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Abstract: In this work, spectroscopic properties of europium and erbium ions in heavy metal oxide
glasses have been studied. The phonon energy of the glass host was determined based on Eu3+

excitation spectra measurements. Near-IR emission spectra at 1550 nm related to 4I13/2 → 4I15/2

transition of erbium in heavy metal glasses were examined with special regards to luminescence
bandwidth and measured lifetime. In particular, correlation between phonon energy and the mea-
sured lifetime 4I13/2 (Er3+) was proposed. The luminescence lifetime for the 4I13/2 upper laser state
of erbium decreases with increasing phonon energy in glass matrices. Completely different results
were obtained glass samples with europium ions, where the 5D0 lifetime increases with increasing
phonon energy. Our investigations suggest that the values of measured 5D0 lifetime equal to radiative
lifetimes for all heavy metal oxide glasses.

Keywords: heavy metal glasses; phonon sideband; rare earth ions; luminescence

1. Introduction

Heavy Metal Oxide Glasses (HMOG) are classified as promising amorphous systems,
for which chemical durability and thermal stability are high, light transmission is wide
and refractive indices are quite large compared to similar glasses without PbO [1–8].
Heavy metal glass systems can be also quite easy synthesized because glass-forming
compositional range is relatively wide. Among HMOG systems, PbO-GeO2 glasses are
considered to be one of the most promising amorphous materials for numerous applications.
Lead germanate glasses containing Ag nanoparticles are recommended in photonics and
catalysis [9]. Low-loss lead germanate-based glasses are useful for mid-infrared fiber
optics [10,11]. They are also interesting from the structural point of view. The presence
of minima or maxima in physicochemical properties of germanate-based glasses under
addition of various network-modifiers usually well correlate with the coordination change
GeO4 tetrahedra Ö GeO6 octahedra, the formation of Ge-O-Ge bridging bonds and/or
the creation of nonbridging oxygen atoms NBO’s [12,13]. The structural mechanism
responsible for the germanate anomaly well-known in the literature was proposed for
glasses based on PbO-GeO2 [14,15]. Similar to germanate glass systems, this anomalous
composition dependence of physicochemical properties was also observed for borate-based
glasses [16,17].

On the other hand, HMOG glasses are excellent matrices to accommodate rare earth ions.
Very recently, emission properties of rare earth ions in glasses based on PbO-GeO2 [18,19],
PbO-SiO2 [20], PbO-B2O3 [21,22] and PbO-P2O5 [23,24] were examined in detail and their
results were published last year. The additional glass-former components such as Bi2O3 and
TeO2 were also added in order to improve properties of heavy metal oxide glasses responsible
for white light emission [25]. Special attention was devoted to rare earths in silicate glasses
containing PbO, which emit near-infrared laser emission at about 2 µm [26–30].
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In this work, we present spectroscopic properties of europium and erbium ions in
heavy metal oxide glasses. Phonon sideband analysis based on the excitation spectra mea-
surements of europium and near-infrared emission properties at 1550 nm corresponding to
main 4I13/2 → 4I15/2 laser transition of erbium are reported. Emission spectra of rare earth
ions in heavy metal oxide glasses have been also examined previously by us. In particular,
spectroscopic properties of Eu3+ ions in lead borate glass [31], lead phosphate glass [32]
and glasses based on PbO–Ga2O3–XO2, where X = Te, Ge, Si [33] have been systematically
studied. Preliminary results for Er3+ ions in heavy metal oxide and oxyhalide glasses,
including their near-infrared emission properties and up-conversion processes, have been
presented in a conference paper [34]. Comparison of measured luminescence lifetimes
4I13/2 (Er3+) and 5D0 (Eu3+) gives rather unexpected results. While dependence of the 4I13/2
lifetime of erbium ions is well correlated with the phonon energies of the studied HMOG
glass systems, the experimental results for luminescence decays from the 5D0 excited state
of europium are completely different. These aspects have not been examined in detail
before. They are discussed here.

2. Materials and Methods

HMOG glasses with general formula PbO-Ga2O3-MexOy-Ln2O3 (Me denotes Ge, Si,
P or B) were synthesized. In the studied glasses, rare earth oxides Ln2O3 were limited
to Eu2O3 and Er2O3. The following samples: (a) 45PbO–9.5Ga2O3–45GeO2–0.5Ln2O3, (b)
45PbO–9.5Ga2O3–45SiO2–0.5Ln2O3, (c) 45PbO–9.5Ga2O3–45P2O5–0.5Ln2O3 as well as (d)
45PbO–9.5Ga2O3–45B2O3–0.5Ln2O3 (in mol%) were prepared. Metal oxides of high purity
were mixed in an agate ball mill for 2 h and then melted (1100 ◦C/0.5 h).

Fully amorphous glass plates (dimension = 10 × 10 mm, thickness = 2 mm) con-
firmed by X-ray diffraction measurements were obtained. Differential scanning calorimeter
DSC measurements (heating rate of 10 ◦C/min) were performed with SETARAM Labsys
thermal analyzer (SETARAM Instrumentation, Caluire, France). Spectra measurements
(excitation and emission) were carried out using a Continuum Model Surelite I optical
parametric oscillator coupled with Nd:YAG laser (Continuum Surelite OPO and SLI-10
Nd:YAG laser, Santa Clara, CA, USA). Also, the laser system consists of 1-m double grating
monochromator, photomultiplier, and Stanford SRS250 boxcar integrator. Resolution for
spectra measurements was ±0.2 nm. Decay curves were measured using oscilloscope
Tektronix TDS3052 (two channel color digital phosphor oscilloscope, 500 MHz, Tektronix
Inc., Beaverton, OR, USA) with an accuracy of ±2 µs.

3. Results and Discussion

HMOG glasses were prepared by traditional melt quenching technique. In all glass
samples, the ratio of heavy metal oxide PbO to MexOy seems to be 1:1, whereas molar
concentration of Ga2O3 and Ln2O3 is equal to 9.5% and 0.5%, respectively. Previous studies
for boro-bismuth [35] and tellurite [36] glasses demonstrate significant role of Ga2O3 as a
glass modifier, when its concentration is relatively low (usually less than 10 molar %). For
the studied HMOG systems, the glass transition temperature Tg was determined based
on DSC measurements. The values of Tg are changed in the following direction PbO-
Ga2O3-B2O3 (440 ◦C)→ PbO-Ga2O3-P2O5 (437 ◦C)→ PbO-Ga2O3-SiO2 (429 ◦C)→ PbO-
Ga2O3-GeO2 (384 ◦C). Further investigations for lead borate glass [37] and lead phosphate
glass [38] indicate that the glass transition temperatures are reduced with increasing PbF2
content. Ternary HMOG glasses based on PbO-Ga2O3-MexOy (Me = Ge, Si, P, B) were
singly doped with Ln3+ (Ln = Eu, Er) in order to study their spectroscopic and emission
properties. Figure 1 shows the energy level diagrams for rare earth (Eu3+ and Er3+) ions.
All main emission lines corresponding to the 5D0 → 7F1 (orange line) and 5D0 → 7F2 (red
line) transitions of europium ions and the 4I13/2→ 4I15/2 (near-IR line) transition of erbium
ions are also indicated. It is worth noticing that the separation between the excited state
5D0 and the next lower-lying state 7F6 of europium ions (∆E = 12,500 cm−1) is significantly
larger than the 4I13/2–4I15/2 energy gap of erbium ions (∆E = 6500 cm−1).
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Figure 1. Energy level diagrams for trivalent europium and erbium ions.

3.1. Phonon Sideband Analysis

Figure 2 presents excitation and emission spectra of the studied HMOG systems
containing europium ions. Insets show phonon sidebands PSB (*) and decays from the
5D0 state of Eu3+ (**). Luminescence spectra of glass samples excited at 464 nm (5D2 state)
consist of several narrowed bands characteristic for europium ions. Two main emission
bands at about 590 nm and 615 nm correspond to 5D0 → 7F1 (orange) and 5D0 → 7F2 (red)
electronic transitions [39–42]. The relative ratio of their integrated emission intensities
known as R/O factor is changed in direction PbO-Ga2O3-B2O3 (2.32)→ PbO-Ga2O3-P2O5
(2.41)→ PbO-Ga2O3-SiO2 (3.00)→ PbO-Ga2O3-GeO2 (3.06).
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Figure 2. Excitation and luminescence spectra of HMOG glass systems containing europium ions.
Phonon sidebands (PSB) and pure electronic transitions (PET) are shown. Insets present phonon
sidebands (*) and decay curves for the 5D0 → 7F2 transition of Eu3+ (**).

Luminescence decays from the 5D0 (Eu3+) state depend critically on the component
MexOy, i.e., GeO2, SiO2, P2O5 or B2O3, present in ternary HMOG glass. In fact, the 5D0
(Eu3+) measured lifetime diminishes in the following order: PbO-Ga2O3-B2O3 (2.05 ms)→
PbO-Ga2O3-P2O5 (1.85 ms)→ PbO-Ga2O3-SiO2 (1.27 ms)→ PbO-Ga2O3-GeO2 (1.11 ms).
To determine phonon energy of the host, the excitation spectra measurements of europium
ions were successfully used. In 430–470 nm spectral range, two important bands of
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europium ions are located. They are assigned to pure electronic transition (PET) near
464 nm (7F0 → 5D2 transition) and well-known in the literature transition dependent
on the host (observed usually in the ranges 440–460 nm), referred as phonon sideband
PSB [43–45]. The phonon energy is difference between the positions of these bands (PSB-
PET). Their values for the studied HMOG glasses are given in Table 1. At this moment, it
should be mentioned that the obtained results are also consistent with the experimental
values from the Raman spectra measurements. The values obtained by two independent
methods are nearly the same and difference does not exceed ±3 cm−1. For example, the
phonon energy for lead phosphate glass from Raman spectrum equal to 1120 cm−1 [46] is
in a good agreement with the value obtained from the excitation spectrum measurement
PSB-PET = 1117 cm−1 (Table 1). The same situation was observed for lead borate glass [31]
and glasses based on PbO–Ga2O3–SiO2 and PbO–Ga2O3–GeO2 [33].

Table 1. Phonon energies (PSB-PET) determined from the excitation spectra measurements.

Heavy Metal Glass Host PSB—PET [cm−1]

PbO-Ga2O3-GeO2 775
PbO-Ga2O3-SiO2 950
PbO-Ga2O3-P2O5 1117
PbO-Ga2O3-B2O3 1320

Like the 5D0 luminescence lifetime, the phonon energy of the HMOG glass systems
diminishes in the order PbO-Ga2O3-B2O3 (1320 cm−1)→ PbO-Ga2O3-P2O5 (1117 cm−1)→
PbO-Ga2O3-SiO2 (950 cm−1)→ PbO-Ga2O3-GeO2 (775 cm−1). The results are schematized
in Figure 3.
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3.2. Near-Infrared Emission

Our previous investigations revealed that low-phonon heavy metal oxide and oxy-
halide glass systems containing erbium are excellent amorphous hosts for near-IR radiation
and up-conversion luminescence applications. In contrast to glasses based on PbO-Ga2O3-
GeO2 and PbO-Ga2O3-SiO2, the lack of up-conversion luminescence processes in PbO-
Ga2O3-P2O5 and PbO-Ga2O3-B2O3 glass systems was confirmed, because P-O and B-O
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stretching vibrations are relatively large [34]. Further spectroscopic studies suggested
that PbO-Ga2O3-GeO2 and PbO-Ga2O3-SiO2 glasses can be applied to up-conversion
luminescence temperature sensors [47].

Figure 4 presents near-IR emission spectra measured for erbium ions in heavy metal
oxide glass systems under excitation of 4F7/2 state by 488 nm laser line. Near-IR emission
bands at about 1550 nm are assigned to main 4I13/2→ 4I15/2 transition of erbium. The inset
shows emission decays from the 4I13/2 state of trivalent erbium.
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Near-infrared emission spectra were normalized to compare the bandwidth for the
4I13/2 → 4I15/2 transition of erbium ions in HMOG glasses. The spectral bandwidth ∆λ

given as full width in half maximum (FWHM) was determined. Furthermore, the lumines-
cence lifetimes of 4I13/2 state of erbium ions were calculated by fitting the luminescence
decay curves. The bandwidth for the 4I13/2→ 4I15/2 transition of erbium ions is changed in
the following direction PbO-Ga2O3-GeO2→ PbO-Ga2O3-SiO2→ PbO-Ga2O3-P2O5, except
for PbO-Ga2O3-B2O3 glass system. The value of FWHM diminishes from lead germanate
glass (nearly 88 nm) to lead phosphate glass (50 nm). Quite large spectral bandwidth (above
90 nm) for the 4I13/2 → 4I15/2 transition of erbium ions in PbO-Ga2O3-B2O3 glass system
was observed. The relatively large bandwidth is strongly required for near-IR laser systems
as well as glass fiber amplifiers. It confirms our previous experimental results obtained
for oxide and oxyhalide lead borate-based glass systems containing erbium ions [34,48].
However, near-IR emission of erbium ions comes from multiple peaks and the spectral
profiles are not simple Gaussian in shape. For the studied HMOG systems, differences in
spectral bandwidth are relatively small when full width at 10% maximum (FW-10% max)
will be considered.

Er3+-doped heavy metal oxide glass containing B2O3 exhibits interesting properties
(broadband emission), but the emission decay from the 4I13/2 excited level of erbium is
short when we compare to glass samples PbO-Ga2O3-MexOy (Me = Ge, Si or P). Both
parameters, i.e., emission bandwidths and measured lifetimes are important spectroscopic
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factors and necessary to characterize glass materials with erbium for near-IR amplifiers [49].
The experimental results are schematized in Figure 5.
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It is experimental evidence that the multiphonon relaxation rates of rare earth ions
increase with increasing phonon energy in the following direction GeO2 → SiO2 → P2O5
→ B2O3 [50,51]. Borate-based glass systems have the highest phonon energy, whereas
germanate amorphous materials have the smallest phonon energy among the studied
HMOG glass systems. Thus, measured lifetimes of rare earths usually reduce because
multiphonon relaxation rates are higher. Our experimental results confirm this hypothesis.
The measured 4I13/2 emission lifetimes of erbium ions are reduced from lead germanate
glass (3.9 ms) to lead borate glass (0.5 ms) when phonon energy of the host increases.

Correlation between chemical composition, glass structure and properties was shown
by various experimental techniques [52–54]. In particular, structure-property correlations
in heavy metal oxyfluoride glass systems have been explored in a series of lead fluo-
rogermanate and lead fluoroborate glasses, where the increasing PbF2 content results in
enhanced luminescence lifetimes of rare earths. These effects are much less apparent in
lead fluoroborate than lead fluorogermanate glasses [55]. Interesting structure-property re-
lationships are also observed for our HMOG glass samples. We can conclude from emission
measurements that spectroscopic properties of trivalent rare earths are not only critically
dependent on the glass host composition. The phonon sideband analysis demonstrates that
phonon energy increases from PbO-Ga2O3-GeO2 to PbO-Ga2O3-B2O3 glass system (see
Table 1). The activator concentration (Eu3+ and Er3+) for all studied glass samples is close
to 0.5 mol%. The same experimental conditions were used for glass preparation, so the
spectroscopic changes for rare earths (europium and erbium) are attributed to the change of
the component MexOy (where Me = Ge, Si, P, B) in HMOG glasses. Here, our investigations
were limited to glass samples, where the molar ratio of the main oxide components is
the same, i.e., PbO:GeO2 = PbO:SiO2 = PbO:P2O5 = PbO:B2O3 = 1:1. In fact, the ratios of
structural units (the same concentrations of Ge, Si, P and B atoms) are also important and
cannot be ignored. Thus, nature of glasses with the same fractions of Me network-former
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units should be analyzed in the future. However, the main comparison is made between
Eu3+ and Er3+ doped samples. Our spectroscopic analysis based on decay curves clearly
indicates that the dependence of measured lifetimes for the excited states of rare earth
ions on phonon energies of HMOG glass hosts is completely different for the 4I13/2 (Er3+)
than the 5D0 (Eu3+). Figure 6 shows schematically measured emission lifetimes for the 5D0
(Eu3+) and 4I13/2 (Er3+) states as a function of the phonon energy of the HMOG system.

Materials 2021, 14, x FOR PEER REVIEW 7 of 10 
 

 

is close to 0.5 mol%. The same experimental conditions were used for glass preparation, 
so the spectroscopic changes for rare earths (europium and erbium) are attributed to the 
change of the component MexOy (where Me = Ge, Si, P, B) in HMOG glasses. Here, our 
investigations were limited to glass samples, where the molar ratio of the main oxide com-
ponents is the same, i.e., PbO:GeO2 = PbO:SiO2 = PbO:P2O5 = PbO:B2O3 = 1:1. In fact, the 
ratios of structural units (the same concentrations of Ge, Si, P and B atoms) are also im-
portant and cannot be ignored. Thus, nature of glasses with the same fractions of Me net-
work-former units should be analyzed in the future. However, the main comparison is 
made between Eu3+ and Er3+ doped samples. Our spectroscopic analysis based on decay 
curves clearly indicates that the dependence of measured lifetimes for the excited states 
of rare earth ions on phonon energies of HMOG glass hosts is completely different for the 
4I13/2 (Er3+) than the 5D0 (Eu3+). Figure 6 shows schematically measured emission lifetimes 
for the 5D0 (Eu3+) and 4I13/2 (Er3+) states as a function of the phonon energy of the HMOG 
system. 

 
Figure 6. Lifetime for the 5D0 (Eu3+) and 4I13/2 (Er3+) excited states versus the phonon energy of the 
HMOG glass. 

The measured lifetime for the 4I13/2 upper laser state of erbium decreases, whereas 
lifetime for the 5D0 state of europium increases with increasing phonon energy in glass 
matrices. Moreover, the change of the 4I13/2 measured lifetime by a factor of 8 when the 
phonon energy changes from 775 cm−1 to 1320 cm−1 is very high as compared to about two-
fold increase of the 5D0 lifetime. This marked dissimilarity stems from the competition 
between radiative and multiphonon relaxation processes that remove the excitation of 
metastable levels of rare earth ions. The multiphonon relaxation consisting of simultane-
ous emission of the highest energy phonons in the lowest order process to cover the en-
ergy separation between a luminescent level and the next lower-lying energy level is con-
sistent with the “energy gap law”. Considering the 4I13/2 metastable level located at about 
6500 cm−1 above the next lower energy level 4I15/2 and phonon energies gathered in Table 
1 we obtain the lowest order values for multiphonon relaxation of 8, 7, 6, and 5 for lead 

Figure 6. Lifetime for the 5D0 (Eu3+) and 4I13/2 (Er3+) excited states versus the phonon energy of the
HMOG glass.

The measured lifetime for the 4I13/2 upper laser state of erbium decreases, whereas
lifetime for the 5D0 state of europium increases with increasing phonon energy in glass
matrices. Moreover, the change of the 4I13/2 measured lifetime by a factor of 8 when
the phonon energy changes from 775 cm−1 to 1320 cm−1 is very high as compared to
about two-fold increase of the 5D0 lifetime. This marked dissimilarity stems from the
competition between radiative and multiphonon relaxation processes that remove the
excitation of metastable levels of rare earth ions. The multiphonon relaxation consisting of
simultaneous emission of the highest energy phonons in the lowest order process to cover
the energy separation between a luminescent level and the next lower-lying energy level is
consistent with the “energy gap law”. Considering the 4I13/2 metastable level located at
about 6500 cm−1 above the next lower energy level 4I15/2 and phonon energies gathered in
Table 1 we obtain the lowest order values for multiphonon relaxation of 8, 7, 6, and 5 for lead
germanate, lead silicate, lead phosphate and lead borate glasses, respectively. We attribute
observed dissimilarity of the 4I13/2 lifetime values to the contribution of multiphonon
relaxation rates, especially in lead borate and lead phosphate glasses where the orders of
the process are relatively low. The results are completely different for the same glass host
matrices containing europium ions, where the energy gap between excited level 5D0 and
the next lower level 7F6 is large (∆E = 12500 cm−1) in comparison to separation between
4I13/2 and 4I15/2 levels of erbium ions (∆E = 6500 cm−1) and non-radiative relaxation rates
for rare earths are negligibly small. In fact, values of the order of multiphonon relaxation
for the 5D0 state of Eu3+ amount to 16, 13, 11 and 10 for lead germanate, lead silicate, lead
phosphate and lead borate glasses. Rates of multiphonon relaxation processes with orders
of ten and higher are negligibly small. Therefore we can assume safely that measured
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luminescence lifetime values for europium-doped samples studied equal to radiative
lifetimes of the 5D0 state of Eu3+.

4. Conclusions

Near-IR emission spectra of Er3+ ions in four HMOG glass hosts based on PbO–
Ga2O3–GeO2, PbO–Ga2O3–SiO2, PbO–Ga2O3–P2O5 and PbO–Ga2O3–B2O3 are presented
and discussed. The near-IR emission bands correspond to the 4I13/2 → 4I15/2 transition
of erbium. In particular, spectroscopic parameters for erbium ions such as emission
bandwidth and lifetime were determined. Correlation between luminescence lifetimes for
erbium ions and phonon energies of the HMOG systems has been proposed. The measured
lifetime for the 4I13/2 state of erbium ions decreases markedly with increasing phonon
energy from PbO–Ga2O3–GeO2 to PbO–Ga2O3–B2O3 glass. Completely different results
were obtained for the same glass host matrices containing europium ions, i.e., the measured
lifetime for the 5D0 state of Eu3+ increases with increasing phonon energy. Owing to large
5D0–7F6 energy gap, non-radiative multiphonon relaxation rates are negligibly small and
experimental values of luminescence lifetimes are equal to radiative lifetimes for all HMOG
glasses containing europium ions.
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