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We report measurements by the T2K experiment of the parameters θ23 and Δm2
32, which govern the

disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at
T2K’s neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a
mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to
measure these parameters separately for neutrino and antineutrino oscillations. Data taken from 1.49 × 1021

protons on target (POT) in neutrino mode and 1.64 × 1021 POT in antineutrino mode are used. The best-fit
values obtained by T2K were sin2ðθ23Þ ¼ 0.51þ0.06

−0.07 ð0.43þ0.21
−0.05 Þ and Δm2

32 ¼ 2.47þ0.08
−0.09 ð2.50þ0.18

−0.13 Þ ×
10−3 eV2=c4 for neutrinos (antineutrinos). No significant differences between the values of the parameters
describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an
effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take
nonphysical values larger than 1 is also performed to check the consistency of our data with the three-flavor
model. Our data were found to be consistent with a physical value for the mixing angle.

DOI: 10.1103/PhysRevD.103.L011101

I. INTRODUCTION

We present an update of T2K’s νμ and ν̄μ disappearance
measurement from Ref. [1] with a larger statistical sample
and significant analysis improvements. Data taken up until
the end of 2018 are used. This is a beam exposure of 1.49 ×
1021 (1.64 × 1021) protons on target in neutrino (antineu-
trino) mode, an increase by a factor of 2.0 (2.2) over the
previous result. While the same data were used for the
result reported in Ref. [2], the result reported here focuses
on events containing νμ and ν̄μ candidates. These events are

used to search for potential differences between neutrinos
and antineutrinos and to test consistency with the PMNS
oscillation model, by adding additional degrees of freedom
to the oscillation probability formulas in the present
analysis. These additional degrees of freedom are more
straightforward to implement and interpret when studying
muon-like events only.
Themixing of the three flavors of neutrinos without sterile

neutrinos or nonstandard interactions is usually described
with the PMNS formalism [3,4]. In this formalism, the
vacuum oscillation probability is determined by six param-
eters: three angles (θ12, θ13, and θ23), two mass-squared
splittings (Δm2

21 and Δm2
32, where Δm2

ij ¼ m2
i −m2

j ), and a
complex phase (δCP). It is not known whether the smaller of
the two mass splittings is between the two lightest states or
the twoheaviest states.These two cases are called normal and
inverted ordering, respectively. νμ disappearance is not
sensitive to this ordering, so all results here assume the
normal mass ordering.
In this model, which assumes CPT conservation, νμ and

ν̄μ have identical survival probabilities for vacuum oscil-
lations. At T2K’s beam energy and baseline, the effect of
the neutrinos propagating through matter on the muon
neutrino survival probability is very small. Therefore, if the
oscillation probabilities for neutrinos and antineutrinos
differ by significantly more than expected, this could be
interpreted as possible CPT violation and/or nonstandard
interactions [5,6].
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In the three-flavor analysis shown here, the oscillation
probabilities for νμ and ν̄μ are calculated using the standard
PMNS formalism, but with independent parameters to
describe ν̄μ and νμ oscillations, i.e., θ̄23 ≠ θ23 and

Δm2
32 ≠ Δm2

32, where the barred parameters affect the
antineutrino probabilities. As this dataset does not constrain
the other PMNS parameters, they are assumed to be the
same for ν and ν̄.
While it allows the νμ and ν̄μ parameters to take different

values, this three-flavor analysis does not allow oscillation
probability values not allowed by the PMNS formalism. To
test consistency with the PMNS formalism, we also present
an analysis in which the oscillation probability is allowed to
exceed the maximum possible PMNS value. In this
analysis, for computational simplicity we approximate
the probability for muon neutrino disappearance using a
“two-flavor”-only oscillation formula with an effective
mixing angle and mass splitting that takes into account
the information we know about “three-flavor” mixing.
sin2 ð2θÞ is then allowed to take values exceeding 1, where
θ is the effective neutrino mixing angle in this framework.
This two-flavor approximation gives probabilities that
agree within better than 0.5% with the full PMNS calcu-
lation across T2K’s neutrino energy range at the best-fit
parameter values from T2K’s joint muon and electron-like
event analysis [2].

II. EXPERIMENTAL APPARATUS

T2K [7] searches for neutrino oscillations in a long-
baseline (295 km) neutrino beam sent from the Japan
Proton Accelerator Research Complex (J-PARC) in Tokai,
Japan to the Super-Kamiokande (SK) detector. SK [8,9] is
situated 2.5° off the axis of the beam, meaning that it is
exposed to a relatively narrow-energy-width neutrino flux,
peaked around the oscillation maximum 0.6 GeV.
The neutrino beam generation starts with 30 GeV pro-

tons which strike a graphite target, producing hadrons,
which are charge-selected and focused by three magnetic
horns [10], and decay in a 96-m decay volume producing
predominantly muon neutrinos. Positively or negatively
charged hadrons are selected using the polarity of the horns,
creating a beam dominated by neutrinos or antineutrinos,
respectively.
A set of near detectors measures the unoscillated

neutrino beam 280 m downstream of the interaction target.
The INGRID [11] detector is an array of iron/scintillator
sandwiches arranged in a cross pattern centered on the
beam axis. INGRID measures the neutrino beam direction,
stability, and profile [12].
The off-axis ND280 detector has three magnetized time

projection chamber (TPC) trackers [13] and two fine-
grained detectors (FGD1, made of CH, and FGD2, made
of 52% water 48% CH by mass) [14], surrounded by an
electromagnetic calorimeter [15]. A muon range detector

[16] is located inside the magnet yokes. The magnetized
tracker measures the momentum and charge of particles.
ND280 constrains the νμ and ν̄μ flux, the intrinsic νe and ν̄e
contamination of the beam, and the interaction cross
sections of different neutrino reactions.
The far detector, SK [8,9] is a 50 kt water Cherenkov

detector, equipped with 11 129 inward-facing 20-inch
photomultiplier tubes (PMTs) that image neutrino inter-
actions in the pure water of the inner detector. SK also has
1885 outward-facing 8-inch PMTs instrumenting the outer
detector, used to veto events with interaction vertices
outside the inner detector.

III. ANALYSIS DESCRIPTION

The analysis presented here follows the same strategy as
T2K’s PMNS three-flavor joint fit to muon disappearance
and electron appearance data in Ref. [2]. A model is
constructed that gives predictions of the spectra at the near
and far detectors. This model uses simulations of the
neutrino flux, interaction cross sections, and detector
response and has variable parameters to account for both
systematic and oscillation parameters. First, a fit of this
model is performed to the near-detector data to tune and
constrain the neutrino flux and interaction cross-section
uncertainties. The results of this fit are then propagated to
the far detector as a multivariate normal distribution
described by a covariance matrix and the best-fit values
for each systematic parameter. The far-detector data are
then fit to constrain the oscillation parameters. This section
describes each part of the analysis, focusing on changes
from the analysis reported in Ref. [1]. Where not stated, the
same procedure as in Ref. [2] is used. Particularly, the beam
flux prediction, neutrino interaction modeling, systematic
uncertainties, and near-detector event selection are
unchanged, and the far-detector event selection used in
this result is a subset of that in Ref. [2].

A. Beam flux prediction

The T2K neutrino flux and energy spectrum prediction is
discussed extensively in Ref. [17]. The modeling of
hadronic interactions is constrained by thin target hadron
production data, from the NA61/SHINE experiment at
CERN [18–22]. Before the ND280 analysis, the systematic
uncertainties on the expected number of muon-like events
after oscillations at SK due to the beam flux model are 8%
and 7.3% for the νμ and ν̄μ beams, respectively.

B. Neutrino interaction models

The νμ and ν̄μ oscillation probabilities are expected to be
symmetric, but their interaction probabilities with matter
are not. For example, the interaction cross section for a
charged-current quasielastic (CCQE) νμ interaction on
oxygen is about 4 times higher than that for ν̄μ.
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We model neutrino interactions using the NEUT inter-
action generator [23]. The interaction cross-section model
and uncertainties used in this result are the same as in
Ref. [2]. This model is significantly improved compared to
the previous version of this analysis [1]. The treatment of
multinucleon so-called 2p2h interactions [24,25] has been
updated, with new uncertainties accounting for different
rates of this interaction for neutrinos and antineutrinos, and
for carbon and oxygen targets. We also allow the shape of
the interaction cross section for 2p2h in energy-momentum
transfer space to vary between that expected for a fully
Δ-exchange-type interaction and that expected for a fully
non-Δ-exchange-like interaction.
An uncertainty on the shielding of nucleons by the

nucleus in CCQE interactions, modeled using the Nieves
random phase approximation (RPA) method, has been
added to the analysis [26–29]. The analysis also now
accounts for mismodeling that could take place due to
choosing an incorrect value for the nucleon removal energy
in the CCQE process. Finally, a fit to external data [30,31]
is now used to constrain our uncertainties on resonant
single-pion production.

C. Near-detector event selection

We define 14 samples of near-detector events, each
targeting a particular part of our flux or cross-section
model. All selected events must have a reconstructed
charged muon present as the highest momentum track,
as we are targeting charged-current (CC) neutrino inter-
actions. In neutrino beam mode, the muon is required to be
negatively charged to target neutrino interactions. The
neutrino mode samples are separated by the number of
pions reconstructed: 0 pions, 1 positively charged pion, and
any other number of pions, giving samples enriched in
CCQE, CC single pion, and CC deep inelastic scattering
interactions, respectively.
In antineutrino beam mode, there is one set of samples

for positively charged muons and one set for negatively
charged muons, allowing a separate constraint of the
neutrino and antineutrino composition of the beam. This
is important in antineutrino mode, as the interaction cross
section for neutrinos is larger than for antineutrinos. The
antineutrino mode samples are separated by the number of
reconstructed tracks matched between the TPC and FGD: 1
or more than 1, giving samples enriched in CCQE or CC
non-QE interactions, respectively. In both beam modes,
samples are further separated by which FGD their vertices
are reconstructed in. As in Ref. [2], the near-detector
dataset for antineutrino mode is 1.38 times larger than in
Ref. [1], while the neutrino-mode dataset is the same size.

D. Far-detector event selection

The analyses presented here target muon-like events. SK
is not able to distinguish neutrinos from antineutrinos at an
event-by-event level, as it cannot reconstruct the charge of

the resulting muons. Hence, we form separate samples of
events from neutrino and antineutrino beam mode to
separately measure νμ and ν̄μ oscillations.
SK’s vertex position, momentum, and particle identifica-

tion (PID) are reconstructed from the Cherenkov rings
produced by charged particles traversing the detector. PID
is possible becausemuons scatter little due to their largemass
and hence produce a clear ring pattern, while electrons
produce electromagnetic showers resulting in Cherenkov
rings with diffuse edges. The ring’s opening angle also helps
to distinguish between electrons and muons. The samples
used here require exactly one muon-like Cherenkov ring and
no other rings to be reconstructed and are referred to as 1Rμ.
T2K’s reconstruction algorithm [32] fits the number of

photons and timing information from each SK PMT,
allowing better signal-background discrimination and a
fiducial volume increase of ∼20% over the previous algo-
rithm used in Ref. [1]. Both 1Rμ samples use the same
selection criteria as in Ref. [2]. Table I shows the number of
events predicted and observed for both 1Rμ samples.

E. Systematic uncertainties and oscillation analysis

Our model includes systematic uncertainties from the
neutrino flux prediction, the neutrino interaction cross-
section model, and detector effects. We constrain several of
these uncertainties by fitting our model to ND280 near-
detector data in bins of muon momentum and angle. This
ND280 constrained model is then used as the prior in the
fits to the far-detector data, where the SK muon-like
samples are binned in the neutrino energy reconstructed
using lepton momentum and angle assuming a CCQE
interaction. Table II shows the total systematic error in each
1Rμ sample and a breakdown of the contributions from
each uncertainty source. The near-detector fit introduces
large anticorrelations between the parameters modeling the
flux and cross-section uncertainties, so Table II also lists the
overall contribution to the uncertainty from the combina-
tion of flux and cross-section uncertainties.
The near-detector fit reduces the systematic error on the

expected number of events in the neutrino (antineutrino)
mode 1Rμ sample from 15% (13%) to 5.5% (4.4%).
In the three-flavor analysis, oscillation probabilities for

all events are calculated using the full PMNS formulas [33],
with matter effects (crust density, ρ ¼ 2.6 g=cm3 [34]). We
allow the values of θ23 and Δm2

32 used in the neutrino

TABLE I. Number of events predicted using the best-fit
oscillation parameter values from a previous T2K analysis
[30], and the number of data events collected for both 1Rμ
samples.

Sample Prediction Data

ν-mode 1Rμ 272.34 243
ν̄-mode 1Rμ 139.47 140
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oscillation probability calculation to vary independently
from those used for the antineutrino oscillation probability,
in order to search for differences between neutrino and
antineutrino oscillations.
In the two-flavor analysis, we use a modified version of

the canonical two-flavor oscillation formula [35], where the
disappearance probability for νμ (ν̄μ) is given by

Pνμ→νμðPν̄μ→ν̄μÞ ≈ 1 − αðᾱÞsin2
�
1.267

Δm2½eV2�L½km�
E½GeV�

�
;

where α plays the role of the well-known effective two-
flavor mixing angle, sin22θ. α differs from sin2 2θ in that it
is allowed to take values larger than 1. The effective two-
flavor Δm2 used here can be obtained from the three-flavor
oscillation parameters using the following equation:

Δm2 ¼ Δm2
32 þ sin2θ12Δm2

21

þ cos δCP sin θ13 sin 2θ12 tan θ23Δm2
21:

We use independent oscillation parameters for neutrinos
and antineutrinos, with α and Δm2 affecting neutrinos, and

ᾱ and Δm2 affecting antineutrinos.
When α > 1.0, the νμ (ν̄μ) survival probability is

negative at some points in (Δm2, Eν) parameter space.
When weighting our Monte Carlo to produce predicted
spectra for these points of parameter space, this gives
negative oscillation probability weights for some events.
We allow these negative event weights, but we do not allow
the total predicted number of events in any bin of our event
samples to be negative, setting them instead to 10−6 where
this occurs.
For both the two-flavor and three-flavor analyses, a joint

maximum-likelihood fit to both 1Rμ samples is performed.
The likelihood used is a marginal likelihood, where all
parameters except the parameters of interest are margin-
alized over.

The priors for the nuisance parameters are taken from the
uncertainty model after the fit to ND280 data. Uniform
priors are used in δCP,Δm2

32, and sin
2 θ23. θ12 andΔm2

12 are
fixed at their values from Ref. [36], due to their negligible
effect on the νμ survival probability. The prior on θ13 is
taken from Ref. [36].
We build frequentist confidence intervals, assuming the

critical values for Δχ2 from a standard χ2 distribution. Δχ2
is defined as the difference between the minimum χ2 and
the value for a given point in parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the νμ and ν̄μ events
observed during neutrino and antineutrino running modes
are shown in Fig. 1. All fits discussed below are to both
1Rμ samples unless stated otherwise.

TABLE II. Systematic uncertainty on the number of events in
each of the 1Rμ samples broken down by uncertainty source.
Neutrino cross-section parameter uncertainties (denoted “xsec”)
are broken down by whether they are constrained by ND280 data
or not. Uncertainties due to final state interactions (FSI) and
secondary interactions (SI) are incorporated in the analysis by
adding them to the SK detector effect uncertainty, so these are
listed together.

Error source 1Rμ ν-mode 1Rμ ν̄-mode

Flux (constr. by ND280) 4.3% 4.1%
Xsec (constr. by ND280) 4.7% 4.0%
Xsec (all) 5.6% 4.4%

Fluxþ Xsec (constr. by ND280) 3.3% 2.9%
Fluxþ Xsec (all) 5.4% 3.2%

SK detector effectsþ FSIþ SI 3.3% 2.9%
Total 5.5% 4.4%
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FIG. 1. Reconstructed energy spectra for the neutrino-mode
(top) and antineutrino-mode (bottom) 1Rμ samples. The lines
show the predicted number of events under several oscillation
hypotheses: “Joint νe=νμ analysis” uses the best-fit values from a
joint fit of the PMNS model to electron-like and muon-like data
[2], “3-flavor νμ analysis” uses the best fit from the three-flavor fit
reported here to the muon-like data, and “2-flavor νμ analysis”
uses the best-fit value in the two-flavor fit reported here to the
muon-like data. The uncertainty on the data includes all predicted
event rates for which the measured number of data events is less
than a Poisson standard deviation from that prediction.
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A. Three-flavor analysis

For normal ordering, the best-fit values obtained for the
parameters describing neutrino oscillations are sin2θ23 ¼
0.51þ0.06

−0.07 and Δm2
32 ¼ 2.47þ0.08

−0.09 × 10−3 eV2=c4, and those
describing antineutrino oscillations are sin2θ̄23 ¼ 0.43þ0.21

−0.05

and Δm2
32 ¼ 2.50þ0.18

−0.13 × 10−3 eV2=c4. The best-fit value

and uncertainty on Δm2
32 obtained for normal ordering are

equivalent to those that would be obtained on Δm2
31 for

inverted ordering.
Figure 2 shows the confidence intervals on the oscil-

lation parameters applying to νμ overlaid on those for the
parameters applying to ν̄μ. As the parameters for νμ and ν̄μ
show no significant incompatibility, this analysis provides
no indication of new physics. We also show the confidence
interval for Δm2

32 and sin2 θ23 from the fit to electron-like
and muon-like data in Ref. [2]. One can see by comparing
these results that T2K’s sensitivity to whether sin2 θ23 is
above or below 0.5 is driven by the electron-like samples,
as the νμ disappearance probability depends at leading
order on sin2 ð2θ23Þ.

B. Two-flavor consistency check analysis

The best-fit values obtained on the effective two-flavor
oscillation parameters are Δm2 ¼ 2.49þ0.08

−0.08 eV2=c4,

α ¼ 1.008þ0.017
−0.016 , Δm2 ¼ 2.51þ0.15

−0.14 × 10−3 eV2=c4, ᾱ ¼
0.976þ0.029

−0.029 . Fig. 3 shows the 68% and 90% confidence

intervals for (Δm2, α) and (Δm2, ᾱ). Both the 1σ confidence
intervals include values of αðᾱÞ ≤ 1.0, indicating no sig-
nificant disagreement between data and standard
physical PMNS neutrino oscillations. We also see good
compatibility between the parameters affectingneutrinos and
antineutrinos.

C. Conclusions

We have shown separate measurements of the oscillation
parameters governing νμ and ν̄μ disappearance in long-
baseline neutrino experiments using a significantly larger
data sample and a much improved model of systematic
uncertainties than those used in T2K’s previous measure-
ment of these parameters in Ref. [1]. We also show a
consistency check between our data and the PMNS
framework, where sin2ð2θÞ is allowed to take values larger
than 1. In all analyses we find that the neutrino and
antineutrino oscillation parameters are compatible with
each other, and that our data are compatible with the
PMNS framework. The results from these fits improve
upon the sensitivity of and are not in significant disagree-
ment with previous similar results from the MINOS
Collaboration [37]. (Both show values of Δm2

32 around
2.5 × 10−3 eV2=c4 and θ23 consistent with maximal
mixing.)
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