ab)*(b|aa))|(b(ba)*(a|bb)))*
7. a*b*a*b*

Equivalent PEG expressionswere defined as well in every comparable library (see Table 2).

Table 2. PEG expressions created based on Tomita (1982) languages.

No. Description PEG Grammar

1 Sequence of a’s S⇐ a� S | ∼(a | b)

2 Sequence of (ab)’s S⇐ a� b� S | ∼(a | b)

3

Any string without an odd
number of consecutive b’s
after an odd number of
consecutive a’s

A⇐ a� ∼a | a� a� A
B⇐ b� ∼b | b� b� B
C ⇐ a� A | ∼a
D ⇐ b� B | ∼b
S⇐ +(a� a | b)� S | A� D � S | ∼(a | b)

4
Any string without more
than two consecutive b’s

S⇐ (+a | ε)� (+((b� b | b)� +a) | ε)�
(b� b� ∼(a | b) | b� ∼(a | b) | ∼(a | b))

5

Any string of even length
that, making pairs, has an
even number of (ab)’s or
(ba)’s

A⇐ +(a� a | b� b) | ε
B⇐ a� b | b� a
S⇐ A� (+(B� A� B� A) | ε)� A� ∼(a | b)

6

Any string such that the
difference between the
numbers of a’s and b’s is a
multiple of three

A⇐ a� (+(a� b) | ε)� (b | a� a)
B⇐ b� (+(b� a) | ε)� (a | b� b)
S⇐ +(A | B)� ∼(a | b) | ∼(a | b)

7

Zero or more a’s followed by
zero or more b’s followed by
zero or more a’s followed by
zero or more b’s

A⇐ +a | ε
B⇐ +b | ε
S⇐ A� B� A� B� ∼(a | b)

Table 3 summarizes CPU time results. Every row contains the means for 30 runs. In all experiments
we used the implementation of algorithms written in Python (our PEG library, Grako, and Arpeggio)
and C++ EGG. An interpreter ran on a four-core Intel i7-965, 3.2 GHz processor in a Windows 10
operating system with 12 GB RAM.

As can be seen, in all cases our library worked much faster than other Python libraries. Grammar
3 was skipped because we were unable to define it either by means of the Arpeggio or Grako libraries.
It should be stated, however, that both of the libraries have more functionality than our PEG library,
its principal function being only the membership operation, i.e., matching or not a word to a PEG. As a
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result, Arpeggio, Grako, and pyPeg are relatively not intuitive and obvious, especially for users not
familiarized with formal languages theory. The dash character in the EGG result denotes segmentation
runtime error. As expected the C++ library (EGG) overcame its Python counterparts.

Table 3. Average CPU times for available Python PEG libraries (in seconds).

Case No. Positive/Negative Word Length PEG [s] Grako [s] Arpeggio [s] EGG [s]

1 Positive 1–100 0.01 0.21 0.02 <0.01
1 Positive 101–1000 0.04 1.93 0.13 <0.01
1 Positive 1001–10,000 0.44 17.62 0.92 0.01
1 Positive 10,001–100,000 5.93 182 9.82 0.01
1 Negative 1–100 <0.01 0.11 0.01 0.06
1 Negative 101–1000 0.02 1.13 0.05 0.02
1 Negative 1001–10,000 0.24 9.68 0.42 –
1 Negative 10,001–100,000 2.41 81.95 3.58 –
2 Positive 1–100 0.01 0.19 0.01 <0.01
2 Positive 101–1000 0.03 1.68 0.12 <0.01
2 Positive 1001–10,000 0.12 5.64 0.4 <0.01
2 Positive 10,001–100,000 1.2 47.95 3.38 <0.01
2 Negative 1–100 <0.01 0.11 0.01 0.01
2 Negative 101–1000 0.02 0.82 0.05 0.01
2 Negative 1001–10,000 0.07 3.19 0.18 0.08
2 Negative 10,001–100,000 0.59 24.54 1.42 0.05
4 Positive 1–100 <0.01 0.2 0.02 <0.01
4 Positive 101–1000 0.04 2.12 0.36 <0.01
4 Positive 1001–10,000 0.26 12.37 2.28 <0.01
4 Positive 10,001–100,000 2.40 102.19 20.29 0.01
4 Negative 1–100 0.01 0.27 0.02 0.03
4 Negative 101–1000 0.04 2.11 0.32 0.03
4 Negative 1001–10,000 0.25 11.93 2.01 0.22
4 Negative 10,001–100,000 2.32 98.61 17.98 0.22
5 Positive 1–100 <0.01 0.2 0.02 <0.01
5 Positive 101–1000 0.04 2.12 0.36 <0.01
5 Positive 1001–10,000 0.26 12.37 2.28 0.01
5 Positive 10,001–100,000 2.4 102.19 20.29 <0.01
5 Negative 1–100 0.01 0.27 0.02 0.05
5 Negative 101–1000 0.04 2.11 0.32 0.02
5 Negative 1001–10,000 0.25 11.93 2.01 0.08
5 Negative 10,001–100,000 2.32 98.61 17.98 0.08
6 Positive 1–100 0.01 0.23 0.02 <0.01
6 Positive 101–1000 0.05 2.52 0.17 <0.01
6 Positive 1001–10,000 0.40 17.64 1.21 <0.01
6 Positive 10,001–100,000 1.67 71.70 4.93 0.01
6 Negative 1–100 0.01 0.34 0.02 0.03
6 Negative 101–1000 0.12 5.34 0.33 0.06
6 Negative 1001–10,000 1.05 44.86 2.61 0.09
6 Negative 10,001–100,000 4.61 187.90 10.42 0.17
7 Positive 1–100 <0.01 0.23 0.02 <0.01
7 Positive 101–1000 0.04 1.85 0.09 <0.01
7 Positive 1001–10,000 0.17 7.94 0.42 0.01
7 Positive 10,001–100,000 1.91 73.4 3.92 <0.01
7 Negative 1–100 <0.01 0.16 0.01 0.03
7 Negative 101–1000 0.02 1.09 0.06 0.02
7 Negative 1001–10,000 0.11 5.37 0.28 0.15
7 Negative 10,001–100,000 1.26 49.92 2.64 0.10
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Figure 3. The number of symbols in a PEG (red line) and the number of letters in a respective test set
(blue line).

4. Results and Discussion

The algorithm for generating non-circular parsing expression grammars (PEG) was tested over
a recently published amyloidogenic dataset [20]. The GP parameters (John Koza, a GP pioneer,
has introduced a very lucid form of listing parameters in the tableau of Table 4 named after him) are
listed in Table 4. From there, we can read that a population size of P = 5 individuals were used for
GP runs along with others. The terminal set contains standard amino acid abbreviations; “A” stands
for Alanine, “R” for Arginine, etc. Concerning the initialization method, see Section 3.2. The best
parameters were chosen in a trial-and-error manner until the values with the best classification quality
were found. The dataset is composed of 1476 strings that represent protein fragments. The data came
from four databases as shown in Figures 4 and 5. A total of 439 are classified as being amyloidogenic
(examples), and 1037 as not (counter-examples). The shortest sequence length is 4 and the longest is 83.
Such a wide range of sequence lengths was an additional impediment to learning algorithms.

Table 4. Koza tableau.

Parameters Values

Objective: evolve expression classifying amino acid sequences
according to examples and counterexamples

Terminal set: ε, A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V
Function set: ∼,�, |
Population size: 5
Crossover probability: 1.0
Selection: Tournament selection, size r = 3
Termination criterion: 6000 generations have passed
Maximum depth of tree after crossover: 100
Initialization method: A special dedicated algorithm, k = |X| = |Y| equals half

of the cardinality of examples

In order to compare our algorithm to other grammatical inference approaches, we took most of
the methods mentioned in the introductory section as a reference. Error-correcting grammatical
inference [9] (ECGI) and alignment-based learning [10] (ABL) are examples of substring-based
algorithms. The former builds an automaton incrementally based on the Levenstein distance between
the closest word stored in the automaton and an inserted word. This process begins with an empty
automaton, and for each word adds the error rules (insertion, substitution, and deletion) belonging to
the transition path with the least number of error rules. The algorithm provides an automaton without
loops that is more and more general. The latter, ABL, is based on searching identical and distinct parts
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of input words. This algorithm consists of two stages. First, all words are aligned such that it finds
a shared and a distinct part of all pairs of words, suggesting that the distinct parts have the same
type. For example, consider the pair “abcd” and “abe”. Here, “cd” and “e” are correctly identified as
examples of the same type. The second step, which takes the same corpus as input, tries to identify
the right constituents. Because the generated constituents found in the previous step might overlap,
the correct ones have to be selected. Simple heuristics are used to achieve this, for example to take
the constituent that was generated first (ABL-first) or to take the constituent with the highest score on
some probabilistic function. We used another approach, in which all constituents are stored, but in the
end we tried to keep only the minimum number of constituents that cover all examples.

ADIOS uses statistical information present in sequential data to identify significant segments
and to distill rule-like regularities that support structured generalization [8]. It also brings together
several crucial conceptual components; the structures it learns are (i) variable-order, (ii) hierarchically
composed, (iii) context dependent, (iv) supported by a previously undocumented statistical significance
criterion, and (v) dictated solely by the corpus at hand.

Blue-fringe [21] and Traxbar [22], the instances of state merging algorithms, can be downloaded
from an internet archive (http://abbadingo.cs.nuim.ie/dfa-algorithms.tar.gz). They start from building
a prefix tree acceptor (PTA) based on examples, and then iteratively select two states and do merging
unless compatibility is broken. The difference between them comes from many ways in which the pair
of states needed to merge can be chosen. Trakhtenbrot and Barzdin [23] described an algorithm for
constructing the smallest deterministic FSA consistent with a complete labeled training set. The PTA
is squeezed into a smaller graph by merging all pairs of states that represent compatible mappings
from word suffixes to labels. This algorithm for completely labeled trees was generalized by Lang
(1992) [22] to produce a (not necessarily minimum) automaton consistent with a sparsely labeled tree.
Blue-fringe grows a connected set of red nodes that are known to be unique states, surrounded by a
fringe of blue nodes that will either be merged with red nodes or promoted to red status. Merges only
occur between red nodes and blue nodes. Blue nodes are known to be the roots of trees, which greatly
simplifies the code for correct merging.

We also included one machine learning approach. An unsupervised data-driven distributed
representation, called ProtVec [24], was applied and protein family classification was performed using
a support vector machine classifier (SVM) [25] with the linear kernel.

AmyLoad
Pos: 435

Neg: 1036

GAP
Pos: 177
Neg: 156

Stanislawski

Pos: 825
Neg: 3656

WALTZ_DB

Pos: 240
Neg: 836

Pos: 238
Neg: 832

Pos: 136
Neg: 150

Pos: 77
Neg: 196

Pos: 78
Neg: 235

Figure 4. Combined amyloid databases used in this work. Pos and Neg denote, respectively, positive
and negative word counts in the database.

http://abbadingo.cs.nuim.ie/dfa-algorithms.tar.gz


Appl. Sci. 2020, 10, 8747 13 of 16

AmyLoad

Pos: 41
Neg: 8

GAP

Pos: 299
Neg: 888 Pos: 136

Neg: 148

AmyLoad

Pos: 747
Neg: 3533

Stanislawski

Pos: 357
Neg: 913 Pos: 78

Neg: 123

AmyLoad

Pos: 2
Neg: 7

WALTZ_DB

Pos: 197
Neg: 207 Pos: 238

Neg: 829

GAP

Pos: 748
Neg: 3558

Stanislawski

Pos: 100
Neg: 58 Pos: 77

Neg: 98

GAP

Pos: 107
Neg: 688

WALTZ_DB

Pos: 44
Neg: 8 Pos: 133

Neg: 148

Stanislawski

Pos: 162
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Figure 5. Combined amyloid databases used in work. Pos and Neg denote, respectively, positive and
negative word counts in the database.

The data were randomly split into two subsets, a training (75% of total) and a test set (25% of total).
Given the training set and the test set, we used all algorithms to infer predictors (automata or grammars)
on the training set, tested them on the test set, and computed their performances. Comparative analyses
of the following five measures: Precision, Recall, F-score, the AUC, and Matthews correlation coefficient
are summarized in Table 5. The measures are given below:

• Precision, P = tp/(tp + fp);
• Recall, R = tp/(tp + fn);
• F-score, F1 = 2× P× R/(P + R);
• Accuracy, ACC = (tp + tn)/(tp + tn + fp + fn);
• Area under the ROC curve, AUC = (tp/(tp + fn) + tn/(fp + tn))/2;

• Matthews correlation coefficient, MCC =
tp×tn−fp×fn√

(tp+fp)(tp+fn)(tn+fp)(tn+fn)
;

where the terms true positives (tp), true negatives (tn), false positives (fp), and false negatives (fn)
compare the results of the classifier under test with trusted external judgments. Thus, in our case, tp is
the number of correctly recognized amyloids, fp is the number of nonamyloids recognized as amyloids,
fn is the number of amyloids recognized as nonamyloids, and tn is the number of correctly recognized
nonamyloids. The last column concerns CPU time of computations (induction plus classification in s).
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Table 5. Results of classification quality for the test set by the decreasing AUC.

P R F1 ACC AUC MCC Time [s]

PEG 0.627 0.294 0.400 0.739 0.610 0.291 0.3
ABL 0.645 0.183 0.286 0.728 0.571 0.232 412.9

ADIOS 0.329 0.633 0.433 0.508 0.544 0.082 15.6
Blue-fringe 0.367 0.303 0.332 0.639 0.541 0.088 0.9

ECGI 0.875 0.064 0.120 0.720 0.530 0.189 31.0
Traxbar 0.234 0.101 0.141 0.636 0.481 −0.05 0.3

SVM 0.224 0.001 0.131 0.526 0.471 −0.06 0.4

The results show that there is no single method that outperformed the remaining methods
regardless of an established classification measure. However, the methods can be grouped as relatively
good and relatively weak from a certain angle. As regards Recall and F-score, relatively good are
Blue-fringe, ADIOS, and PEG. As regards MCC, which is generally recognized as being one of the
best classification measures, relatively good are PEG and ABL. Moreover, PEG achieved the best AUC,
which in the case of binary prediction is equivalent to balanced accuracy.

To evaluate the convergence toward an optimal solution, we studied average fitness change over
generations along with the increasing of the expression sizes (see Figure 6). The shape of the plot does
not show any indication of premature convergence. Moreover, we did not observe excessive tree size
expansion, which is quite often seen in genetic programming.
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Figure 6. Average error (1−fitness accuracy) vs. expression length for different generations based on
random data with two letters in the alphabet, 100 words at each set of example and counter-example
and word lengths between 2 and 20.

All programs ran on an Intel Xeon CPU E5-2650 v2, 2.6 GHz processor under an Ubuntu
16.04 operating system with 192 GB RAM. The computational complexity of all the algorithms is
polynomially bounded; however, the differences in running time were quite significant and our
approach ranked at the top. The algorithm for PEG induction (https://github.com/wieczorekw/
wieczorekw.github.io/tree/master/PEG) was written in the Python 3 programming language.
The languages of implementation for six successive methods were: Python, Java, C, Python, C,
and Python.

https://github.com/wieczorekw/wieczorekw.github.io/tree/master/PEG
https://github.com/wieczorekw/wieczorekw.github.io/tree/master/PEG
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5. Conclusions

We proposed a new grammatical inference (PEG-based) method and applied it to a real
bioinformatics task, i.e., classification of amyloidogenic sequences. The evaluation of generated
PEGs on an amyloidogenic dataset revealed the method’s accuracy in predicting amyloid segments.
We showed that the new grammatical inference algorithm gives the best ACC, AUC, and MCC scores
in comparison to five other automata or grammar learning methods and the ProtVec/SVM method.

In the future, we will implement circular rules in the PEG library, which will improve the
expressiveness of grammars and may improve the quality of classification.
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