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ABSTRACT

Purpose: The paper is a review of some problems concerning micromagnetism and magnetism in 
disordered system.Magnetism of disordered systems is an important problem in analysis of many 
magnetic materials. As we understand, the term disorder is associated with the both structural 
(topological and/or chemical) and magnetic (interactions, anisotropy) failures. Typical materials, where 
phenomena are influenced by the disorder are amorphous and nanocrystalline alloys, nanostructures 
of magnetic objects, nanoconposites, diluted magnetic materials and intermetallic compounds of rare 
earth and transition metals. Moreover, in polycrystalline samples can be observed some anomalies 
related to the area between the grains, which inherently carries some attributes of the disorder. Thus, 
knowledge of the subject presented here is essential for the proper analysis of magnetics with elements 
of disorder. In the paper the following problems are discussed: i)magnetization processes in nanosized 
objects including the famous Stoner-Wohlfarth model, ii) superparamagnetism and magnetic viscosity 
(time dependent effects), iii) random field Ising model, random bond model and random anisotropy 
model. Applications of the theories for selected materials (magnetically soft and hard, thin layers, 
diluted magnetics, and powder systems) are also shown.

Design/methodology/approach: Magnetism in disordered materials is a complex problem that, until 
now, has not exact solutions. There the two approaches. One of them requires some approximation 
of the problem in order to obtain exact analytical results. The second approach consists in numerical 
analysis of exact problem that leads to approximated solutions. In the both cases it is important in which 
stage of a model the disorder is introduced. In the paper the two approaches are widely discussed.

Findings: The main conclusion of the paper is that some unusual magnetic properties can be 
attributed to magnetic and structural disorder.

Practical implications: Application of the presented in the paper models indicate that in many 
magnetic materials the contribution of magnetic disorder plays an important role and should be taken 
onto account in order to perform correct analysis.

Originality/value: The presented collection of different theoretical models including some elements 
of micromagnetism and magnetism in disordered system as well as applications of the theories to 
modern magnetric materials is an original idea. The paper is addressed to scientists and researchers 
that deal with magnetism and related subjects.

Keywords: Magnetism; Disordered systems; Amorphous and nanocrystalline alloys; Langevin 
granulometry
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1. Introduction 
A progress of modern technologies requires novel materials 

with properties that can be optimize for different applications. In 
many areas it is necessary to use materials with broad spectrum of 
magnetic properties. Development of electro-energetics,
electronics or even computer science would not be possible 
without externally soft or hard magnets. From this point of view 
during last few decades one can observe an increasing interest of
amorphous alloys, nanocrystalline alloys and nanocomposites [1].
It is well known that by a proper chemical composition and
magnetic nanostructure (magnetic nanograins embedded into 
magnetic/nonmagnetic matrix) one can control different magnetic 
properties such as the Curie temperature, permeability, coercivity,
saturation magnetization, remanence, magnetocaloric effect etc.
In other words, almost all magnetic properties of nanostructured
materials depend on size of nanograins, their composition and
distribution. One can mention two characteristic effects i.e. the so-
called enhancement of soft magnetic properties and magnetic
hardening, both caused by a specific system of magnetic nano-
objects and their interactions. For example, relative magnetic 
permeability of nanostructered iron-base alloys reaches the value 
of 105-106 which is about 1000 times higher than for conventional
soft magnets. From the opposite site, it is also known that a 
certain nanostructure of magnetically hard compounds can lead to 
further significant magnetic hardening - like for Fe-B-Nd sintered 
permanent magnets [2]. The key for understanding the mention
above effects is magnetic disorder introduced by different agents
such as fast cooling from liquid phase (chemical and topological
disorder [3]), deformation, nanostructure or magnetic frustrations. 
One can say that the disorder can be connected with some
fluctuations of interatomic distances and nearest surroundings at
atomic level as well as with some fluctuation of characteristic
magnetic properties (e.g. magnetocrystalline anisotropy, easy
magnetization axis …) at cluster or nanograins level. In this 
situation one can expect some deviations of exchange interactions
between atomic magnetic moments which results in a change of
magnetic behaviour of the material. Fully amorphous alloys and 
in the so-called relaxed amorphous state show atomic disorder 
(chemical and/or topological) per definition and are good 
examples of materials that the disorder affects their properties. In
the case of nanostructures possible magnetic interactions can
introduce some new factors leading to an appearance of a new 
quantity different from the system of separated nanograins. Very
interesting are composites that contain coupled (in atomic level)
different magnetic phases with different properties (e.g. soft and 
hard). A specific balance between content of the phases and 
magnetic disorder can significant enhance hard magnetic
properties of such materials. Apart from that, in many other
polycrystalline alloys or compounds some unusual behaviours, 
originated from intergrain regions that possess some attributes of
crystal and magnetic disorder, can be observed.

Magnetism in disordered materials is a complex problem. In
general, there the two approaches. One of them requires some
approximation of the considered problem in order to obtain exact 
analytical results. The second approach consists in numerical 
analysis of exact problem that leads to approximated solutions. In 
the both cases it is important in which stage of a model the 
disorder is introduced. One can list three main models usually

applied in practice i.e. random field Ising model (RFIM), random
bond (RB) and random anisotropy (RA) that include magnetic 
disorder in molecular field, exchange integral and direction of 
easy magnetization axis, respectively. The common way of the
models is to define global free energy of the considered system 
that includes i) energy of interactions between magnetic moments,
ii) interactions between external magnetic field and magnetic 
moments as well as iii) energy of magnetic anisotropy. All of
these factors can contain some fluctuations attributed to a
disorder. The free energy depends on the introduced disorder and
some magnetic parameters such as external magnetic field, 
magnetization, directions of magnetic moments, the so-called
order parameter (see next section). It can be optimized in order to
find a minimum with regards to the parameters that leads to final
results. It is worth to notice that in a case of low-dimensional 
objects an important role plays also shape and surface
anisotropies as well as specific interactions between the objects.

The question, which model should be taken into account for a
specific problem has not a good answer. It depends on a kind of
disorder that is dominant in the analysed system. This is the 
reason why the knowledge of the mentioned models is very
helpful in characterization of real magnetic materials with
contribution of structural and/or magnetic disorder. The models
are usually tested by a comparison with experimental magnetic 
characteristics such as thermomagnetic curves, magnetic
isotherms, hysteresis loops and the so-called zero field cooled - 
field cooled (ZFC-FC) curves.

The aim of this review is to summarize models of magnetism in
low dimensional objects and disordered systems. In Section 2,
problems of magnetization processes in nanosized objects including 
the famous Stoner-Wolfarth model, superparamagnetism and
magnetic viscosity (time dependent effects) are widely discussed.
Section 3 presents the mentioned three models of disordered
magnetism, their assumptions, results and conclusions characteristic
for them. Applications of the theories are included in Section 4 where 
some magnetic properties of selected magnetically soft and hard 
materials are shown and discussed.

2. Magnetism in low-dimensional 
systems

During last few years one can notice a strong development of
low-dimensional physics that concerns thin layers, micro/nano 
structures on surface and in volume [4-7]. The common feature of
the systems is a significant, in a comparison with bulk materials,
contribution of surface. It is worth to plot the percentage
contribution of surface as a function of average size of the object 
(counted in atoms and with the assumption that the lattice 
constant is 2 Å) which is depicted in Fig. 1.

One can see that the contribution of surface becomes
significant for objects with diameter less than 10 nm. As a
consequence of such effect one can indicate a change of electronic
structure as well as an appearance of significant contribution of
shape and surface magnetic anisotropy [8]. From magnetic point 
of view, it is important that the listed factors influence atomic
interactions and what follows can affect magnetization and
magnetic structures.
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Fig. 1. Percentage contribution of surface as a function of average size 
of the object (with the assumption that the lattice constant is 2 Å) 
 
 
2.1. Superparamagnetism 
 

The term superparamagnetism refers to systems of 
noninteracting magnetic clusters or nanoparticles [8]. Usually, 
inside such objects magnetic moments are coupled  
(e.g. ferromagnetically) and therefore, one can consider them as 
one overall magnetic moment µcl. The values of µcl depend on 
atomic magnetic moments, magnetic structure within nanoparticle 
(or cluster) and its size. As examples of materials that reveal 
superparamagnetic properties one can indicate magnetic 
nanocomposites, diluted magnetics, natural rocks with magnetic 
impurities and some biological specimens (hemoglobin, 
ferritin…). Magnetization processes of superparamagnetic 
materials can be well described by the so-called Langevin 
function according to the following relation: 
 

T
Hµ=x,L(x)µn=

x
xµn=H)M(T,

B

cl
clclclcl k

µ1coth 0  (1) 

 
where M is the magnetization, T is the temperature, H is the 
external magnetic field, ncl is the number of clusters per volume 
unit, µ0 is magnetic permeability of vacuum, kB is the Boltrzman 
constant and L is the Langevin function.  
 

The argument of L expresses a competition between magnetic 
energy µclµ0H and thermal energy kBT. Due to the lack of 
intergrain interactions M(T) dependence (and what follows 
susceptibility ) fulfill the Curie low as classical paramagnetics 
but with high magnetic moment. In contrary to this magnetic 
isotherms reveal saturation, like for ferromagnetics. This 
behaviour can be explained in this way that a large cluster 
magnetic moment causes relatively high energy of interaction 
between the cluster and external field, so in a given temperature 
the Langevin function saturates in relatively low H. Fig. 2 
presents a set of magnetic isotherms calculated with different 
values of µcl (at T = 2 and T = 300 K). 

As shown, magnetic clusters that possess overall magnetic 
moment of 20 µB well saturates at T = 2 K but at T = 300 K 
behave like paramagnetics. Saturation of M(T), at this 
temperature, requires higher µcl i.e. in the order of 103 µB. 

 
 
Fig. 2. Calculated magnetic isotherms (normalized to saturation 
MS) for different values of µcl at T = 2 K and T = 300 K 
 

More realistic case of superparamagnetic systems is the 
situation when clusters or nanoparticles possess magnetic 
anisotropy. This means that a change of direction of cluster 
magnetic moments requires some energy. In the simplest case of 
the uniaxial anisotropy the two stages e.g. parallel and antiparallel 
to H are separated by a kind of energy barrier EB with a highest 
dependent of anisotropy coefficient KU and cluster volume V 
(EB=KUV see Fig. 3). 
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Fig. 3. A schematic picture of energetic barrier that separates 
parallel and antiparallel alignment of cluster magnetic moment 
 

If the thermal energy kBT is comparable with the energy 
barrier EB one can observe spontaneous jumps over the barrier. 
Dynamics of this process can be described by the simple 
relaxation formula: 
 

M=
t

M
d

d ,  
T

E=
B

B

k
exp0

  (2) 

 
where  is the temperature dependent time constant. 
 

Let assume that a typical measurement time tp = 100 s. 
If  < tp than the system is superparamagnetic because thermal 
excitations allows rapid jumping over the barrier. Interesting is 
the case when  > tp and the jumps need some time or higher H. 
Generally, an apparent energy barrier depends also of the 
magnetic energy (forced by H) which will be discussed in the next 
paragraph. Nevertheless, in this condition the system is in the so-
called blocking state. Taking a typical value of 0 = 10-9 s one can 
estimate the blocking temperature TB below which magnetization 
depends on time: 
 

B

U
B

VK=T
25k

 (3) 
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and the critical volume (at a given temperature) below which 
nanoparticles always are superparamagnetic (unblocked): 
 

V kr
sp 25 k BT

K U
.  (4) 

 
Table 1 presents the critical diameters Dkr

sp=(6Vkr/ )1/3 for 
different magnetic materials [8]. 
 
Table 1.  
Critical diameter of superparamagnetic nanoparticles for different 
materials 

Material Dkr
sp [nm] 

-Fe 16 
Co 8 
Ni 35 

Fe3O4 4 
SmCo5 2 

 
The blocking temperature, as an important parameter of 

superparamagnetic systems, can be determined from magnetization 
measurements in the ZFC-FC (the so-called zero field cooled and 
field cooled) procedure which is depicted in Fig. 4. 

Starting from point #1 the sample is cooled down without H 
to point #2. In this point the field is switched on, the sample is 
heated and magnetization is recorded until temperature reaches 
point #3 (the ZFC curve). Next, the sample is again cooled down 
and magnetization is again measured. If the sample shows some 
blocking effects one can find a characteristic point in which the 
two curves (ZFC and FC) are separated. This point determines the 
blocking temperature TB. 
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Fig. 4. Schematic diagram of ZFC-FC procedure (see the text) 
 

In some cases (e.g. magnetic composites) a distribution of 
object size and what follows magnetic moments is expected. The 
total response of the material is a superposition of all kind of the 
objects with different magnetic moments: 
 

i
iii )L(xµN=T)M(H, ,    

T
Hµ=x

B

i
i k

µ0   (5) 

 
where Ni is the number (per volume unit) of objects with magnetic 
moment i, H is the external magnetic field. Obviously, saturation 
magnetization MS= iNiµi plays the role of the normalization 

condition. The numbers Ni can be considered as a discreet 
distribution of magnetic objects in the analysed system. The other 
approach is to define a distribution function () (usually one can 
assume a Gaussian, log-normal or exponent function) and 
calculate magnetization by making use of the following equations: 
 

dµL(x)µ(µ)=T)M(H,
0

,     
T
Hµ=x

Bk
µ0   (6) 

 
with the normalization as 
 

 
Based on experimental M(H) magnetic isotherms one can 

determine the numbers Ni or () function which is the main 
problem of the so-called Langevin granulometry [9]. From 
mathematical point of view it is an optimization problem i.e. how 
to find a proper magnetic moment distribution for which 
theoretical M(H) curve fits to the empirical one. In this area there 
are several numerical methods that give physically reasonable 
results. One of very promising methods is the simulation 
annealing (SA) procedure with additional local entropy condition 
(for details see [10]). Summarizing the above one can state that 
the Langevin granulometry analysis allow determining not only 
distribiution of magnetic moments but also number of atoms 
(molecules) within the detected clusters. If crystal structure of the 
clusters is known it is possible to determine average size of the 
objects - this is the reason why such analysis is called 
granulometry. 
 
 
2.2. The Stoner-Wohlfarth model of 
nanoparticles magnetization 
 

The Stoner-Wohlfarth model [11] concerns magnetization 
processes of single domain particles in which a change of 
magnetization direction requires coherent rotation of atomic 
magnetic moments inside. Let assume that the shape of the 
particles is an ellipsoid with the main axis aligned along the z 
axis, as depicted in Fig. 5. Moreover, all further analysis are valid 
for T = 0 K. 

 

 
 
Fig. 5. Definition of directions and angles in the Stoner-Wolfarth 
model (see the text) 
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magnetic moments inside. Let assume that the shape of the 
particles is an ellipsoid with the main axis aligned along the z 
axis, as depicted in Fig. 5. Moreover, all further analysis are valid 
for T = 0 K. 

 

 
 
Fig. 5. Definition of directions and angles in the Stoner-Wolfarth 
model (see the text) 

0

dµµ(µ)=MS

2.2.  The Stoner-Wohlfarth model  
of nanoparticles magnetization
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The key point in the model is to define proper energy terms in 
a function of  (the angle between the applied magnetic field M 
and the ellipsoid axis z) and  (the angle between magnetization 
H and the ellipsoid axis z). Next, by a minimization of the energy 
(regards to ) one can determine the direction of magnetization in 
a function of external magnetic field H, direction of H, and 
a shape of the particle. The important terms are 
magnetocrystalline anisotropy (let say uniaxial), shape anisotropy 
and magnetic energy: 
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where K1 is the uniaxial anisotropy coefficient, MS is the 
saturation magnetization of the particle, N|| and N  are the 
demagnetization factors parallel and perpendicular to the main 
axis, H is the external field. The first term in eq.(7) is related to 
magnetocrystalline anisotropy energy, the next two terms reflects 
the shape anisotropy of ellipsoid and the last one is the magnetic 
energy. Symmetry of the problem allows making a simplification 
(  = 0) and consider the system as two dimensional in plane x-z. 
For these conditions one can get: 
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From the condition E/ =0 one can determine the so-called 

nucleation field HN defined as a field necessary for changing 
direction of magnetization from parallel (to z axis) to antiparallel: 
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Let analyse spherical particles as a specific case of ellipsoid 

where N|| = N . External field is applied in z direction. Fig. 6 shows 
calculated E( ) dependences with different ratio of the magnetic 
energy µ0MSH and the anisotropy coefficient K1. When H = 0 
energy of the system has the two equivalent minima at  
 = 0 and  = . For µ0MSH/K1 = 1 the system has one global energy 

minimum at  = 0 but there is also a local minimum at  = . Let 
notice that with increasing H the energy barrier between these two 
directions decreases and disappears for µ0MSH/K1 =2. A position of 
the maximum of the energy barrier in a function of H is: 
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From the condition cos(µ0MSH/2K1)  1 one can determine 

the so-called anisotropy field HA for which the energy barrier 
disappears: 
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Important is also a value of the barrier E=Emax-E( = ) in a 

function if external field H which is: 
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Fig. 6. E( ) dependences with different ratio of magnetic energy 
µ0MSH and anisotropy coefficient K1 for  = 0, according to the 
Stoner-Wolfarth model 
 

Magnetization of the particle is defined as a projection of MS 
(aligned in the preferred by energy minimum angle ) to the 
direction of H. Therefore magnetization curve M(H) shows 
a rapid jump from M = MS to M = -MS at the anisotropy field. 

Fig. 7 depicts magnetization curves for different values of the  
- angle between external field H and the z axis which is also the 
easy magnetization axis. In real situations, samples consist of a set 
of nanoparticles with random distribution of their position and what 
follows easy magnetization axes. Total magnetization of such 
materials is a superposition of the curves presented in Fig. 7. 
Numerical simulations reveal that (at T = 0) for the system with 
randomly dispersed nanoparticles the remanence of magnetization 
(H = 0) MR = 0.5 MS and coercive field HC = 0.48 HA [12]. 
 

 
 
Fig. 7. Reduced magnetization m = M/MS vs. reduced field 
h = H/HA for different values of  calculated in the frame of the 
Stoner-Wolfarth model 
 
 
2.3. Magnetic viscosity and time dependent 
effects 
 

The fact that two directions of magnetization direction can be 
separated by an energy barrier E is a source of the so-called time 

2.3.  Magnetic viscosity and time dependent  
effects

 

dependent effects or magnetic viscosity [13-15]. According to the 
Stoner-Wolfarth model E depends on magnetic anisotropy and 
energy of interaction between magnetization of the particle and 
external field H. The thermal energy (or thermal excitations) 
statistically can change magnetization direction with the 
probability proportional to exp(- E/kBT). So, the process can be 
activated by temperature or external field. 

In the case of a single nanoparticle (or a set of identical 
particles) time dependent magnetization can be describe by 
formula (19) taking EB = E. However, in real materials one can 
expect a contribution of different magnetic nanoparticles with 
different parameters which cause that the M(t) response is a 
complex phenomenon with a continuous or discrete distribution of 
time constants. In the last case one can write: 
 

i i
Si

tMtM exp1)(   (13) 

 
where M(t) is related to an experiment where M increases, i 
counts kind of objects with the same time constant i, MSi is the 
magnetization of i-th component at t =  (intensity of the 
relaxation) . 
 

In some cases it is possible to obtain a proper analytical 
expression for M(t). The necessary assumption are: i) uniform 
distribution of energy barrier n(E) = nE = const., ii) each objects 
contributes equally to the total magnetization and iii) 
magnetization measurements for t >0 are performed without 
magnetic field. Accounting the above one can obtain: 
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where m’ is saturation magnetization of the object. The quantity 
nEkBT is called magnetic viscosity and can be determined as a 
slope of M(lnt) curve. 

 
More precise analysis can be performed by making use of the 

so-called two-level model [16]. Let assume that material contain 
some magnetic objects that are characterized by total magnetic 
moment µ, activation energy (energy barrier) EA and a number of 
such objects N(µ,EA). Objects with the same µ and EA can be 
analyzed as follows. Two magnetic states, let say X and Y, with 
different direction of magnetization are separated by the 
activation energy EA and additional factor related to magnetic 
energy h of the particle (see Fig. 8). Not that the barrier is not 
symmetrical for the state X and Y. Dynamics of the system is 
described by kinetic equations: 
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where NX is the number of objects in state X, NY is the number of 
objects in state Y, WXY is the frequency of jumps from X to Y, 
WYX is the frequency of jumps from Y to X. 
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Fig. 8. Schematic diagram of the two-level model 
 

The quantity WXY and WYX the canonical ensemble can be 
written as: 
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where h is the splitting of activation energy which may be caused 
by external magnetic field i.e. h=µ0µH. Solution of the equations 
(15) is: 
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where N=NX+NY, NX0=NX(t=0),  is the time constant. Let 
consider the experiment where sample is magnetically saturated 
and next, magnetic field is switched to opposite direction at t = 0. 
State X is related to the objects that do not change their magnetic 
moments and state Y is related to the objects that change 
magnetic moments with the field. Magnetization is expressed by 
M = µ(NY-NX)/V = µ(N-2NX)/V.  
 

Now, we can introduce a distribution of both µ and EA. Let 
divide ranges of the quantities into equally spaced channels with 
width dµ and dEA, respectively. Let numbers of the channels are i 
for the µ space and j for the EA space The distribution Nij is a 
number of objects with magnetic moment µ = i·dµ and activation 
energy E0 =  j·dEA. The total magnetization is expressed as: 
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where Nij

X is related to eq.(17) and eq.(16) in which EA  j·dEA 
and h=µ0µH  i·dµ µ0 H . 
 

It is worth to present a behavior of the system with a Gaussian 
distribution of µ and EA: 
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Fig. 9 depicts M(t) curves calculated (using eq.(17)-(19)) with 

the distribution parameters: E = 0.1 eV, E0 = 0.5 eV, µ = 300 µB, 
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The key point in the model is to define proper energy terms in 
a function of  (the angle between the applied magnetic field M 
and the ellipsoid axis z) and  (the angle between magnetization 
H and the ellipsoid axis z). Next, by a minimization of the energy 
(regards to ) one can determine the direction of magnetization in 
a function of external magnetic field H, direction of H, and 
a shape of the particle. The important terms are 
magnetocrystalline anisotropy (let say uniaxial), shape anisotropy 
and magnetic energy: 
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where K1 is the uniaxial anisotropy coefficient, MS is the 
saturation magnetization of the particle, N|| and N  are the 
demagnetization factors parallel and perpendicular to the main 
axis, H is the external field. The first term in eq.(7) is related to 
magnetocrystalline anisotropy energy, the next two terms reflects 
the shape anisotropy of ellipsoid and the last one is the magnetic 
energy. Symmetry of the problem allows making a simplification 
(  = 0) and consider the system as two dimensional in plane x-z. 
For these conditions one can get: 
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From the condition E/ =0 one can determine the so-called 

nucleation field HN defined as a field necessary for changing 
direction of magnetization from parallel (to z axis) to antiparallel: 
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Let analyse spherical particles as a specific case of ellipsoid 

where N|| = N . External field is applied in z direction. Fig. 6 shows 
calculated E( ) dependences with different ratio of the magnetic 
energy µ0MSH and the anisotropy coefficient K1. When H = 0 
energy of the system has the two equivalent minima at  
 = 0 and  = . For µ0MSH/K1 = 1 the system has one global energy 

minimum at  = 0 but there is also a local minimum at  = . Let 
notice that with increasing H the energy barrier between these two 
directions decreases and disappears for µ0MSH/K1 =2. A position of 
the maximum of the energy barrier in a function of H is: 
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the so-called anisotropy field HA for which the energy barrier 
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Fig. 6. E( ) dependences with different ratio of magnetic energy 
µ0MSH and anisotropy coefficient K1 for  = 0, according to the 
Stoner-Wolfarth model 
 

Magnetization of the particle is defined as a projection of MS 
(aligned in the preferred by energy minimum angle ) to the 
direction of H. Therefore magnetization curve M(H) shows 
a rapid jump from M = MS to M = -MS at the anisotropy field. 

Fig. 7 depicts magnetization curves for different values of the  
- angle between external field H and the z axis which is also the 
easy magnetization axis. In real situations, samples consist of a set 
of nanoparticles with random distribution of their position and what 
follows easy magnetization axes. Total magnetization of such 
materials is a superposition of the curves presented in Fig. 7. 
Numerical simulations reveal that (at T = 0) for the system with 
randomly dispersed nanoparticles the remanence of magnetization 
(H = 0) MR = 0.5 MS and coercive field HC = 0.48 HA [12]. 
 

 
 
Fig. 7. Reduced magnetization m = M/MS vs. reduced field 
h = H/HA for different values of  calculated in the frame of the 
Stoner-Wolfarth model 
 
 
2.3. Magnetic viscosity and time dependent 
effects 
 

The fact that two directions of magnetization direction can be 
separated by an energy barrier E is a source of the so-called time 

 

dependent effects or magnetic viscosity [13-15]. According to the 
Stoner-Wolfarth model E depends on magnetic anisotropy and 
energy of interaction between magnetization of the particle and 
external field H. The thermal energy (or thermal excitations) 
statistically can change magnetization direction with the 
probability proportional to exp(- E/kBT). So, the process can be 
activated by temperature or external field. 

In the case of a single nanoparticle (or a set of identical 
particles) time dependent magnetization can be describe by 
formula (19) taking EB = E. However, in real materials one can 
expect a contribution of different magnetic nanoparticles with 
different parameters which cause that the M(t) response is a 
complex phenomenon with a continuous or discrete distribution of 
time constants. In the last case one can write: 
 

i i
Si

tMtM exp1)(   (13) 

 
where M(t) is related to an experiment where M increases, i 
counts kind of objects with the same time constant i, MSi is the 
magnetization of i-th component at t =  (intensity of the 
relaxation) . 
 

In some cases it is possible to obtain a proper analytical 
expression for M(t). The necessary assumption are: i) uniform 
distribution of energy barrier n(E) = nE = const., ii) each objects 
contributes equally to the total magnetization and iii) 
magnetization measurements for t >0 are performed without 
magnetic field. Accounting the above one can obtain: 
 

const+ttTnm'=tMtM BE )ln(k)()( 00   (14) 
 
where m’ is saturation magnetization of the object. The quantity 
nEkBT is called magnetic viscosity and can be determined as a 
slope of M(lnt) curve. 

 
More precise analysis can be performed by making use of the 

so-called two-level model [16]. Let assume that material contain 
some magnetic objects that are characterized by total magnetic 
moment µ, activation energy (energy barrier) EA and a number of 
such objects N(µ,EA). Objects with the same µ and EA can be 
analyzed as follows. Two magnetic states, let say X and Y, with 
different direction of magnetization are separated by the 
activation energy EA and additional factor related to magnetic 
energy h of the particle (see Fig. 8). Not that the barrier is not 
symmetrical for the state X and Y. Dynamics of the system is 
described by kinetic equations: 
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where NX is the number of objects in state X, NY is the number of 
objects in state Y, WXY is the frequency of jumps from X to Y, 
WYX is the frequency of jumps from Y to X. 
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Fig. 8. Schematic diagram of the two-level model 
 

The quantity WXY and WYX the canonical ensemble can be 
written as: 
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where h is the splitting of activation energy which may be caused 
by external magnetic field i.e. h=µ0µH. Solution of the equations 
(15) is: 
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where N=NX+NY, NX0=NX(t=0),  is the time constant. Let 
consider the experiment where sample is magnetically saturated 
and next, magnetic field is switched to opposite direction at t = 0. 
State X is related to the objects that do not change their magnetic 
moments and state Y is related to the objects that change 
magnetic moments with the field. Magnetization is expressed by 
M = µ(NY-NX)/V = µ(N-2NX)/V.  
 

Now, we can introduce a distribution of both µ and EA. Let 
divide ranges of the quantities into equally spaced channels with 
width dµ and dEA, respectively. Let numbers of the channels are i 
for the µ space and j for the EA space The distribution Nij is a 
number of objects with magnetic moment µ = i·dµ and activation 
energy E0 =  j·dEA. The total magnetization is expressed as: 
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where Nij

X is related to eq.(17) and eq.(16) in which EA  j·dEA 
and h=µ0µH  i·dµ µ0 H . 
 

It is worth to present a behavior of the system with a Gaussian 
distribution of µ and EA: 
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Fig. 9 depicts M(t) curves calculated (using eq.(17)-(19)) with 

the distribution parameters: E = 0.1 eV, E0 = 0.5 eV, µ = 300 µB, 
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µ0 = 2000 µB and W0 = 109. This simulation concerns the 
experiment where sample is saturated to -MS and next at t = 0 the 
field is switched off, so the M(t) dependence is a relaxation of 
magnetization remanence. 

 

 
 
Fig. 9. Calculated M(t) curves in the frame of the two-level model 
(see the text) 
 

As we can see at T = 100 K the thermal energy is to low (in a 
comparison with the activation energy) so magnetization remains 
unchanged after switching H. With the increase of temperature the 
thermal excitations activates some objects and the relaxation (non 
exponential) is observed. Intensity of the process, values of 
M0=M(t=0) and MR=M(t= ) are related to a specific distribution 
N(µ,EA), as shown in Fig.10. When H = 0 the magnetization 
relaxation do not depend on µ distribution and intensity of the 
process is a picture of energy cross of the distribution. Indeed, in 
our example the maximum occurs at T  200 K and the 
corresponding thermal energy (25kBT) equals 0.45 eV which is 
close to the average value of N(EA) (E0 = 0.5 eV). 

Magnetic viscosity can also have an influence on 
thermomagnetic curves M(T). Cooling or heating rate during 
measurements causes that the system is not in thermodynamic 
equilibrium. Therefore, the ZFC-FC procedure reveals some 
magnetic irreversibility that are connected with the rates of 
temperature changes and the N(µ,EA) distribution. An example of 
such curves, calculated for the same case as in Fig. 14, for  
dT/dt = 2 K/min and µ0H = 1 T is presented in Fig. 11. 

 

 
 
Fig. 10. Calculated intensity relaxation, values of M0=M(t=0) and 
MR=M(t= ) in the frame of the two-level model (see the text) 

 
 
Fig. 11. Calculated ZFC-FC thermomagnetic curves in the frame 
of the two-level model (see the text) 
 
 

3. Magnetism in disordered systems 
 

Usually the term disorder is used in the context of the both 
structural (topological and/or chemical) and magnetic 
(interactions, anisotropy) properties failures. Typical materials 
influenced by the disorder are amorphous and nanocrystalline 
alloys, nanostructures of magnetic objects, nanoconposites, 
diluted magnetic materials and intermetallic compounds of rare 
earth and transition metals. Moreover, in polycrystalline samples 
some anomalies related to the area between the grains, which 
inherently carries some attributes of the disorder can be observed. 
Thus, knowledge of the subject presented here is essential for the 
proper analysis of magnetics with elements of disorder. 
 
 
3.1. Random field Ising model 
 

The random field Ising model (RFIM) is a development of the 
basic Ising model of ferromagnetism in which it is assumed that 
all spins in the system possess only two values of +1 or -1, let say 
up and down [17-19]. Furthermore, exchange interactions are 
included by the parameter J according to the Heisenberg model. 
Hamiltonian H of such system takes the form: 
 

i
i

iBji
ij,

ij SHgSSJ= µµ 0H   (20) 

 
where Si, Sj are the spins at sites i and j, Jij is the exchange 
parameter describing interaction between spins at sites i and j, Hi 
is magnetic field (internal or external) acting in site i., g is the 
Landé factor and µB is the Bohr magneton  
 

The first term in eq. (20) expresses energy of interactions 
between spins. The summation over ij is usually spread out to the 
nearest neighbours due to short range nature of exchange coupling. 
The second term reflects magnetic energy. Disorder of the system 
can be introduced in the two places i.e. in distribution of exchange 
parameter J or external magnetic field H in the following way:  

3.  Magnetism in disordered systems

3.1.  Random field Ising model
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where Jij and hi are random values of some distribution (usually 
with zero average), ri and rj are the position vectors. The case 
when the J parameter is disturbed will be discussed in next 
section as the random bond model. The RFIM model concerns the 
situation: 
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Finally, without external magnetic field the Hamiltonian  
(20) is: 
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where these two terms describe a competition between ordering 
and introduced field disorder. 
 

Probability of hi is usually taken as Gaussian distribution: 
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or the so-called bimodal one: 
 

10 1 h+hp+hhp=hP iii   (25) 

 
where  is the Dirack delta symbol. 
 

In the case hi >> JijSj ferromagnetic ordering is impossible and 
spin system if frozen in random positions according to the 
randomness of hi. Interesting is the case when the random field 
only slightly disturb ferromagnetic coupling. Let define the two 
important parameters i.e. correlation and autocorrelation spin 
function [20,21]. The first one expresses the average spontaneous 
magnetization m=<<Si>T>C where index T and C denotes 
averaging over temperature and configuration, respectively. The 
second parameter (called order parameter) q=<<Si>2

T>C reflects 
degree of freezing of the system. The value of parameter q = 0 
indicates time changes of spin directions and q = 1 means that the 
spin position is the same at t = 0 and t = . One can determine the 
different magnetic states in a function of the m and q parameters: 
 for paramagnetic state m = 0 and q = 0,  
 for ferromagnetic state m > 0 and q > 0,  
 for "frozen" state m = 0 and q > 0 

Introduced here the "frozen" state is the so-called spin-glass 
state in which the individual spins do not change direction (as in 
the ferromagnetic state), but spontaneous magnetization is zero 
(as in the paramagnetic state). The problems of spin-glasses are 
widely discussed in [22-32]. 

The starting point in calculations is to determine the free 
energy f as a function of the parameters m, q and disorder (as a 
distribution of fields hi). From the condition of a minimum of f 
and with a given hi distribution one can determine the equilibrium 
values of m and q. An analytical expression of f, calculated per 

one spin can be obtained with additional assumption that the 
summation in Hamiltonian (39) is spread over all i  j (infinite 
range interactions), and NJ'=J ij /  (the requirement scaling due to 

the infinite range of interactions, N is a number of considered 
spins), so finally [33]: 

 

h+mJ'hPdhmJ'=f 2ln2cosh12   (26) 

 
where: 

 

h+mJ'hPdh=m 2tanh1   (27) 

h+mJ'hPdh=q 2tanh1 2   (28) 

 
and =1/kBT. 
 

Let analyze an influence of the field disorder, with the 
distribution defined by eq. (25), on magnetization process. Fig.12 
shows a shape of free energy vs. m for an increasing contribution 
of the disorder. The parameters of the distribution are: h = h0 = h1, 
kBT = 1.4 J', p = 1/2 and J' = 1/2. In the case without disorder  
(h = 0) and for a given temperature (related to J’) the f(m) 
function shows two equivalent energy minima close to ±1 which 
means that the considered system is almost saturated. At the same 
temperature and with increasing contribution of the random field 
(in relation to J’) one can observe i) a decrease of the energy 
barrier separating the minima and ii) a simultaneously decrease of 
position of the minima. The later indicates decreasing of the 
average spontaneous magnetization. For h = J’ there is only one f- 
minimum at m = 0 which means that the field disorder causes 
fully random alignment of spins directions.  

 

 
 
Fig. 12. Free energy vs. the parameter m calculated for different 
contribution of field disorder (see the text) 
 

Fig. 13 presents calculated m(T) curves for different values of 
h. One can observe a decrease of the Curie point with increasing 
contribution of the filed disorder. In the frame of the presented 
RFIM model one can also determine the order parameter q 
(Eq. (45)-(47)) as well as magnetic susceptibility  by the 
following formula [33]: 
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µ0 = 2000 µB and W0 = 109. This simulation concerns the 
experiment where sample is saturated to -MS and next at t = 0 the 
field is switched off, so the M(t) dependence is a relaxation of 
magnetization remanence. 

 

 
 
Fig. 9. Calculated M(t) curves in the frame of the two-level model 
(see the text) 
 

As we can see at T = 100 K the thermal energy is to low (in a 
comparison with the activation energy) so magnetization remains 
unchanged after switching H. With the increase of temperature the 
thermal excitations activates some objects and the relaxation (non 
exponential) is observed. Intensity of the process, values of 
M0=M(t=0) and MR=M(t= ) are related to a specific distribution 
N(µ,EA), as shown in Fig.10. When H = 0 the magnetization 
relaxation do not depend on µ distribution and intensity of the 
process is a picture of energy cross of the distribution. Indeed, in 
our example the maximum occurs at T  200 K and the 
corresponding thermal energy (25kBT) equals 0.45 eV which is 
close to the average value of N(EA) (E0 = 0.5 eV). 

Magnetic viscosity can also have an influence on 
thermomagnetic curves M(T). Cooling or heating rate during 
measurements causes that the system is not in thermodynamic 
equilibrium. Therefore, the ZFC-FC procedure reveals some 
magnetic irreversibility that are connected with the rates of 
temperature changes and the N(µ,EA) distribution. An example of 
such curves, calculated for the same case as in Fig. 14, for  
dT/dt = 2 K/min and µ0H = 1 T is presented in Fig. 11. 

 

 
 
Fig. 10. Calculated intensity relaxation, values of M0=M(t=0) and 
MR=M(t= ) in the frame of the two-level model (see the text) 

 
 
Fig. 11. Calculated ZFC-FC thermomagnetic curves in the frame 
of the two-level model (see the text) 
 
 

3. Magnetism in disordered systems 
 

Usually the term disorder is used in the context of the both 
structural (topological and/or chemical) and magnetic 
(interactions, anisotropy) properties failures. Typical materials 
influenced by the disorder are amorphous and nanocrystalline 
alloys, nanostructures of magnetic objects, nanoconposites, 
diluted magnetic materials and intermetallic compounds of rare 
earth and transition metals. Moreover, in polycrystalline samples 
some anomalies related to the area between the grains, which 
inherently carries some attributes of the disorder can be observed. 
Thus, knowledge of the subject presented here is essential for the 
proper analysis of magnetics with elements of disorder. 
 
 
3.1. Random field Ising model 
 

The random field Ising model (RFIM) is a development of the 
basic Ising model of ferromagnetism in which it is assumed that 
all spins in the system possess only two values of +1 or -1, let say 
up and down [17-19]. Furthermore, exchange interactions are 
included by the parameter J according to the Heisenberg model. 
Hamiltonian H of such system takes the form: 
 

i
i

iBji
ij,

ij SHgSSJ= µµ 0H   (20) 

 
where Si, Sj are the spins at sites i and j, Jij is the exchange 
parameter describing interaction between spins at sites i and j, Hi 
is magnetic field (internal or external) acting in site i., g is the 
Landé factor and µB is the Bohr magneton  
 

The first term in eq. (20) expresses energy of interactions 
between spins. The summation over ij is usually spread out to the 
nearest neighbours due to short range nature of exchange coupling. 
The second term reflects magnetic energy. Disorder of the system 
can be introduced in the two places i.e. in distribution of exchange 
parameter J or external magnetic field H in the following way:  
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ijij

h+HH

J+JJJ jiji rrrr   (21) 

 
where Jij and hi are random values of some distribution (usually 
with zero average), ri and rj are the position vectors. The case 
when the J parameter is disturbed will be discussed in next 
section as the random bond model. The RFIM model concerns the 
situation: 
 

000 iijij h,=J,>J   (22) 
 

Finally, without external magnetic field the Hamiltonian  
(20) is: 
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iBji
ij,

ij ShgSSJ= µµ 0
  (23) 

 
where these two terms describe a competition between ordering 
and introduced field disorder. 
 

Probability of hi is usually taken as Gaussian distribution: 
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h
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h=hP   (24) 

 
or the so-called bimodal one: 
 

10 1 h+hp+hhp=hP iii   (25) 

 
where  is the Dirack delta symbol. 
 

In the case hi >> JijSj ferromagnetic ordering is impossible and 
spin system if frozen in random positions according to the 
randomness of hi. Interesting is the case when the random field 
only slightly disturb ferromagnetic coupling. Let define the two 
important parameters i.e. correlation and autocorrelation spin 
function [20,21]. The first one expresses the average spontaneous 
magnetization m=<<Si>T>C where index T and C denotes 
averaging over temperature and configuration, respectively. The 
second parameter (called order parameter) q=<<Si>2

T>C reflects 
degree of freezing of the system. The value of parameter q = 0 
indicates time changes of spin directions and q = 1 means that the 
spin position is the same at t = 0 and t = . One can determine the 
different magnetic states in a function of the m and q parameters: 
 for paramagnetic state m = 0 and q = 0,  
 for ferromagnetic state m > 0 and q > 0,  
 for "frozen" state m = 0 and q > 0 

Introduced here the "frozen" state is the so-called spin-glass 
state in which the individual spins do not change direction (as in 
the ferromagnetic state), but spontaneous magnetization is zero 
(as in the paramagnetic state). The problems of spin-glasses are 
widely discussed in [22-32]. 

The starting point in calculations is to determine the free 
energy f as a function of the parameters m, q and disorder (as a 
distribution of fields hi). From the condition of a minimum of f 
and with a given hi distribution one can determine the equilibrium 
values of m and q. An analytical expression of f, calculated per 

one spin can be obtained with additional assumption that the 
summation in Hamiltonian (39) is spread over all i  j (infinite 
range interactions), and NJ'=J ij /  (the requirement scaling due to 

the infinite range of interactions, N is a number of considered 
spins), so finally [33]: 

 

h+mJ'hPdhmJ'=f 2ln2cosh12   (26) 

 
where: 

 

h+mJ'hPdh=m 2tanh1   (27) 

h+mJ'hPdh=q 2tanh1 2   (28) 

 
and =1/kBT. 
 

Let analyze an influence of the field disorder, with the 
distribution defined by eq. (25), on magnetization process. Fig.12 
shows a shape of free energy vs. m for an increasing contribution 
of the disorder. The parameters of the distribution are: h = h0 = h1, 
kBT = 1.4 J', p = 1/2 and J' = 1/2. In the case without disorder  
(h = 0) and for a given temperature (related to J’) the f(m) 
function shows two equivalent energy minima close to ±1 which 
means that the considered system is almost saturated. At the same 
temperature and with increasing contribution of the random field 
(in relation to J’) one can observe i) a decrease of the energy 
barrier separating the minima and ii) a simultaneously decrease of 
position of the minima. The later indicates decreasing of the 
average spontaneous magnetization. For h = J’ there is only one f- 
minimum at m = 0 which means that the field disorder causes 
fully random alignment of spins directions.  

 

 
 
Fig. 12. Free energy vs. the parameter m calculated for different 
contribution of field disorder (see the text) 
 

Fig. 13 presents calculated m(T) curves for different values of 
h. One can observe a decrease of the Curie point with increasing 
contribution of the filed disorder. In the frame of the presented 
RFIM model one can also determine the order parameter q 
(Eq. (45)-(47)) as well as magnetic susceptibility  by the 
following formula [33]: 
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qJ
q=
1'21

1 .  (29) 

 
Fig. 14 depicts some interesting temperature dependences of 

m, q and  for different parameters of the random filed 
distribution (25). 

 

 
 
Fig. 13. Calculated m(kBT/J) for different values of h in the frame 
of RFIM model 
 

In the case free of randomness i.e. h = 0 the m and q 
temperature dependences are typical for ferromagnetic materials 
(see Fig. 14a). Interesting is the situation with symmetric (p =0.5) 
field disorder (h = 0.8 J’) when the q parameter has nonzero 
values while m = 0 (Fig. 14b). 

 

 
 
Fig. 14. Calculated temperature dependences of m, q and  for 
different parameters of the random filed distribution (see the text) 

It indicates frozen state in paramagnetic region. If h = J’ then 
m = 0 in the whole temperature range, however, magnetic 
susceptibility reveals a maximum that is related to freezing 
temperature (Fig. 14c). Let notice that, independently on 
exchange interactions, symmetric field disorder (p = 0.5) reflects 
a competition of up and down alignment of spins, so, can lead to a 
spin-glass-like magnetic structures. In contrary to this, 
antisymmetric filed disorder (e.g. p = 0.45) causes only a 
broadening of ferro-para transition, as shown in Fig. 14d. 
 
 
3.2. Random bond model 
 

The other approach consists in introducing a possible disorder 
as a distribution of the exchange parameter Jij in Hamiltonian 
(23). Scott Kirkpatrick and David Sherington in the frame of the 
famous S-K model [34] have considered the following probability 
distribution: 
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where J0’ is an average value (describing a contribution of 
ferromagnetism) and J’ is a standard deviation of the distribution. 
Similarly to the RFIM model the summation in (39) is spread over 
all i  j (infinite range interactions) and therefore, the distribution 
parameters were normalized i.e. ’J= J/N1/2 and J0’=J0/N (N is a 
number of spins). The starting point is to determine free energy of 
the system as a function of m, q and system disorder defined by 
(30). Generally free energy can be expressed as: 

 
HtrT=ZT=F Bb explnklnk   (31) 

 
where Z is the statistic sum, the triangle brackets means 
configuration averaging. The statement Zln  can be expressed as 

nZ  using the identity 11limln
0

n

n
Z

n
=Z . For integer n one can 

get n n
n trZZ

1 1
)exp( H  where  counts the so-called 

replicas of identical configuration (the “replica trick”). Now, the 
bond disorder is introduced as following: 
 

jiijijGij
ji,

n SSJJPJtr=Z expd .  (32) 

 
After some manipulations one can obtain the following 

expression for free energy per site (spin): 
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where THg+zq+mJ= BBJ k/µµ 0

2/1
0

, m and q satisfy the 
equations: 

3.2.  Random bond model

 

zz=q
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tanh2/expd2

tanh2/expd2
.  (34) 

 
Equations (34) can be solved using numerical methods. 

Fig. 15 shows an example for J0 = 0 and J = 1. Such distribution 
means the total disorder and the competition between 
ferromagnetic and antiferromagnetic interactions without 
preference of any of them. Clearly, the magnetization m = 0 in the 
full temperature range, while the order parameter q increases from 
zero (for kBT/ J = 1) to unity (for kBT/ J = 0). This is a typical 
paramagnetic - spin-glass transition (m = 0, q > 0), which is also 
confirmed by the susceptibility . It should also be emphasized 
that the presented model for the first time gave the compatibility 
of experimentals (including heat capacity) that confirms the 
random bond nature of disorder in the spin-glass systems.  

 

 
 
Fig. 15. Calculated temperature dependences of m, q and  for 
symmetric distribution of exchange parameter (see the text) 

 
Let analyze the system with antisymmetric distribution (30) 

i.e. J0 > 0 which reflects a possible contribution of ferromagnetic 
interactions. Fig. 16 shows m, q and  dependences for different 
ratio J0/ J. For J0/ J = 1 one can observe a typical paramagnetic - 
spin-glass transition at kBT= J. With the increasing contribution 
of ferromagnetism i.e. 1 < J0/ J < 1.25 there are two magnetic 
phase transition: para - ferro (m > 0, q > 0) at higher temperature 
and ferro - spin-glass (m = 0, q > 0) at lower temperature. For 
J0/ J > 1.25 ferromagnetism of the system does not allow 
formation of the spin-glass structure. Such analysis leads to the 
phase diagram, shown in Fig. 17. 

Despite the development of knowledge in the field of 
disordered magnetism the S-K model has some limitation where 
the solutions are instable (see [35], the A-T line). The reason lies 
in the “replica trick” or to say more precise the problem is in the 
identity of the system replicas. Therefore, there are some models 
that break the identity and give reasonable solutions in a broad 
range of temperature [36-39].  

Other model (omitting the replica trick) was proposed by 
Thouless, Anderson and Palmer (TAP model [40]). The main 
difference lies in averaging of system disorder. In the S-K model 
the averaging is at the stage of calculation the statistical sum 

while the TAP method averages the disorder using the mean field 
procedure (MFA). In this approach one can write the set of 
equations: 
 

iBTj
j

ijTi Hg+SJ=S µµtanh 0
  (35) 

 
where the MFA means that 

TjTj SfSf  (f is a function). 

 

 
 
Fig. 16. Calculated temperature dependences of m, q and  for 
different ratio J0/ J (see the text) 
 

 
 
Fig. 17. Magnetic phase diagram calculated in the frame of the  
S-K random bond model 
 

If <Si>T and Jij do not depends on site eq. (35) express a 
typical thermomagnetic relation as for ordered ferromagnetics. In 
disordered systems the both conditions are not fulfilled. 
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m, q and  for different parameters of the random filed 
distribution (25). 

 

 
 
Fig. 13. Calculated m(kBT/J) for different values of h in the frame 
of RFIM model 
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spin-glass-like magnetic structures. In contrary to this, 
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The other approach consists in introducing a possible disorder 
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where J0’ is an average value (describing a contribution of 
ferromagnetism) and J’ is a standard deviation of the distribution. 
Similarly to the RFIM model the summation in (39) is spread over 
all i  j (infinite range interactions) and therefore, the distribution 
parameters were normalized i.e. ’J= J/N1/2 and J0’=J0/N (N is a 
number of spins). The starting point is to determine free energy of 
the system as a function of m, q and system disorder defined by 
(30). Generally free energy can be expressed as: 
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Equations (34) can be solved using numerical methods. 
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ferromagnetic and antiferromagnetic interactions without 
preference of any of them. Clearly, the magnetization m = 0 in the 
full temperature range, while the order parameter q increases from 
zero (for kBT/ J = 1) to unity (for kBT/ J = 0). This is a typical 
paramagnetic - spin-glass transition (m = 0, q > 0), which is also 
confirmed by the susceptibility . It should also be emphasized 
that the presented model for the first time gave the compatibility 
of experimentals (including heat capacity) that confirms the 
random bond nature of disorder in the spin-glass systems.  
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J0/ J > 1.25 ferromagnetism of the system does not allow 
formation of the spin-glass structure. Such analysis leads to the 
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Despite the development of knowledge in the field of 
disordered magnetism the S-K model has some limitation where 
the solutions are instable (see [35], the A-T line). The reason lies 
in the “replica trick” or to say more precise the problem is in the 
identity of the system replicas. Therefore, there are some models 
that break the identity and give reasonable solutions in a broad 
range of temperature [36-39].  

Other model (omitting the replica trick) was proposed by 
Thouless, Anderson and Palmer (TAP model [40]). The main 
difference lies in averaging of system disorder. In the S-K model 
the averaging is at the stage of calculation the statistical sum 

while the TAP method averages the disorder using the mean field 
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Additionally, especially when J0 = 0 it is necessary to take into 
account the so-called Onsager correction which describes 
reflexive interaction of the spin with the environment, so finally 
(for Hi = 0):  

 
222 1tanh
TiTj

j
ijTj

j
ijTi SSJSJ=S .  (36) 

 
The ordering parameter q is defined as: 

 

i
TiS

N
=q 21 .  (37) 

 
Numerical analysis of equations (36) leads to some 

differences compared to the SK model. First of all, it is physically 
correct value of entropy that tends to zero at T = 0 and   0 
when T  0. Fig. 18 shows the differences in (T) curves 
calculated in the frames of the S-K and the TAP model [40]. 

 

 
 
Fig. 18. (T) curves calculated in the frame of the S-K (dashed 
line) and the TAP model (solid line) [40] 
 
 
3.3. Random anisotropy model (RAM) 
 

Disorder in magnetic systems may also include magnetic 
anisotropy [41-44], especially important in the case of amorphous 
or nanocrystalline materials. In order to account this type of 
disorder it is necessary to write the Hamiltonian containing a term 
describing the anisotropy (for simplicity magnetocrystalline 
anisotropy): 
 

i
i

ibii
i

iji
ji

ij gKJ SHzSSS µµ 0
2

,
H  (38) 

 
where Ki are local anisotropy constants zi are unit vectors of easy 
magnetization axis on i site.  
 

The anisotropy disorder can be introduced as a distribution of 
anisotropy coefficients or directions of easy magnetization axes. 
Surely, the later is more realistic, and therefore, this case will be 
discussed below in details. 

In two dimensional case one can determine free energy of the 
system f with the assumption that Ki = K, Jij = Jex and zi are 
distributed randomly [45] and the result is: 
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Equation (39) leads to the following expression of the m 

parameter: 
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It is a characteristic feature that the random anisotropy do not 

change a temperature of para - ferro transition but only modify a 
shape of m(T) dependence. 

The effect of randomly distributed anisotropy axes lies in 
averaging out the anisotropy energy. Let denote the range of 
spatial correlations of spins as d, and magnetic correlations as L. 
For L >> d in the range of the magnetic correlations there are 
different randomly oriented easy magnetization directions. On one 
hand, the anisotropy energy minimization requires spin alignment 
with the easy directions. On the other hand, this setting increases 
the energy of exchange interaction. The competition between the 
energies is responsible for the effectiveness of anisotropy 
averaging. Qualitatively, this can be expressed as follows. 
Anisotropy energy density is averaged in a cube with edge L to 
the value: 
 

2/3

L
dKEA

.  (41) 

 
Exchange energy density is: 

 

2L
AEex

  (42) 

 
where A is the sum of Jex. Regarding (41) and (42) the minimum 
of energy occurs for: 
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dK
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and consequently, inserting (43) to (41) one can get: 

 

3
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A
dKEA

.  (44) 

 
It should be stressed that the relation (44) is correct only if L 

>> d, i.e. for small K with respect to A (or Jex). It may be noted 
that in some cases the disorder of local anisotropy can lead to a 
reduction in average anisotropy energy when exchange 
interactions are dominant. Otherwise, the magnetic correlation 
range will not include a sufficiently large number of spins and the 
equation (41) is not valid. 

Three-dimensional problem of the Hamiltonian (38) can be 
successfully solved using computer simulation, which is the 
second approach of the analysis of systems with random 

3.3.  Random anisotropy model (RAM)

 

anisotropy axis. Using an algorithm such as the Monte Carlo 
(MC) one can obtain plots of magnetization as a function of 
applied field and temperature [46]. It turns out that parameters of 
magnetic hysteresis loops (coercive field Hc and magnetization 
remamence MR) strongly depends on the ratio of the anisotropy 
constant K and the exchange parameter Jex. As shown in Fig. 19, 
for K/Jex  2 there is a sharp jump of Hc, and for K/Jex > 10, this 
parameter reaches a constant value independent on the anisotropy. 
At the same time the increasing of the ratio K/Jex causes a 
decrease of magnetization remanence (Fig. 19) that reaches a 
plato of MR/MS  0.5. 

Averaging of anisotropy effect is also present in 
nanocrystalline materials. Similarly to the previous 
considerations, the randomness of the distribution of anisotropy 
axis direction concerns single grain, while the range of magnetic 
correlation includes a large number of such nanograins. In the 
frame of the well-known Herzer model [47-50] anisotropy is 
averaged (according to the random walk model): 
 

 
 
Fig. 19. Calculated dependence of coercive field and normalized 
remanence MR/MS on K/Jex ratio 
 

N
K=K loc   (45) 

 
where Kloc is a local anisotropy coefficient of single particle, N is 
a number of particles within the range of magnetic correlations 
Lex. When D is a diameter of the particles N=(Lex/D)3. One can 
also determine the length of magnetic correlations: 
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where  is a constant reflecting symmetry of the effective 
anisotropy constant (<K>) (  = 1 in the Herzer model,  = (4/3)1/2 
in the Alben model). For alloys based on cobalt Lex = 5-10 nm, 
and for iron-based alloys Lex = 20-40 nm. Thus, both the 
amorphous materials (D is atomic scale) and nanocrystalline 
materials with nanoparticles (several nanometers) can fulfill the 
requirement of anisotropy averaging i.e. Lex > D. Finally, 
including (46) in (45) the average anisotropy coefficient takes the 
form: 
 

6

0
3

64

6

1
L
DK=

A
DK=K loc

loc .  (47) 

Let notice that the effective anisotropy is reduced with 
decreasing D (<K> ~D6). Fig. 20 shows the dependence <K>(D) 
for FeSi (bcc) nanograins [49]. In this case, when D < 10 nm, the 
effective anisotropy is averaged to almost zero which results in 
significant improvement of soft magnetic properties.  
The parameters that define the soft magnetic properties are 
coercivity and low-field magnetic permeability, both related to the 
anisotropy according to the following relations [49]: 
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where pC and pµ are dimensionless constants with the values close 
to unity.  
 

 
 

Fig. 20. Dependence <K>(D) for FeSi (bcc) nanograins 
 
 

4. Examples of magnetic materials with 
structural and magnetic disorder 
 

The development of modern technologies and the permanent 
tendency to reduce costs requires the use of soft magnets with 
parameters much better than the known conventional materials. 
Improvement of soft magnetic properties is possible in the case of 
amorphous and nanocrystalline materials, so for materials with 
significant contribution of disorder. Generally, a suitable 
nanostructure (chemical grain composition, their size and 
distribution, type of matrix) can lead, according to the Herzer 
model, to a significant reduction of magnetocrystalline anisotropy 
energy which causes a decrease of coercivity and increase of 
magnetic permeability (eq.(48),(49)). Enhancement of the 
parameters by a proper nanostructure is known as the 
optimization effect and occurs for many iron-based alloys that are 
the most promising magnetic materials (not only soft) and still are 
intensively studied. The optimization of soft magnetic properties 
can cause a reduction of energy losses in transformers, weight of 
electric motors, increase the efficiency of shielding of 
electromagnetic, magnetic and electric fields etc. 

http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org


91

Magnetism in disordered materials

Volume 58    Issue 2   December 2012

Additionally, especially when J0 = 0 it is necessary to take into 
account the so-called Onsager correction which describes 
reflexive interaction of the spin with the environment, so finally 
(for Hi = 0):  
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The ordering parameter q is defined as: 
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Numerical analysis of equations (36) leads to some 

differences compared to the SK model. First of all, it is physically 
correct value of entropy that tends to zero at T = 0 and   0 
when T  0. Fig. 18 shows the differences in (T) curves 
calculated in the frames of the S-K and the TAP model [40]. 

 

 
 
Fig. 18. (T) curves calculated in the frame of the S-K (dashed 
line) and the TAP model (solid line) [40] 
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disorder it is necessary to write the Hamiltonian containing a term 
describing the anisotropy (for simplicity magnetocrystalline 
anisotropy): 
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where Ki are local anisotropy constants zi are unit vectors of easy 
magnetization axis on i site.  
 

The anisotropy disorder can be introduced as a distribution of 
anisotropy coefficients or directions of easy magnetization axes. 
Surely, the later is more realistic, and therefore, this case will be 
discussed below in details. 

In two dimensional case one can determine free energy of the 
system f with the assumption that Ki = K, Jij = Jex and zi are 
distributed randomly [45] and the result is: 
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Equation (39) leads to the following expression of the m 

parameter: 
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It is a characteristic feature that the random anisotropy do not 

change a temperature of para - ferro transition but only modify a 
shape of m(T) dependence. 

The effect of randomly distributed anisotropy axes lies in 
averaging out the anisotropy energy. Let denote the range of 
spatial correlations of spins as d, and magnetic correlations as L. 
For L >> d in the range of the magnetic correlations there are 
different randomly oriented easy magnetization directions. On one 
hand, the anisotropy energy minimization requires spin alignment 
with the easy directions. On the other hand, this setting increases 
the energy of exchange interaction. The competition between the 
energies is responsible for the effectiveness of anisotropy 
averaging. Qualitatively, this can be expressed as follows. 
Anisotropy energy density is averaged in a cube with edge L to 
the value: 
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Exchange energy density is: 
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where A is the sum of Jex. Regarding (41) and (42) the minimum 
of energy occurs for: 
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and consequently, inserting (43) to (41) one can get: 
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It should be stressed that the relation (44) is correct only if L 

>> d, i.e. for small K with respect to A (or Jex). It may be noted 
that in some cases the disorder of local anisotropy can lead to a 
reduction in average anisotropy energy when exchange 
interactions are dominant. Otherwise, the magnetic correlation 
range will not include a sufficiently large number of spins and the 
equation (41) is not valid. 

Three-dimensional problem of the Hamiltonian (38) can be 
successfully solved using computer simulation, which is the 
second approach of the analysis of systems with random 

 

anisotropy axis. Using an algorithm such as the Monte Carlo 
(MC) one can obtain plots of magnetization as a function of 
applied field and temperature [46]. It turns out that parameters of 
magnetic hysteresis loops (coercive field Hc and magnetization 
remamence MR) strongly depends on the ratio of the anisotropy 
constant K and the exchange parameter Jex. As shown in Fig. 19, 
for K/Jex  2 there is a sharp jump of Hc, and for K/Jex > 10, this 
parameter reaches a constant value independent on the anisotropy. 
At the same time the increasing of the ratio K/Jex causes a 
decrease of magnetization remanence (Fig. 19) that reaches a 
plato of MR/MS  0.5. 

Averaging of anisotropy effect is also present in 
nanocrystalline materials. Similarly to the previous 
considerations, the randomness of the distribution of anisotropy 
axis direction concerns single grain, while the range of magnetic 
correlation includes a large number of such nanograins. In the 
frame of the well-known Herzer model [47-50] anisotropy is 
averaged (according to the random walk model): 
 

 
 
Fig. 19. Calculated dependence of coercive field and normalized 
remanence MR/MS on K/Jex ratio 
 

N
K=K loc   (45) 

 
where Kloc is a local anisotropy coefficient of single particle, N is 
a number of particles within the range of magnetic correlations 
Lex. When D is a diameter of the particles N=(Lex/D)3. One can 
also determine the length of magnetic correlations: 
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where  is a constant reflecting symmetry of the effective 
anisotropy constant (<K>) (  = 1 in the Herzer model,  = (4/3)1/2 
in the Alben model). For alloys based on cobalt Lex = 5-10 nm, 
and for iron-based alloys Lex = 20-40 nm. Thus, both the 
amorphous materials (D is atomic scale) and nanocrystalline 
materials with nanoparticles (several nanometers) can fulfill the 
requirement of anisotropy averaging i.e. Lex > D. Finally, 
including (46) in (45) the average anisotropy coefficient takes the 
form: 
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Let notice that the effective anisotropy is reduced with 
decreasing D (<K> ~D6). Fig. 20 shows the dependence <K>(D) 
for FeSi (bcc) nanograins [49]. In this case, when D < 10 nm, the 
effective anisotropy is averaged to almost zero which results in 
significant improvement of soft magnetic properties.  
The parameters that define the soft magnetic properties are 
coercivity and low-field magnetic permeability, both related to the 
anisotropy according to the following relations [49]: 
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where pC and pµ are dimensionless constants with the values close 
to unity.  
 

 
 

Fig. 20. Dependence <K>(D) for FeSi (bcc) nanograins 
 
 

4. Examples of magnetic materials with 
structural and magnetic disorder 
 

The development of modern technologies and the permanent 
tendency to reduce costs requires the use of soft magnets with 
parameters much better than the known conventional materials. 
Improvement of soft magnetic properties is possible in the case of 
amorphous and nanocrystalline materials, so for materials with 
significant contribution of disorder. Generally, a suitable 
nanostructure (chemical grain composition, their size and 
distribution, type of matrix) can lead, according to the Herzer 
model, to a significant reduction of magnetocrystalline anisotropy 
energy which causes a decrease of coercivity and increase of 
magnetic permeability (eq.(48),(49)). Enhancement of the 
parameters by a proper nanostructure is known as the 
optimization effect and occurs for many iron-based alloys that are 
the most promising magnetic materials (not only soft) and still are 
intensively studied. The optimization of soft magnetic properties 
can cause a reduction of energy losses in transformers, weight of 
electric motors, increase the efficiency of shielding of 
electromagnetic, magnetic and electric fields etc. 

4.  Examples of magnetic materials with 
structural and magnetic disorder
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The other, important for application, magnetic materials are 
permanent magnets showing hard magnetic properties. Generally, 
hard magnets are used in power generators, electric motors, 
different kinds of sensors and data storage media. Such materials 
should be characterized by high coercivity, high value of saturation 
magnetization and remanence. The idea is that, after sample 
saturation, magnetic moments should be “trapped” after switching 
off the field. Therefore, any kind of magnetic anisotropy, as the 
energy barrier that causes the blocking of magnetic moments, is 
favorable to magnetic hardening. Also, in the group of hard 
magnetic materials a suitable nanostructure can significantly 
improve the characteristics required for the mentioned applications. 
Nanocrystalline alloys containing grains of hard magnetic phases 
combine different types of magnetic anisotropy, i.e. the 
magnetocrystalline, shape and surface anisotropy related to the 
grains and their boundary regions. In addition, the grain boundaries 
are a source of internal stresses, so-called thin domain walls, 
blocking the movement of domain walls and magnetic disorder. All 
these factors are advantageous for magnetic hardening.  

In the next subsections selected magnetic materials with 
structural and magnetic disorder, their properties and analysis 
methods based on the Sections 2 and 3 are presented. The 
materials are divided into the four groups i.e. i) 
superparamgnetisc and diluted magnetic materials, ii) iron-based 
amorphous and nanocrystalline alloys as soft magnets, iii) iron 
based bulk nanocrystalline alloys as hard magnets and iv) 
magnetic nanocoposite.  
 
 
4.1. Superparamagnetics and diluted magnetic 
materials 
 

A good example of application of the Langevin granulometry 
method concerning superparamagetic systems (see Section 2.1) is 
analysis of distribution of magnetic moments in thin layers SiC/Mn 
deposited on Si substrate [10]. Let compare the two samples with 
15.5% Mn content (denoted as Mn(Si)-1) and 26.8% Mn content 
(denoted as Mn(Si)-2). Fig. 21 shows original magnetic isotherms 
measured at T = 300 K. Thermomagnetic curves (not presented 
here) as well as the saturation character of the isotherms confirm 
superparamagnetic behaviour of the samples.  

 

 
 
Fig. 21. Magnetic isotherms for thin layers Mn(Si)-1 (15.5 % Mn) 
and Mn(Si)-2 (28.6% Mn) 

Results of the SA procedure are shown in Fig. 22. For the 
sample Mn(Si)-1 the distribution consists of the two Gaussian like 
components positioned at 2300 µB and 14000 µB. Assuming that 
magnetic moment of Mn atom is about 2.3 µB one can state that the 
clusters contain about 1000 and 6000 Mn atoms, respectively. For 
the sample Mn(Si)-2 the distribution reveals the one narrow peak at 
7400 µB. On average, these clusters contain 3200 Mn atoms.  

Langevin granulometry methods can be used not only for 
imaging of magnetic clusters, but also the system of 
noninteracting magnetic moments. An example can be the 
analysis of the distribution of magnetic moments in preparations 
of human blood. It is know that the blood contains iron mainly in 
the form of hemoglobin where the Fe ions are located in a central 
position of porphyrins. In [51] magnetic properties of blood of 
patients with and without atherosclerosis were carefully studied. 
Figs. 23 and 24 show an example of M(T) and M(H) curves at  
T = 2 K for the two representative samples. 

 
 

 
 

Fig. 22. Calculated distributions of magnetic moments obtained 
from the SA procedure (see the text) 
 
 

 
 
Fig. 23. Magnetization versus temperature for samples with 
(closed circles) and without (open circles) atherosclerotic features 

4.1.  Superparamagnetics and diluted magnetic 
materials

 

 
 
Fig. 24. Reduced magnetization M/Ms versus magnetic field for 
samples with (closed circles) and without (open circles) 
atherosclerotic features 
 

As in the previous example, paramagnetic nature of the M(T) 
curves allows applying the SA procedure in order to determine a 
distribution of magnetic moments (see eq.(5)). The results of such 
analysis are presented in Figs. 25 and 26. In the case of the 
“healthy” sample one can see the three Gaussian-like components 
located below 0.5 µB (related to a nonsaturated component of M(H) 
curve), about 4 µB (related to hemoglobin) and approximately 7 µB 
(related to complexes of hemoglobin). For the sample of a person 
suffered from atherosclerosis the first two components are also 
present but the third one is not dedected. In addition, the position of 
the peak of hemoglobin is shifted into higher values, and its width is 
slightly higher. It is obvious that on the basis of several biological 
samples more general conclusions are impossible, however, the 
analysis show the usefulness of the algorithm to characterize the 
magnetic properties of such preparations. 

 

 
 
Fig. 25. Distribution of cluster magnetic moment for sample 
without atherosclerotic features 
 

A third, quite an interesting example concerns aluminum-based 
diluted magnetic materials i.e. Al87Y5Ni8, Al87Y4Gd1Ni8, 
Al87Gd5Ni8, Al87Y4Dy1Ni8, and Al87Dy5Ni8 amorphous alloys 
[52,53]. Figs. 27 and 28 show thermomagnetic curves M(T) and 
inverse susceptibility 1/  for the mentioned above alloys, 
respectively. The 1/  temperature dependences reveal a deviation of 

the Curie-Weiss law in the low temperature range. However, in 
higher temperatures this law is well fulfilled and one can determine 
the so-called  temperature (as a crossing point of the fitted 1/  line 
and the T-axis (see Fig. 28), that describes interactions. The origin 
of the interactions depends on a kind of material.  
 

 
 
Fig. 26. Distribution of cluster magnetic moment for sample with 
atherosclerotic features 
 

 
 
Fig. 27. Thermomagnetic curves M(T) for selected aluminum-
based amorphous alloys 
 

 
 
Fig. 28. 1/  vs. temperature for the selected aluminum-based 
amorphous alloys; in the inset: 1/  vs. T for the Al87Gd5Ni8 
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The other, important for application, magnetic materials are 
permanent magnets showing hard magnetic properties. Generally, 
hard magnets are used in power generators, electric motors, 
different kinds of sensors and data storage media. Such materials 
should be characterized by high coercivity, high value of saturation 
magnetization and remanence. The idea is that, after sample 
saturation, magnetic moments should be “trapped” after switching 
off the field. Therefore, any kind of magnetic anisotropy, as the 
energy barrier that causes the blocking of magnetic moments, is 
favorable to magnetic hardening. Also, in the group of hard 
magnetic materials a suitable nanostructure can significantly 
improve the characteristics required for the mentioned applications. 
Nanocrystalline alloys containing grains of hard magnetic phases 
combine different types of magnetic anisotropy, i.e. the 
magnetocrystalline, shape and surface anisotropy related to the 
grains and their boundary regions. In addition, the grain boundaries 
are a source of internal stresses, so-called thin domain walls, 
blocking the movement of domain walls and magnetic disorder. All 
these factors are advantageous for magnetic hardening.  

In the next subsections selected magnetic materials with 
structural and magnetic disorder, their properties and analysis 
methods based on the Sections 2 and 3 are presented. The 
materials are divided into the four groups i.e. i) 
superparamgnetisc and diluted magnetic materials, ii) iron-based 
amorphous and nanocrystalline alloys as soft magnets, iii) iron 
based bulk nanocrystalline alloys as hard magnets and iv) 
magnetic nanocoposite.  
 
 
4.1. Superparamagnetics and diluted magnetic 
materials 
 

A good example of application of the Langevin granulometry 
method concerning superparamagetic systems (see Section 2.1) is 
analysis of distribution of magnetic moments in thin layers SiC/Mn 
deposited on Si substrate [10]. Let compare the two samples with 
15.5% Mn content (denoted as Mn(Si)-1) and 26.8% Mn content 
(denoted as Mn(Si)-2). Fig. 21 shows original magnetic isotherms 
measured at T = 300 K. Thermomagnetic curves (not presented 
here) as well as the saturation character of the isotherms confirm 
superparamagnetic behaviour of the samples.  

 

 
 
Fig. 21. Magnetic isotherms for thin layers Mn(Si)-1 (15.5 % Mn) 
and Mn(Si)-2 (28.6% Mn) 

Results of the SA procedure are shown in Fig. 22. For the 
sample Mn(Si)-1 the distribution consists of the two Gaussian like 
components positioned at 2300 µB and 14000 µB. Assuming that 
magnetic moment of Mn atom is about 2.3 µB one can state that the 
clusters contain about 1000 and 6000 Mn atoms, respectively. For 
the sample Mn(Si)-2 the distribution reveals the one narrow peak at 
7400 µB. On average, these clusters contain 3200 Mn atoms.  

Langevin granulometry methods can be used not only for 
imaging of magnetic clusters, but also the system of 
noninteracting magnetic moments. An example can be the 
analysis of the distribution of magnetic moments in preparations 
of human blood. It is know that the blood contains iron mainly in 
the form of hemoglobin where the Fe ions are located in a central 
position of porphyrins. In [51] magnetic properties of blood of 
patients with and without atherosclerosis were carefully studied. 
Figs. 23 and 24 show an example of M(T) and M(H) curves at  
T = 2 K for the two representative samples. 

 
 

 
 

Fig. 22. Calculated distributions of magnetic moments obtained 
from the SA procedure (see the text) 
 
 

 
 
Fig. 23. Magnetization versus temperature for samples with 
(closed circles) and without (open circles) atherosclerotic features 

 

 
 
Fig. 24. Reduced magnetization M/Ms versus magnetic field for 
samples with (closed circles) and without (open circles) 
atherosclerotic features 
 

As in the previous example, paramagnetic nature of the M(T) 
curves allows applying the SA procedure in order to determine a 
distribution of magnetic moments (see eq.(5)). The results of such 
analysis are presented in Figs. 25 and 26. In the case of the 
“healthy” sample one can see the three Gaussian-like components 
located below 0.5 µB (related to a nonsaturated component of M(H) 
curve), about 4 µB (related to hemoglobin) and approximately 7 µB 
(related to complexes of hemoglobin). For the sample of a person 
suffered from atherosclerosis the first two components are also 
present but the third one is not dedected. In addition, the position of 
the peak of hemoglobin is shifted into higher values, and its width is 
slightly higher. It is obvious that on the basis of several biological 
samples more general conclusions are impossible, however, the 
analysis show the usefulness of the algorithm to characterize the 
magnetic properties of such preparations. 

 

 
 
Fig. 25. Distribution of cluster magnetic moment for sample 
without atherosclerotic features 
 

A third, quite an interesting example concerns aluminum-based 
diluted magnetic materials i.e. Al87Y5Ni8, Al87Y4Gd1Ni8, 
Al87Gd5Ni8, Al87Y4Dy1Ni8, and Al87Dy5Ni8 amorphous alloys 
[52,53]. Figs. 27 and 28 show thermomagnetic curves M(T) and 
inverse susceptibility 1/  for the mentioned above alloys, 
respectively. The 1/  temperature dependences reveal a deviation of 

the Curie-Weiss law in the low temperature range. However, in 
higher temperatures this law is well fulfilled and one can determine 
the so-called  temperature (as a crossing point of the fitted 1/  line 
and the T-axis (see Fig. 28), that describes interactions. The origin 
of the interactions depends on a kind of material.  
 

 
 
Fig. 26. Distribution of cluster magnetic moment for sample with 
atherosclerotic features 
 

 
 
Fig. 27. Thermomagnetic curves M(T) for selected aluminum-
based amorphous alloys 
 

 
 
Fig. 28. 1/  vs. temperature for the selected aluminum-based 
amorphous alloys; in the inset: 1/  vs. T for the Al87Gd5Ni8 
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In the case of diluted magnets with metallic matrix indirect 
RKKY and dipolar coupling are expected [30]. If the matrix is not 
conductive or for composites produced of magnetic powders only 
dipolar interactions can occur. Independently on the origin one can 
include the effect in analysis of superparamagnetic systems by 
replacing T with T+  in the argument of the Langevin function (see 
eq.(1)). Fig. 29 depicts the magnetic isotherms from which 
determination of the distribution of magnetic moments were 
performed. The results of applying the SA Langevin granulometry 
procedure are shown in Fig. 30, where an influence of Dy alloying 
addition is presented. Note that the Al87Y5Ni8 reference alloy 
contains two types of Ni clusters with average values of 10 µB and 
88 µB. Because for this alloy, magnetic moment attributed to Ni is 
0.3 µB (determined from the saturation magnetization [90]) the 
clusters contain about 35 and 300 Ni atoms. The addition of 1 at.% 
of Dy causes a shift of the both components in the lower values. This 
is due to the fact that Dy partially disturbs ferromagnetic coupling of 
Ni within the clusters, forcing antiferromagnetic arrangements of 
Dy-Ni magnetic moments. Therefore, the fragmentation of the Ni 
clusters is more effective for increasing Dy content which is 
particularly evident in the case of Al87Dy5Ni8 alloy. 

 

 
 
Fig. 29. Magnetic isotherms M(H) for selected aluminum-based 
amorphous alloys, measured at 2 K 
 

 
 
Fig. 30. Distribution of cluster magnetic moments for Al87Y5Ni8, 
Al87Y4Dy1Ni8, and Al87Dy5Ni8 alloys at 2 K 

 
The presented examples do not exhaust the range of applications 

of Langevin granulometry, however, they show remarkable 
usefulness of this method in the characterization of magnetic systems. 

It should be noted that one of the major advantages of the analysis 
presented here is the possibility of indirect observations of magnetic 
objects that consist of even several atoms which for other direct 
methods can be difficult or impossible. 
 
 
4.2. Amorphous and nanocrystalline alloys - 
soft magnets 
 

Amorphous and nanocrystalline alloys containing magnetic 
elements are a very good example of materials for which 
properties are connected with the disorder either at the atomic 
level, or microstructure. These materials are usually prepared by 
melt-spinning technique in the form of thin amorphous strips and 
next, the nanostructure is obtained by isothermal (usually for one 
hour) annealing at temperatures close to the crystallization 
temperature. Very high initial relative permeability (up to 105), 
low coercivity (less than 10 A/m) and high saturation induction 
value (up to 2 T) place this type of alloys in the group of modern 
soft magnetic materials [54-63].  

It is known that by appropriate alloying additions and annealing 
procedures one can affect their magnetic properties. It is a simple 
consequence of the fact that amorphous alloys are not in 
thermodynamic equilibrium and the annealing leads to changes of 
its microstructure. The material reaches thermodynamic equilibrium 
in two, broadly defined processes i.e. i) structural relaxation of the 
microstructure that occurs at temperatures up to the beginning of the 
crystallization and ii) crystallization. In some cases the 
microstructural changes occurring during annealing leads to the 
optimization effect [54-56, 59], which consists in simultaneous 
correlation of various material parameters - magnetic, electrical and 
mechanical in order to fulfil requirements of different applications. 

Historically, the first nanocrystalline alloys, for which 
ferromagnetism was discovered were the FINEMET type 
containing Fe as the main element and Si, B,P… as additions [1, 55-
59]. They are characterized by high initial magnetic permeability 
(about 104) and high saturation induction (about 1 T). In order to 
increase the saturation induction, in the so-called NANOPERM 
alloys type, the Si alloying addition is eliminated [1, 69-71]. 
Subsequently, in order to increase the Curie temperature, iron is 
partially replaced by cobalt which gives the new type of 
nanocrystalline alloys called HITPERM [1, 72-75]. Fig. 31 shows a 
comparison of soft magnetic properties for different type of 
materials [76]. Table 2 summarizes different magnetic and related 
properties of selected nanocrystalline alloys [77]. 

Generally, nanocrystalline materials show a brittleness 
resulting from high contribution of nanograins surface that 
obviously narrows the field of their applications down. However, 
it is possible to optimize the soft magnetic properties in the so-
called relaxed amorphous phase without formation of 
nanostructures. This phenomenon was observed for the first time 
in NANOPERM type alloys [78]. A proper Nb content allows 
obtaining a relatively stable (thermodynamically) relaxed 
amorphous structure, which can combine some attributes of 
disordered structures (without a long range correlation) and 
ordered structures (reduction of internal stresses and excess 
volume - microvoids). In this structure there are interesting 
phenomena related to magnetism in systems with disordered 
magnetic anisotropy and exchange interactions (fluctuation of 
interatomic distances). 

4.2.  Amorphous and nanocrystalline alloys - 
soft magnets

 

Table 2.  
Crystallization temperature Tx1 - the first stage, Tx2 - the second stage, Saturation induction Bs, initial magnetic permeability µ, coercivity 
Hc, magnetostriction s, crystallites diameter d and annealing temperature Ta for selected nanocrystalline alloys 

Amorphous precursor Tx1 Tx2 Bs µ Hc s d Ta 
 [K] [K] [T] 10-3 [A/m] 106 [nm] [K] 

Fe92Zr8 804 900 1.62 2 66  23 823 
Fe90Zr7B3 825 1025 1.63 22 5.6 1.1 18 933 
Fe85Zr7B8 861 993  19    673 

FE86Zr5B8Cu1 750 870 1.54   0.5 13 823 
Fe86Zr7B6Cu1 800 995 1.52 48 3.2 1 10 873 
Fe88Zr7B3Al2 805 1020 1.57 11  0  873 
Fe86Zr7B3Si4 815 1040 1.54 10  0.5  873 
Fe87Zr7B2Si4 810 1050 1.56 14  0  873 
Fe89Zr7B2Al2 800 1030 1.61 17  0  873 

Fe88Zr7B2Si2Al   1.55 12  -1  873 
Fe87Zr7B3Si2Al   1.52 11  -0.5  873 
Fe87Zr4Nb3B6 802  1.50 3.5   15.9 923 

Fe86Zr4Nb3B6Cu1 757  1.54 18 3.7   923 
Fe86Zr3,25Nb3,25B6,5Cu1   1.61 110 2.0 -0.3 9  
Fe 85,6Zr3,3Nb3,3B6,8Cu1   1.57 160 1.2 -0.3 8  

Fe84Zr3,5Nb3,5B8Cu1   1.53 120 1.7 0.3 8  
Fe84Nb7B9 800 1070 1.4 9.8 220 0.4 8 923 

Fe84Nb7B8Cu1 705 1045 1.48 16 8.9   823 
Fe83Nb7B9Ga1   1.48 38 4.8  10  
Fe83Nb7B9Ge1   1.47 29 5.6 0.2 24  
Fe83Nb7B9Cu1   1.52 49 3.8 1.1 8  

Fe84Nb3,5Zr3,5B8Cu1   1.53 100 1.7 0.3 19  
Fe85Nb3,5Hf3,5B7Cu1   1.44 92 1.3 0.2 20  

Fe90Hf7B3   1.59 32 4.5 -1.2 13  
Fe56Co7Ni7Zr10B20 890  0.96 18 2.4   750 
Fe60Co3Ni7Zr10B20 870    5    
Fe49Co14Ni7Zr10B20 895    11    
Fe46Co17Ni7Zr10B20 905    12    

 

 
 
Fig. 31. Comparison of the soft magnetic properties of amorphous 
and nanocrystalline materials (according to [76]) 
 
Optimization effect - the relaxed amorphous phase 

 
A typical example is the Fe86 xNbx B14 (2 x 8) group of 

NANOPERM type alloys. The samples of Fe86 xNbx B14 (2 x 8) 

(NANOPERM type) were prepared by melt-spinning technique as 
amorphous ribbons with thickness and width of about 20 µm and 1 
cm, respectively The amorphicity of the as quenched alloys was 
confirmed by XRD as well as Mössbauer spectroscopy 
measurements [79-81]. Soft magnetic properties and a potential for 
optimization of these properties were examined by the experiment 
consisting of i) preliminary isothermal annealing for one hour at Ta 
ranging from 300 K to 900 K (the so-called 1-hour annealing 
temperature) and ii) measurements of magnetic permeability and 
other properties at the room temperature. Fig. 32 shows the 
obtained optimization curves for Fe86 xNbx B14 (x = 2, 6, 8). The 
term optimization refers to initial magnetic permeability µ 
(determined at room temperature) and reflects the observed 
significant increase of µ in a function of Ta. Notice, the highest 
value of µ was obtained for the Fe80Nb6B14 alloy preliminary 
annealed at Ta = Top = 700 K/1h (Top is the optimization 
temperature). In a comparison with the as quenched state (assumed 
Ta = 300 K) in the optimized state (or optimized microstructure) µ 
increases about 13 times reaching the value of 33·103.  

Such optimization effect in literature is usually attributed to a 
formation of nanostructure of -Fe nanograins embedded into 
amorphous ferromagnetic matrix. In our case the effect occurs just in 
amorphous phase which was proofed by applying different 
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In the case of diluted magnets with metallic matrix indirect 
RKKY and dipolar coupling are expected [30]. If the matrix is not 
conductive or for composites produced of magnetic powders only 
dipolar interactions can occur. Independently on the origin one can 
include the effect in analysis of superparamagnetic systems by 
replacing T with T+  in the argument of the Langevin function (see 
eq.(1)). Fig. 29 depicts the magnetic isotherms from which 
determination of the distribution of magnetic moments were 
performed. The results of applying the SA Langevin granulometry 
procedure are shown in Fig. 30, where an influence of Dy alloying 
addition is presented. Note that the Al87Y5Ni8 reference alloy 
contains two types of Ni clusters with average values of 10 µB and 
88 µB. Because for this alloy, magnetic moment attributed to Ni is 
0.3 µB (determined from the saturation magnetization [90]) the 
clusters contain about 35 and 300 Ni atoms. The addition of 1 at.% 
of Dy causes a shift of the both components in the lower values. This 
is due to the fact that Dy partially disturbs ferromagnetic coupling of 
Ni within the clusters, forcing antiferromagnetic arrangements of 
Dy-Ni magnetic moments. Therefore, the fragmentation of the Ni 
clusters is more effective for increasing Dy content which is 
particularly evident in the case of Al87Dy5Ni8 alloy. 

 

 
 
Fig. 29. Magnetic isotherms M(H) for selected aluminum-based 
amorphous alloys, measured at 2 K 
 

 
 
Fig. 30. Distribution of cluster magnetic moments for Al87Y5Ni8, 
Al87Y4Dy1Ni8, and Al87Dy5Ni8 alloys at 2 K 

 
The presented examples do not exhaust the range of applications 

of Langevin granulometry, however, they show remarkable 
usefulness of this method in the characterization of magnetic systems. 

It should be noted that one of the major advantages of the analysis 
presented here is the possibility of indirect observations of magnetic 
objects that consist of even several atoms which for other direct 
methods can be difficult or impossible. 
 
 
4.2. Amorphous and nanocrystalline alloys - 
soft magnets 
 

Amorphous and nanocrystalline alloys containing magnetic 
elements are a very good example of materials for which 
properties are connected with the disorder either at the atomic 
level, or microstructure. These materials are usually prepared by 
melt-spinning technique in the form of thin amorphous strips and 
next, the nanostructure is obtained by isothermal (usually for one 
hour) annealing at temperatures close to the crystallization 
temperature. Very high initial relative permeability (up to 105), 
low coercivity (less than 10 A/m) and high saturation induction 
value (up to 2 T) place this type of alloys in the group of modern 
soft magnetic materials [54-63].  

It is known that by appropriate alloying additions and annealing 
procedures one can affect their magnetic properties. It is a simple 
consequence of the fact that amorphous alloys are not in 
thermodynamic equilibrium and the annealing leads to changes of 
its microstructure. The material reaches thermodynamic equilibrium 
in two, broadly defined processes i.e. i) structural relaxation of the 
microstructure that occurs at temperatures up to the beginning of the 
crystallization and ii) crystallization. In some cases the 
microstructural changes occurring during annealing leads to the 
optimization effect [54-56, 59], which consists in simultaneous 
correlation of various material parameters - magnetic, electrical and 
mechanical in order to fulfil requirements of different applications. 

Historically, the first nanocrystalline alloys, for which 
ferromagnetism was discovered were the FINEMET type 
containing Fe as the main element and Si, B,P… as additions [1, 55-
59]. They are characterized by high initial magnetic permeability 
(about 104) and high saturation induction (about 1 T). In order to 
increase the saturation induction, in the so-called NANOPERM 
alloys type, the Si alloying addition is eliminated [1, 69-71]. 
Subsequently, in order to increase the Curie temperature, iron is 
partially replaced by cobalt which gives the new type of 
nanocrystalline alloys called HITPERM [1, 72-75]. Fig. 31 shows a 
comparison of soft magnetic properties for different type of 
materials [76]. Table 2 summarizes different magnetic and related 
properties of selected nanocrystalline alloys [77]. 

Generally, nanocrystalline materials show a brittleness 
resulting from high contribution of nanograins surface that 
obviously narrows the field of their applications down. However, 
it is possible to optimize the soft magnetic properties in the so-
called relaxed amorphous phase without formation of 
nanostructures. This phenomenon was observed for the first time 
in NANOPERM type alloys [78]. A proper Nb content allows 
obtaining a relatively stable (thermodynamically) relaxed 
amorphous structure, which can combine some attributes of 
disordered structures (without a long range correlation) and 
ordered structures (reduction of internal stresses and excess 
volume - microvoids). In this structure there are interesting 
phenomena related to magnetism in systems with disordered 
magnetic anisotropy and exchange interactions (fluctuation of 
interatomic distances). 

 

Table 2.  
Crystallization temperature Tx1 - the first stage, Tx2 - the second stage, Saturation induction Bs, initial magnetic permeability µ, coercivity 
Hc, magnetostriction s, crystallites diameter d and annealing temperature Ta for selected nanocrystalline alloys 

Amorphous precursor Tx1 Tx2 Bs µ Hc s d Ta 
 [K] [K] [T] 10-3 [A/m] 106 [nm] [K] 

Fe92Zr8 804 900 1.62 2 66  23 823 
Fe90Zr7B3 825 1025 1.63 22 5.6 1.1 18 933 
Fe85Zr7B8 861 993  19    673 

FE86Zr5B8Cu1 750 870 1.54   0.5 13 823 
Fe86Zr7B6Cu1 800 995 1.52 48 3.2 1 10 873 
Fe88Zr7B3Al2 805 1020 1.57 11  0  873 
Fe86Zr7B3Si4 815 1040 1.54 10  0.5  873 
Fe87Zr7B2Si4 810 1050 1.56 14  0  873 
Fe89Zr7B2Al2 800 1030 1.61 17  0  873 

Fe88Zr7B2Si2Al   1.55 12  -1  873 
Fe87Zr7B3Si2Al   1.52 11  -0.5  873 
Fe87Zr4Nb3B6 802  1.50 3.5   15.9 923 

Fe86Zr4Nb3B6Cu1 757  1.54 18 3.7   923 
Fe86Zr3,25Nb3,25B6,5Cu1   1.61 110 2.0 -0.3 9  
Fe 85,6Zr3,3Nb3,3B6,8Cu1   1.57 160 1.2 -0.3 8  

Fe84Zr3,5Nb3,5B8Cu1   1.53 120 1.7 0.3 8  
Fe84Nb7B9 800 1070 1.4 9.8 220 0.4 8 923 

Fe84Nb7B8Cu1 705 1045 1.48 16 8.9   823 
Fe83Nb7B9Ga1   1.48 38 4.8  10  
Fe83Nb7B9Ge1   1.47 29 5.6 0.2 24  
Fe83Nb7B9Cu1   1.52 49 3.8 1.1 8  

Fe84Nb3,5Zr3,5B8Cu1   1.53 100 1.7 0.3 19  
Fe85Nb3,5Hf3,5B7Cu1   1.44 92 1.3 0.2 20  

Fe90Hf7B3   1.59 32 4.5 -1.2 13  
Fe56Co7Ni7Zr10B20 890  0.96 18 2.4   750 
Fe60Co3Ni7Zr10B20 870    5    
Fe49Co14Ni7Zr10B20 895    11    
Fe46Co17Ni7Zr10B20 905    12    

 

 
 
Fig. 31. Comparison of the soft magnetic properties of amorphous 
and nanocrystalline materials (according to [76]) 
 
Optimization effect - the relaxed amorphous phase 

 
A typical example is the Fe86 xNbx B14 (2 x 8) group of 

NANOPERM type alloys. The samples of Fe86 xNbx B14 (2 x 8) 

(NANOPERM type) were prepared by melt-spinning technique as 
amorphous ribbons with thickness and width of about 20 µm and 1 
cm, respectively The amorphicity of the as quenched alloys was 
confirmed by XRD as well as Mössbauer spectroscopy 
measurements [79-81]. Soft magnetic properties and a potential for 
optimization of these properties were examined by the experiment 
consisting of i) preliminary isothermal annealing for one hour at Ta 
ranging from 300 K to 900 K (the so-called 1-hour annealing 
temperature) and ii) measurements of magnetic permeability and 
other properties at the room temperature. Fig. 32 shows the 
obtained optimization curves for Fe86 xNbx B14 (x = 2, 6, 8). The 
term optimization refers to initial magnetic permeability µ 
(determined at room temperature) and reflects the observed 
significant increase of µ in a function of Ta. Notice, the highest 
value of µ was obtained for the Fe80Nb6B14 alloy preliminary 
annealed at Ta = Top = 700 K/1h (Top is the optimization 
temperature). In a comparison with the as quenched state (assumed 
Ta = 300 K) in the optimized state (or optimized microstructure) µ 
increases about 13 times reaching the value of 33·103.  

Such optimization effect in literature is usually attributed to a 
formation of nanostructure of -Fe nanograins embedded into 
amorphous ferromagnetic matrix. In our case the effect occurs just in 
amorphous phase which was proofed by applying different 
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experimental techniques. For example, the performed electron 
microscopy observations (image and diffraction pattern of HRTEM) 
reveal that for Fe80Nb6B14 alloys annealed at Ta = Top = 700 K the 
microstructure is fully amorphous (see Fig. 33). The first nanograins 
were observed for Ta = 760 K, so 60 K above Top. For Ta = 840 K a 
well formed nanostructure of -Fe was detected.  
 

 
 
Fig. 32. Optimization curves for Fe86 xNbx B14 (x = 2, 6, 8 ) 
amorphous alloys 
 

Thermomagnetic curves of amorphous and nanostructured 
magnets are a source of important information. Due to the 
structural disorder one can expect relatively low the Curie 
temperature (see Section 3.1), so in the case of iron-base 
amorphous alloys, the crystallization process is observed as an 
increase of magnetization with increasing T.  
 

 
 
Fig. 33. Electron microscopy observations (image and diffraction 
pattern of HRTEM) for Fe80Nb6B14 annealed at Ta = 700 K (a), 
Ta = 760 K (b) and Ta = 840 K (c) 

Fig. 34 presets such M(T) curves for Fe80Nb6B14 preliminary 
annealed at different Ta. As shown, the depicted dependences 
reveal both TC of amorphous phase and the crystallization 
temperature Tx (the first stage). Moreover, for the sample in the as 
quenched state the paramagnetic region between TC and Tx 
confirms the absence of any Fe nanograins (for Fe TC = 1042 K), 
so amorphicity of the alloys. The nonzero magnetization between 
TC and Tx reveals a contribution of nanograins (which was 
observed for Ta >770 K/1h. This fact also confirms the 
optimization of soft magnetic properties in amorphous phase. 
Similar results were obtained for other examined here alloys. 

 

 
 
Fig. 34. M(T) curves for Fe80Nb6B14 amorphous alloy preliminary 
annealed at different Ta 
 

It is worth to plot some magnetic quantities (measured at room 
temperature) as a function of Ta. Fig. 35 depicts such analysis of TC, 
saturation induction µ0M, time instabilities of µ, coercivity HC and 
µ. The time instabilities of µ were determine as µ/µ = (µ(t2)- 
µ(t1))/µ(t1) where t1 = 30 s and t2 = 1800 s after demagnetization. 
This quantity is related to internal stresses and free volume 
concentration. One can divide the structural changes into three 
temperature regions. The first one up to a significant decrease of 

µ/µ (700 K) due to the structural relaxation (reduction of internal 
stresses and free volume), the second one up to the increase of TC 
connected with the relaxed amorphous phase (RAP) (700 K - 760 
K), and the third region attributed to the nanocrystallization (above 
760 K). From the presented dependences it is evident that the 
optimization temperature Top is placed in the RAP range. The 
relatively stable RAP results from the fact that Nb that slows down 
of diffusion processes, and therefore, the crystallization does not 
overlap the relaxed amorphous stage. Different properties 
connected with the RAP phase are discussed in [82-87]. 

A possible origin of the optimization effect that occurs in RAP 
can by studied based on the ZFC-FC magnetization measurements 
(see Section 2.1) [86]. As it was shown the ZFC-FC effect can be 
caused by magnetic disorder as well as anisotropy of nanosized 
magnetic objects (section 3.3). The original ZFC-FC curves for 
Fe80Nb6B14 amorphous alloy are shown in Fig. 36. The difference 
of the two curves appears just at TC which suggests some 
contribution of magnetic irreversibility effects without well defined 
blocking temperature. However, the difference defined as (MFC-
MZFC)/MZFC and measured for samples annealed at different Ta 
reveal some characteristics (see Fig. 37). As we can see, there are 
the two characteristic temperature regions: above and below 50 K. 

a

b

c

 

Let analyze the sample annealed at Ta = 770 K for which the M(T) 
dependence reveals some contribution of ferromagnetic Fe 
nanograins (see Fig. 34). In the T range 50-400 K the ZFC-FC effect 
almost does not occur but in lower temperatures a sharp increase is 
observed. It can be connected with the already formed nanograns and 
boundary regions between the nanograins and amorphous matrix 
(magnetic anisotropy disorder and/or frustrations of particles 
magnetic moments). It is characteristic that with the progress of 
structural relaxation (i.e. increase of Ta) one can observe a successive 
disappearing of the ZFC-FC effect that can be attributed to a 
reduction of internal stresses and free volume content. In contrary to 
this, the component at T < 50 K remains independent on Ta. It seems 
that the component is caused by small Fe clusters (for Ta < 770 K) 
and next at higher Ta the clusters serve as nucleation centers of the 
nanograins growing. Taking into account the above, one can conclude 
that in the case of Fe-Nb-B type of amorphous alloys the reduction of 
internal stresses and the formation of Fe clusters, that plays the same 
role in the Herzer model (described in Section 3.3) as nanostructure, 
cause averaging out of magnetic anisotropy that directly leads to 
optimization effect in relaxed amorphous phase. 

 

 
 
Fig. 35. Different magnetic quantities (measured at room 
temperature) as a function of Ta (see the text) 
 

 
 

Fig. 36. ZFC-FC curves for Fe80Nb6B14 amorphous alloy 

 
 
Fig. 37. (MFC-MZFC)/MZFC curves and measured for Fe80Nb6B14 
amorphous alloy annealed at different Ta 
 
Optimization effect in nanostructure 
 

According to the Herzer model, soft magnetic properties can be 
enhanced by a specific nanostructure. In the case when the formed 
nanograins are oriented at random and ferromagnetic correlation 
length is spread over some number of grains, magnetocrystalline 
anisotropy is averaged according to Eq. (47). The condition Lex > D 
shows that favorable to magnetic softening are nanograins with 
diameter in order of 10 nm and ferromagnetic matrix (extention of 
Lex). Fig. 38 shows pictures of microstructure for 
Fe73.5Cu1Nb3Si13.5B9 (a), Fe73.5Cu1NbSi16.5B6 (b) (annealed at  
Ta = 810 K), Fe74.5Nb3Si13.5B9 (c) (Ta = 800 K) and 
Fe73.5Cu1Nb3Si13.5B9 (c) (Ta = 1170 K) [49]. From the selection only 
(a) and (b) fulfill the condition of averaging out of anisotropy and 
therefore, for these alloys the optimization effect occurs.  
 

 
 
Fig. 38. Electron microscopy images for selected FINEMET type 
of alloys (see the text) [49] 
 

A good examples of the materials for which the optimization 
effect is attributed to the nanostructure are the Fe74Cu1Zr3Si13B9 

a b

c d

http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org


97

Magnetism in disordered materials

Volume 58    Issue 2   December 2012

experimental techniques. For example, the performed electron
microscopy observations (image and diffraction pattern of HRTEM)
reveal that for Fe80Nb6B14 alloys annealed at Ta = Top = 700 K the
microstructure is fully amorphous (see Fig. 33). The first nanograins 
were observed for Ta = 760 K, so 60 K above Top. For Ta = 840 K a
well formed nanostructure of -Fe was detected. 

Fig. 32. Optimization curves for Fe86 xNbx B14 (x = 2, 6, 8 )
amorphous alloys 

Thermomagnetic curves of amorphous and nanostructured
magnets are a source of important information. Due to the 
structural disorder one can expect relatively low the Curie 
temperature (see Section 3.1), so in the case of iron-base 
amorphous alloys, the crystallization process is observed as an 
increase of magnetization with increasing T.

Fig. 33. Electron microscopy observations (image and diffraction
pattern of HRTEM) for Fe80Nb6B14 annealed at Ta = 700 K (a),
Ta = 760 K (b) and Ta = 840 K (c) 

Fig. 34 presets such M(T) curves for Fe80Nb6B14 preliminary 
annealed at different Ta. As shown, the depicted dependences 
reveal both TC of amorphous phase and the crystallization
temperature Tx (the first stage). Moreover, for the sample in the as 
quenched state the paramagnetic region between TC and Tx
confirms the absence of any Fe nanograins (for Fe TC = 1042 K),
so amorphicity of the alloys. The nonzero magnetization between
TC and Tx reveals a contribution of nanograins (which was 
observed for Ta >770 K/1h. This fact also confirms the 
optimization of soft magnetic properties in amorphous phase. 
Similar results were obtained for other examined here alloys.

Fig. 34. M(T) curves for Fe80Nb6B14 amorphous alloy preliminary
annealed at different Ta

It is worth to plot some magnetic quantities (measured at room
temperature) as a function of Ta. Fig. 35 depicts such analysis of TC, 
saturation induction µ0M, time instabilities of µ, coercivity HC and
µ. The time instabilities of µ were determine as µ/µ = (µ(t2)-
µ(t1))/µ(t1) where t1 = 30 s and t2 = 1800 s after demagnetization.
This quantity is related to internal stresses and free volume
concentration. One can divide the structural changes into three
temperature regions. The first one up to a significant decrease of 

µ/µ (700 K) due to the structural relaxation (reduction of internal
stresses and free volume), the second one up to the increase of TC
connected with the relaxed amorphous phase (RAP) (700 K - 760
K), and the third region attributed to the nanocrystallization (above
760 K). From the presented dependences it is evident that the
optimization temperature Top is placed in the RAP range. The
relatively stable RAP results from the fact that Nb that slows down 
of diffusion processes, and therefore, the crystallization does not
overlap the relaxed amorphous stage. Different properties
connected with the RAP phase are discussed in [82-87].

A possible origin of the optimization effect that occurs in RAP
can by studied based on the ZFC-FC magnetization measurements
(see Section 2.1) [86]. As it was shown the ZFC-FC effect can be
caused by magnetic disorder as well as anisotropy of nanosized
magnetic objects (section 3.3). The original ZFC-FC curves for
Fe80Nb6B14 amorphous alloy are shown in Fig. 36. The difference
of the two curves appears just at TC which suggests some
contribution of magnetic irreversibility effects without well defined
blocking temperature. However, the difference defined as (MFC-
MZFC)/MZFC and measured for samples annealed at different Ta
reveal some characteristics (see Fig. 37). As we can see, there are 
the two characteristic temperature regions: above and below 50 K. 

a

b

c

Let analyze the sample annealed at Ta = 770 K for which the M(T) 
dependence reveals some contribution of ferromagnetic Fe 
nanograins (see Fig. 34). In the T range 50-400 K the ZFC-FC effect 
almost does not occur but in lower temperatures a sharp increase is 
observed. It can be connected with the already formed nanograns and 
boundary regions between the nanograins and amorphous matrix 
(magnetic anisotropy disorder and/or frustrations of particles 
magnetic moments). It is characteristic that with the progress of 
structural relaxation (i.e. increase of Ta) one can observe a successive 
disappearing of the ZFC-FC effect that can be attributed to a 
reduction of internal stresses and free volume content. In contrary to 
this, the component at T < 50 K remains independent on Ta. It seems 
that the component is caused by small Fe clusters (for Ta < 770 K) 
and next at higher Ta the clusters serve as nucleation centers of the 
nanograins growing. Taking into account the above, one can conclude 
that in the case of Fe-Nb-B type of amorphous alloys the reduction of 
internal stresses and the formation of Fe clusters, that plays the same 
role in the Herzer model (described in Section 3.3) as nanostructure, 
cause averaging out of magnetic anisotropy that directly leads to 
optimization effect in relaxed amorphous phase. 

Fig. 35. Different magnetic quantities (measured at room 
temperature) as a function of Ta (see the text) 

Fig. 36. ZFC-FC curves for Fe80Nb6B14 amorphous alloy 

Fig. 37. (MFC-MZFC)/MZFC curves and measured for Fe80Nb6B14 
amorphous alloy annealed at different Ta 

Optimization effect in nanostructure 

According to the Herzer model, soft magnetic properties can be 
enhanced by a specific nanostructure. In the case when the formed 
nanograins are oriented at random and ferromagnetic correlation 
length is spread over some number of grains, magnetocrystalline 
anisotropy is averaged according to Eq. (47). The condition Lex > D 
shows that favorable to magnetic softening are nanograins with 
diameter in order of 10 nm and ferromagnetic matrix (extention of 
Lex). Fig. 38 shows pictures of microstructure for 
Fe73.5Cu1Nb3Si13.5B9 (a), Fe73.5Cu1NbSi16.5B6 (b) (annealed at  
Ta = 810 K), Fe74.5Nb3Si13.5B9 (c) (Ta = 800 K) and 
Fe73.5Cu1Nb3Si13.5B9 (c) (Ta = 1170 K) [49]. From the selection only 
(a) and (b) fulfill the condition of averaging out of anisotropy and
therefore, for these alloys the optimization effect occurs.

Fig. 38. Electron microscopy images for selected FINEMET type 
of alloys (see the text) [49] 

A good examples of the materials for which the optimization 
effect is attributed to the nanostructure are the Fe74Cu1Zr3Si13B9 
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FINEMET type alloy and Fe76Zr2B22 NANOPERM type alloy 
[88]. The optimization curves for these alloys are presented in 
Fig. 39. The both alloys show the maximum of µ in the vicinity of 
nanostructure that is documented in Fig. 40. The HRTEM images 
revels the formation of nanograins of Fe-Si for Fe74Cu1Zr3Si13B9 
and Fe for Fe76Zr2B22. In the both cases the mean diameters of the 
particles are about 3 nm. 

Fig. 39. Optimization curves for Fe74Cu1Zr3Si13B9 and Fe76Zr2B22 
amorphous alloys 

Fig. 40. HRTEM images for Fe74Cu1Zr3Si13B9 (top) and 
Fe76Zr2B22 (bottom) alloys, both in the optimized state 

The random anisotropy (Herzer) model predicts also the 
dependences of coercivity and magnetic permeability on the grand 
dimension (eq.(48) and eq.(49)). These relations are in agreement 
with experimental results, which were tested for different 
nanocrystalline iron-based alloys, as depicted in Fig. 41. Let 
notice that for the grain size less that 50 nm the dependences 
follow as D6 [48]. So, for the FINEMET type of alloys this value 
can be considered as a critical dimension below which the 
condition Lex > D is well fulfilled. 

Fig. 41. Coercivity and initial magnetic permeability as a function 
of grain size diameter for different nanocrystalline alloys [48] 

Influence of rare earth additions (R) on magnetic properties 
of Fe-Nb-B-R amorphous alloys 

In order to study the influence of R elements on magnetic 
properties of the Fe-Nb-B type of amorphous alloys the samples 
of Fe82Nb2B14Y2 (as reference), Fe82Nb2B14Gd2, Fe82Nb2B14Tb2 
and Fe82Nb2B14Dy2 were prepared by melt spinning technique 
[89]. Amorphicity of the alloys were tested and confirmed by 
XRD diffraction measurements. The aim was to test two kind of R 
additions i.e. without (Gd) and with (Tb, Dy, as heavy rare earths) 
so-called spin-orbit coupling [2]. In crystal structure Yttrium 
plays the same role as the other additions but is nonmagnetic. 
Therefore, the alloys with Y are the reference one showing similar 
microstructure without R-Fe magnetic interactions. Fig.42 
presents magnetic isotherms for the examined alloys determined 
at T = 2 K. As shown, saturation magnetization decreases, in a 
comparison with Y sample, following the sequence: Gd, Dy and 
Tb. This effect is expected taking into account antiferromagnetic 
coupling of R-Fe. 

Fig. 42. Magnetic isotherms for the examined amorphous alloys 
determined at T = 2 K 

The Curie temperatures and the crystallization temperature
(heating rate 5K/min) of the alloys are about 450 K and 800 K,
respectively (see Fig. 43). Moreover, these temperatures weakly
depend on the alloying additions (2 at.%). 

Fig. 43. Thermomagnetic M(T) curves for the examined
amorphous alloys 

In contrary to this, the presented in Fig. 44 relative ZFC-FC effect
((MFC-MZFC)/MZFC), determined in H = 10 Oe, is strongly influenced 
by the R additions. For Dy and Tb alloys one can observed a 
remarkable magnetic irreversibility i.e. at T = 2 K over 50%. 

Fig. 44. Relative ZFC-FC effect, determined in H = 10 Oe, for the 
examined amorphous alloys

Table 3 summarizes the determined magnetic properties i.e.
the Curie temperature TC, saturation magnetization MS, magnetic
moment calculated per magnetic atom µm (Fe+R), magnetic 
moment calculated per Fe atom µFe (assuming that the R additions 
safe their free ionic magnetic moment and antiferromagnetic
coupling of R-Fe), magnetic permeability µ (determined from AC
magnetic measurements; frequency about 1 kHz, magnetic field
0.5 A/m) and the relative change of the ZFC-FC curves at 2 K. 
Let notice that, except the Fe82Nb2B14Tb2 alloy, the magnetic
moment calculated per Fe atom is almost constant and equals to
about 2 µB,. The initial magnetic permeability is relatively low for

the Fe82Nb2B14Tb2 and Fe82Nb2B14Dy2 alloys in a comparison 
with the Fe82Nb2B14Y2 and Fe82Nb2B14Gd2 alloys. One can divide 
the alloys into two groups i.e. alloys with Y, Gd and Tb, Dy. The 
difference between the groups is magnetocrystalline anisotropy
introduced by the spin-orbit coupling (Tb, Dy) and structural 
disorder. It seems that the anisotropy energy is higher than 
exchange interactions energy and therefore the averaging of 
anisotropy (see eq.44) causes the observed deterioration of soft
magnetic properties. 

Table 3.
The determined magnetic properties of the alloys examined i.e the
Curie temperature TC, saturation magnetization MS, magnetic
moment calculated per magnetic atom µm (Fe+RE), magnetic 
moment calculated per Fe atom µFe, magnetic permeability µ and 
the relative change of the ZFC-FC curves (MFC-MZFC)/MZFC at 2 K 

Alloy 
TC 
[K]

1 

MS 
[emu/g] 

1 

µm [µB] 
0.02

µFe [µB]
0.02

µ
1 

(MFC-
MZFC)/MZFC

[%] 

Fe82Nb2B14Y2 416 180 2.00 2.00 530 5.5
Fe82Nb2B14Gd2 450 161 1.79 2.04 750 4.9
Fe82Nb2B14Dy2 423 149 1.66 1.96 110 52.3
Fe82Nb2B14Tb2 430 135 1.51 1.77 160 62.7

The mentioned local magnetocrystalline anisotropy has an
influence on magnetic domain structure. Fig. 45 shows 
representative pictures of the domains obtained from the Kerr
microscopy observations. One can see that for the Fe82Nb2B14Y2
and Fe82Nb2B14Gd2 alloys the domain structure is quite “regular” 
and the magnetization tends to align parallel to the ribbon axis. In
contrast to this for the samples with Tb and Dy the so called 
finger-print domains are observed. It is characteristic that the 
finger-print domains, decrease of µ and increase of ZFC-FC effect
is connected with the anisotropy introduced Tb and Dy. 

Fe82Nb2B14Y2Fe82Nb2B14Gd2

Fe82Nb2B14Dy2 Fe82Nb2B14Tb2

Ribbon axis
45 µm

15 m 45 m 

15 m 

Fig. 45. Magnetic domain patterns obtained from the Kerr
microscopy observations for the examined amorphous alloys

Summarizing the above one can state that the addition of
2 at.% of Tb or Dy leads to significant magnetic hardening of the 
examined alloys in amorphous phase. 

However, in the alloys the optimization of soft magnetic
properties effect occurs which is documented in Fig. 46. As we 
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FINEMET type alloy and Fe76Zr2B22 NANOPERM type alloy
[88]. The optimization curves for these alloys are presented in 
Fig. 39. The both alloys show the maximum of µ in the vicinity of
nanostructure that is documented in Fig. 40. The HRTEM images
revels the formation of nanograins of Fe-Si for Fe74Cu1Zr3Si13B9
and Fe for Fe76Zr2B22. In the both cases the mean diameters of the
particles are about 3 nm. 

Fig. 39. Optimization curves for Fe74Cu1Zr3Si13B9 and Fe76Zr2B22
amorphous alloys 

Fig. 40. HRTEM images for Fe74Cu1Zr3Si13B9 (top) and
Fe76Zr2B22 (bottom) alloys, both in the optimized state 

The random anisotropy (Herzer) model predicts also the 
dependences of coercivity and magnetic permeability on the grand
dimension (eq.(48) and eq.(49)). These relations are in agreement 
with experimental results, which were tested for different 
nanocrystalline iron-based alloys, as depicted in Fig. 41. Let
notice that for the grain size less that 50 nm the dependences 
follow as D6 [48]. So, for the FINEMET type of alloys this value 
can be considered as a critical dimension below which the
condition Lex > D is well fulfilled.

Fig. 41. Coercivity and initial magnetic permeability as a function 
of grain size diameter for different nanocrystalline alloys [48]

Influence of rare earth additions (R) on magnetic properties
of Fe-Nb-B-R amorphous alloys 

In order to study the influence of R elements on magnetic 
properties of the Fe-Nb-B type of amorphous alloys the samples 
of Fe82Nb2B14Y2 (as reference), Fe82Nb2B14Gd2, Fe82Nb2B14Tb2
and Fe82Nb2B14Dy2 were prepared by melt spinning technique 
[89]. Amorphicity of the alloys were tested and confirmed by
XRD diffraction measurements. The aim was to test two kind of R 
additions i.e. without (Gd) and with (Tb, Dy, as heavy rare earths) 
so-called spin-orbit coupling [2]. In crystal structure Yttrium 
plays the same role as the other additions but is nonmagnetic. 
Therefore, the alloys with Y are the reference one showing similar 
microstructure without R-Fe magnetic interactions. Fig.42
presents magnetic isotherms for the examined alloys determined
at T = 2 K. As shown, saturation magnetization decreases, in a 
comparison with Y sample, following the sequence: Gd, Dy and
Tb. This effect is expected taking into account antiferromagnetic 
coupling of R-Fe. 

Fig. 42. Magnetic isotherms for the examined amorphous alloys
determined at T = 2 K

The Curie temperatures and the crystallization temperature 
(heating rate 5K/min) of the alloys are about 450 K and 800 K, 
respectively (see Fig. 43). Moreover, these temperatures weakly 
depend on the alloying additions (2 at.%). 

Fig. 43. Thermomagnetic M(T) curves for the examined 
amorphous alloys 

In contrary to this, the presented in Fig. 44 relative ZFC-FC effect 
((MFC-MZFC)/MZFC), determined in H = 10 Oe, is strongly influenced 
by the R additions. For Dy and Tb alloys one can observed a 
remarkable magnetic irreversibility i.e. at T = 2 K over 50%. 

Fig. 44. Relative ZFC-FC effect, determined in H = 10 Oe, for the 
examined amorphous alloys 

Table 3 summarizes the determined magnetic properties i.e. 
the Curie temperature TC, saturation magnetization MS, magnetic 
moment calculated per magnetic atom µm (Fe+R), magnetic 
moment calculated per Fe atom µFe (assuming that the R additions 
safe their free ionic magnetic moment and antiferromagnetic 
coupling of R-Fe), magnetic permeability µ (determined from AC 
magnetic measurements; frequency about 1 kHz, magnetic field 
0.5 A/m) and the relative change of the ZFC-FC curves at 2 K. 
Let notice that, except the Fe82Nb2B14Tb2 alloy, the magnetic 
moment calculated per Fe atom is almost constant and equals to 
about 2 µB,. The initial magnetic permeability is relatively low for 

the Fe82Nb2B14Tb2 and Fe82Nb2B14Dy2 alloys in a comparison 
with the Fe82Nb2B14Y2 and Fe82Nb2B14Gd2 alloys. One can divide 
the alloys into two groups i.e. alloys with Y, Gd and Tb, Dy. The 
difference between the groups is magnetocrystalline anisotropy 
introduced by the spin-orbit coupling (Tb, Dy) and structural 
disorder. It seems that the anisotropy energy is higher than 
exchange interactions energy and therefore the averaging of 
anisotropy (see eq.44) causes the observed deterioration of soft 
magnetic properties. 

Table 3. 
The determined magnetic properties of the alloys examined i.e the 
Curie temperature TC, saturation magnetization MS, magnetic 
moment calculated per magnetic atom µm (Fe+RE), magnetic 
moment calculated per Fe atom µFe, magnetic permeability µ and 
the relative change of the ZFC-FC curves (MFC-MZFC)/MZFC at 2 K 

Alloy 
TC 
[K] 

1 

MS 
[emu/g] 

1 

µm [µB] 
0.02 

µFe [µB]
0.02 

µ 
1 

(MFC-
MZFC)/MZFC

[%] 

Fe82Nb2B14Y2 416 180 2.00 2.00 530 5.5 
Fe82Nb2B14Gd2 450 161 1.79 2.04 750 4.9 
Fe82Nb2B14Dy2 423 149 1.66 1.96 110 52.3 
Fe82Nb2B14Tb2 430 135 1.51 1.77 160 62.7 

The mentioned local magnetocrystalline anisotropy has an 
influence on magnetic domain structure. Fig. 45 shows 
representative pictures of the domains obtained from the Kerr 
microscopy observations. One can see that for the Fe82Nb2B14Y2 
and Fe82Nb2B14Gd2 alloys the domain structure is quite “regular” 
and the magnetization tends to align parallel to the ribbon axis. In 
contrast to this for the samples with Tb and Dy the so called 
finger-print domains are observed. It is characteristic that the 
finger-print domains, decrease of µ and increase of ZFC-FC effect 
is connected with the anisotropy introduced Tb and Dy.  

Fe82Nb2B14Y2 Fe82Nb2B14Gd2

Fe82Nb2B14Dy2 Fe82Nb2B14Tb2 

Ribbon axis
45 µm

15 m 45 m 

15 m 

Fig. 45. Magnetic domain patterns obtained from the Kerr 
microscopy observations for the examined amorphous alloys 

Summarizing the above one can state that the addition of 
2 at.% of Tb or Dy leads to significant magnetic hardening of the 
examined alloys in amorphous phase. 

However, in the alloys the optimization of soft magnetic 
properties effect occurs which is documented in Fig. 46. As we 

http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org
http://www.archivesmse.org


100 100

A. Chrobak

Archives of Materials Science and Engineering 

can see Dy and especially Tb as alloying additions cause a 
decrease (in relation to the alloy with Y) of maximum µ about 
2 and 4 times, respectively. 

Fig. 46. Optimization curves for the examined amorphous alloys 

Aging effect in nanostructure and relaxed amorphous phase 

From application point of view interesting is an influence of 
aging on soft magnetic properties. In the studies reported in [90] 
two groups of alloys for which optimization effect occur in 
nanostructure (Fe73.5Cu1Zr1.7Si13B9) and RAP (Fe80Nb6B14) were 
tested. The examinations lie in determination of the optimization 
curves after aging (at room temperature) for several years (8 years 
for nanostructure and 3 years for RAP) and a comparison with 
these obtained just after casting. Fig. 47 shows such comparison 
for Fe73.5Cu1Zr1.7Si13B9 amorphous melt spun ribbon aging for 8 
years. One can see a stable optimization effect around the Top and 
some instability in temperatures related to structural relaxation 
range (i.e. up to 800 K).  

Fig. 47. Magnetic permeability m (H = 0.5 A/m) measured at 
room temperature for samples annealed for 1 h at temperature 
Ta for the Fe73.5Cu1Zr1.7Si13B9 amorphous alloy 

In contrary to this, for the Fe80Nb6B14 alloy (aged for 3 years) 
significant changes in optimization curves were observed, as 
shown in Fig. 48. In fact, for samples annealed at Ta ranging from 

500 K to 700 K magnetic permeability increases (after aging) 
even 2 times. It is also characteristic that the optimization effect is 
quite stable in temperatures corresponding to nanocrystallization 
(above 760 K). 

Fig. 48. Magnetic permeability m (H = 0.5 A/m) measured at 
room temperature for samples annealed for 1 h at temperature 
Ta for the Fe80Nb6B14 amorphous alloy. 

Because the optimization effect is connected with 
microstructure the presented results indicate thermodynamic 
phase stability of nanostructured magnets and some instability for 
structures related to degree of structural relaxation. This means 
that diffusion processes activated by the 1-h annealing occur even 
at room temperature but the crystal ordering requires much more 
time.  

4.3. Bulk nanocrystalline alloys - hard magnets 

The other applications of disordered materials are the field of 
permanent magnets. From this point of view any kinds of 
magnetic anisotropy is desirable. Obviously, materials that show 
high magneticrystalline anisotropy coefficient are magnetically 
hard, however, a proper nanostructure and sample technology can 
introduce additional anisotropy factors such as surface and shape 
anisotropy as well as a specific interaction between hard and soft 
phases (so-called spring-exchange [91,92]) that are favorable to 
further magnetic hardening. Many researches indicate that in this 
area very attractive are classical and nanostructured alloys and 
compounds based on transition and rare earth elements. 
Generally, the atoms of transition metals (Fe, Co) are the source 
of a large magnetic moment, while the rare earth metal atoms are 
the source of magnetocrystalline anisotropy [2]. Interesting are 
the two types of compounds of lower symmetry than the cubic 
system, i.e. R2Fe14B with tetragonal structure and RCo5 (or RCo7) 
with hexagonal structure (R - rare earth element). However, not 
all rare earth elements in these compounds result in the strong 
anisotropy. It depends on the sign of the anisotropy constant K1 
i.e. when K1 <0 the magnetization vector lies in the plane
perpendicular to the c axis of the crystal structure and there is no
energy barrier that prevents changing the direction of

4.3.  Bulk nanocrystalline alloys - hard magnets

magnetization [2]. This means that only compounds for which the
constant K1 > 0 can be used as materials for permanent magnets.
For the compounds of the R2Fe14B type: K1 > 0 for R = Ce, Pr,
Nd, Tb, Dy, Ho and K1 < 0 for R = Sm, Er, Tm, Yb. For the RCo7
and RCo5: K1 > 0 for R = Sm, Er, Tm, Yb and K1 < 0 for R = Ce,
Pr, Nd, Tb, Dy, Ho.

Table 4 and Table 5 present magnetic properties of selected
hard magnetic materials and R2Fe14B compounds family, 
respectively [93].

Table 4. 
Magnetic properties of selected hard magnetic materials (BHmax
- maximum energy product, Br - remanence induction and Hc
- coercivity)

Material BHmax Br Hc
kJ/m3 mT kA/m

31/2% Cr Steel 1.03 1030 56 
3% Co Steel 3.02 970 13 
17% Co Steel 5.49 1070 18 
38% Co Steel 7.79 1040 191 

Ceramic 2 14.30 290 224 
Ceramic 6 19.50 320 57 
Alnico4 10.70 560 318 

PtCo 71.60 645 20 
Vicalloy 1 6.36 750 20 
Remalloy 7.95 970 42 
Cunife1 11.10 550 202 
MnAlC 39.80 545 358 
SmCo5 160 900 696 

Nd2Fe14B 320 1300 1120 

Table 5. 
Magnetic properties of R2Fe14B compounds family ( - dencity, 
Bs - saturation induction, µ - magnetic moment, Ha - anisotropy
field and Tc - The Curie temperature)

Compound Bs µ Ha Tc
g/cm3 T µB/f.u. MA/m K

Ce2Fe14B 7.81 1.16 22.7 3.7 424
Pr2Fe14B 7.47 1.43 29.3 10 564 
Nd2Fe14B 7.55 1.57 32.1 12 585 
Sm2Fe14B 7.73 1.33 26.7 - 612 
Gd2Fe14B 7.85 0.86 17.3 6.1 661
Tb2Fe14B 7.93 0.64 12.7 28 639 
Dy2Fe14B 8.02 0.65 12.8 25 602 
Ho2Fe14B 8.05 0.86 17.0 20 576 
Er2Fe14B 8.24 0.93 18.1 - 554 
Tm2Fe14B 8.13 1.09 21.6 - 541 
Y2Fe14B 6.98 1.28 25.3 3.1 565 

Preparation and phase structure of Fe-Nb-B-R bulk alloys

One of the frequently used in practice preparation method of 
bulk nanocrystalline alloys is the vacuum suction casting [94]. 
Schematic diagram of such apparatus id depicted in Fig. 49. 
Sample in the form of a ball is placed in the cooper mould (1) 
with a hole of diameter ranged from 0.5 mm to several mm. Next, 
the sample is melted by electric arc in the chamber with an inert 
gas and than the applied vacuum sucks the sample into the hole.
Finally, the obtained samples are in the form of rods usually with

length about 3 cm. The proper cooling rate is ensured by
permanent cooling the mould by water (2). The cooper net (3)
allows flowing of the gas but it serve as a stopper for the melted 
sample. An example of the obtained sample is presented in
Fig. 50. 

Fig. 49. Schematic diagram of the vacuum suction casting 
apparatus (see the text)

Fig. 50. An example of a sample obtained by the vacuum suction 
casting apparatus 

Bulk nanocrystalline alloys of (Fe80Nb6B14)1-x Mx (M=Ni, Ag,
Gd, Tb) are materials for which nanostructure leads to magnetic
hardening [95,96]. Phases identification were performed with the 
use of XRD measurements, Mössbauer spectroscopy and high
temperature M(T) curves. From the thermomagnetic curves one
can determine different magnetic phases with different TC, as 
shown in Fig. 51. Interesting are the cases of Gd and Tb additions
where the two magnetic phases with TC 640 K and TC 810 K 
for Gd and TC 620 K and TC 730 K for Tb. These 
temperatures are related to R2Fe14B and RFe2 phases.

More precise analysis of the XRD patterns as well as
Mössbauer spectra reveal the formation of the ternary R2Fe14B,
binary RFe2, paramagnetic Fe and some intermediate phases.
Table 6 summarized the detected phases and additionally, mean 
diameters of the formed crystallites (determined form broadening
of XRD peaks) are also included. From magnetic point of view
important are the alloy with Tb and the contribution of 
magnetically hard Tb2Fe14B and the other relatively soft phases 
that are presented in Fig. 52. One can observe significant changes 
of the phases with the increase of Tb content i.e. decrease of
Tb2Fe14B, increase of Tb2Fe and almost constant amount of
paramagnetic Fe. 
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can see Dy and especially Tb as alloying additions cause a 
decrease (in relation to the alloy with Y) of maximum µ about 
2 and 4 times, respectively.

Fig. 46. Optimization curves for the examined amorphous alloys

Aging effect in nanostructure and relaxed amorphous phase

From application point of view interesting is an influence of
aging on soft magnetic properties. In the studies reported in [90] 
two groups of alloys for which optimization effect occur in
nanostructure (Fe73.5Cu1Zr1.7Si13B9) and RAP (Fe80Nb6B14) were
tested. The examinations lie in determination of the optimization 
curves after aging (at room temperature) for several years (8 years 
for nanostructure and 3 years for RAP) and a comparison with
these obtained just after casting. Fig. 47 shows such comparison
for Fe73.5Cu1Zr1.7Si13B9 amorphous melt spun ribbon aging for 8 
years. One can see a stable optimization effect around the Top and 
some instability in temperatures related to structural relaxation
range (i.e. up to 800 K). 

Fig. 47. Magnetic permeability m (H = 0.5 A/m) measured at 
room temperature for samples annealed for 1 h at temperature
Ta for the Fe73.5Cu1Zr1.7Si13B9 amorphous alloy 

In contrary to this, for the Fe80Nb6B14 alloy (aged for 3 years) 
significant changes in optimization curves were observed, as 
shown in Fig. 48. In fact, for samples annealed at Ta ranging from

500 K to 700 K magnetic permeability increases (after aging)
even 2 times. It is also characteristic that the optimization effect is
quite stable in temperatures corresponding to nanocrystallization
(above 760 K). 

Fig. 48. Magnetic permeability m (H = 0.5 A/m) measured at 
room temperature for samples annealed for 1 h at temperature
Ta for the Fe80Nb6B14 amorphous alloy.

Because the optimization effect is connected with 
microstructure the presented results indicate thermodynamic 
phase stability of nanostructured magnets and some instability for 
structures related to degree of structural relaxation. This means 
that diffusion processes activated by the 1-h annealing occur even
at room temperature but the crystal ordering requires much more
time. 

4.3. Bulk nanocrystalline alloys - hard magnets 

The other applications of disordered materials are the field of
permanent magnets. From this point of view any kinds of 
magnetic anisotropy is desirable. Obviously, materials that show 
high magneticrystalline anisotropy coefficient are magnetically
hard, however, a proper nanostructure and sample technology can 
introduce additional anisotropy factors such as surface and shape 
anisotropy as well as a specific interaction between hard and soft
phases (so-called spring-exchange [91,92]) that are favorable to
further magnetic hardening. Many researches indicate that in this
area very attractive are classical and nanostructured alloys and 
compounds based on transition and rare earth elements.
Generally, the atoms of transition metals (Fe, Co) are the source
of a large magnetic moment, while the rare earth metal atoms are 
the source of magnetocrystalline anisotropy [2]. Interesting are 
the two types of compounds of lower symmetry than the cubic
system, i.e. R2Fe14B with tetragonal structure and RCo5 (or RCo7) 
with hexagonal structure (R - rare earth element). However, not 
all rare earth elements in these compounds result in the strong 
anisotropy. It depends on the sign of the anisotropy constant K1
i.e. when K1 <0 the magnetization vector lies in the plane
perpendicular to the c axis of the crystal structure and there is no
energy barrier that prevents changing the direction of 

magnetization [2]. This means that only compounds for which the 
constant K1 > 0 can be used as materials for permanent magnets. 
For the compounds of the R2Fe14B type: K1 > 0 for R = Ce, Pr, 
Nd, Tb, Dy, Ho and K1 < 0 for R = Sm, Er, Tm, Yb. For the RCo7 
and RCo5: K1 > 0 for R = Sm, Er, Tm, Yb and K1 < 0 for R = Ce, 
Pr, Nd, Tb, Dy, Ho. 

Table 4 and Table 5 present magnetic properties of selected 
hard magnetic materials and R2Fe14B compounds family, 
respectively [93]. 

Table 4.  
Magnetic properties of selected hard magnetic materials (BHmax  
- maximum energy product, Br - remanence induction and Hc
- coercivity)

Material BHmax Br Hc 
kJ/m3 mT kA/m 

31/2% Cr Steel 1.03 1030 56 
3% Co Steel 3.02 970 13 
17% Co Steel 5.49 1070 18 
38% Co Steel 7.79 1040 191 

Ceramic 2 14.30 290 224 
Ceramic 6 19.50 320 57 
Alnico4 10.70 560 318 

PtCo 71.60 645 20 
Vicalloy 1 6.36 750 20 
Remalloy 7.95 970 42 
Cunife1 11.10 550 202 
MnAlC 39.80 545 358 
SmCo5 160 900 696 

Nd2Fe14B 320 1300 1120 

Table 5. 
Magnetic properties of R2Fe14B compounds family (  - dencity, 
Bs - saturation induction, µ - magnetic moment, Ha - anisotropy 
field and Tc - The Curie temperature) 

Compound  Bs µ Ha Tc 
g/cm3 T µB/f.u. MA/m K 

Ce2Fe14B 7.81 1.16 22.7 3.7 424 
Pr2Fe14B 7.47 1.43 29.3 10 564 
Nd2Fe14B 7.55 1.57 32.1 12 585 
Sm2Fe14B 7.73 1.33 26.7 - 612
Gd2Fe14B 7.85 0.86 17.3 6.1 661 
Tb2Fe14B 7.93 0.64 12.7 28 639 
Dy2Fe14B 8.02 0.65 12.8 25 602 
Ho2Fe14B 8.05 0.86 17.0 20 576 
Er2Fe14B 8.24 0.93 18.1 - 554
Tm2Fe14B 8.13 1.09 21.6 - 541
Y2Fe14B 6.98 1.28 25.3 3.1 565 

Preparation and phase structure of Fe-Nb-B-R bulk alloys 

One of the frequently used in practice preparation method of 
bulk nanocrystalline alloys is the vacuum suction casting [94]. 
Schematic diagram of such apparatus id depicted in Fig. 49. 
Sample in the form of a ball is placed in the cooper mould (1) 
with a hole of diameter ranged from 0.5 mm to several mm. Next, 
the sample is melted by electric arc in the chamber with an inert 
gas and than the applied vacuum sucks the sample into the hole. 
Finally, the obtained samples are in the form of rods usually with 

length about 3 cm. The proper cooling rate is ensured by 
permanent cooling the mould by water (2). The cooper net (3) 
allows flowing of the gas but it serve as a stopper for the melted 
sample. An example of the obtained sample is presented in 
Fig. 50. 

Fig. 49. Schematic diagram of the vacuum suction casting 
apparatus (see the text) 

Fig. 50. An example of a sample obtained by the vacuum suction 
casting apparatus 

Bulk nanocrystalline alloys of (Fe80Nb6B14)1-x Mx (M=Ni, Ag, 
Gd, Tb) are materials for which nanostructure leads to magnetic 
hardening [95,96]. Phases identification were performed with the 
use of XRD measurements, Mössbauer spectroscopy and high 
temperature M(T) curves. From the thermomagnetic curves one 
can determine different magnetic phases with different TC, as 
shown in Fig. 51. Interesting are the cases of Gd and Tb additions 
where the two magnetic phases with TC  640 K and TC  810 K 
for Gd and TC  620 K and TC  730 K for Tb. These 
temperatures are related to R2Fe14B and RFe2 phases.  

More precise analysis of the XRD patterns as well as 
Mössbauer spectra reveal the formation of the ternary R2Fe14B, 
binary RFe2, paramagnetic Fe and some intermediate phases. 
Table 6 summarized the detected phases and additionally, mean 
diameters of the formed crystallites (determined form broadening 
of XRD peaks) are also included. From magnetic point of view 
important are the alloy with Tb and the contribution of 
magnetically hard Tb2Fe14B and the other relatively soft phases 
that are presented in Fig. 52. One can observe significant changes 
of the phases with the increase of Tb content i.e. decrease of 
Tb2Fe14B, increase of Tb2Fe and almost constant amount of 
paramagnetic Fe. 
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Table 6. 
Crystal phases, percentage contribution of a given phase (obtained 
from Mössbauer spectra or XRD patterns*) and mean diameter of 
the main phase D for the selected bulk alloys 

Alloy D [nm] Phases Contribution 
[%] 

(Fe80Nb6B14)0.92Gd0.08 28 
Gd2Fe14B, 

Int.Phase,GdFe2 
Para. 

77, 6, 5, 12 

(Fe80Nb6B14)0.84Gd0.16 13 
Gd2Fe14B, 

Int.Phase,GdFe2, 
Para. 

59, 11, 17, 13

(Fe80Nb6B14)0.68Gd0.32 26 GdFe2, Gd * 

(Fe80Nb6B14)0.92Tb0.08 28 Tb2Fe14B, TbFe2, 
Para. 80, 8, 12 

(Fe80Nb6B14)0.84Tb0.16 16 Tb2Fe14B, TbFe2, 
Para. 59, 28, 13 

(Fe80Nb6B14)0.68Tb0.32 25 TbFe2, TbxFe2-x, 
Para. 83, 7, 10 

(Fe80Nb6B14)0.92Ni0.08 12 Fe-Ni (bcc), Fe-B, 
Para. 55, 34, 11 

(Fe80Nb6B14)0.84Ni0.16 12 Fe-Ni (bcc/fcc), 
Fe-B, Para. 52, 36, 12 

(Fe80Nb6B14)0.68Ni0.32 14 Fe-Ni (fcc), Fe-B, 
Para. 52, 42, 6 

(Fe80Nb6B14)0.92Ag0.08 16 Fe (bcc), Fe-B, 
Paramag. 42, 49, 9 

This tendency is a key point for controlling magnetic 
properties of the (Fe80Nb6B14)1-xTbx alloys. Moreover, the 
materials can be considered as nanocomposites with hard and soft 
magnetic phases for which some phenomena related to 
interactions between these phases are expected to be present. 

Fig. 51. High temperature M(T) curves for (Fe80Nb6B14)1-x Mx 
(M=Ni, Ag, Gd, Tb) bulk alloys 

Fig. 52. Percentage contribution of the main phases for 
(Fe80Nb6B14)1-xTbx (x=0.08, 0.16, 0.32) bulk nanocrystalline 
alloys 

Magnetic properties of Fe-Nb-B-Tb bulk nanocrystalline alloy 

Magnetic properties of the (Fe80Nb6B14)1-xTbx (0.02  x  
0.32) bulk nanocrystalline alloys will be discussed based on 
hysteresis loops measured at room temperature and at lower 
temperatures [97]. Figs. 53a-53d show the hysteresis loops for 
some selected alloys. One can see a variation of different 
magnetic parameters (coercivity HC, saturation magnetization MS, 
remanence magnetization MR, |BH|max) with the change of Tb 
content. These parameters depend on temperature which suggests 
a contribution of blocking effects described in Section 2.3. 

Fig. 53a. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.04) bulk 
nanocrystalline alloys 

Indeed, for x > 0.08 one can observe a significant increase of Hc 
with decreasing temperature. This means that in this case 
magnetization is a thermal activated process and in lower 
temperatures requires higher external field which results in the 
observed increase of HC. Interesting are also shapes of the 
hysteresis loops that are different from those characteristic for 
classical ferromagnetic materials. As it was mentioned the alloys 
contains different magnetic phases i.e. magnetically hard Tb2Fe14B, 
and soft Tb2Fe compound. Therefore, for some balance between 

these phases the observed shapes of the hysteresis indicate
superposition of the components with different magnetic properties.
Obviously, the rapid jump of the M(H) curve is attributed to the
Tb2Fe and other soft phases while Hc is related to the Tb2Fe14B.

Fig. 53b. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.09) bulk
nanocrystalline alloys

Fig. 53c. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.1) bulk
nanocrystalline alloys

Fig. 53d. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.12) bulk
nanocrystalline alloys

Fig. 54 shows the of HC and MS determined at 300 K and 
10 K versus Tb content, while normalized remanence
magnetization MR/MS and |BH|max also versus Tb content are
presented in Fig. 55. 

Fig. 54. MS and HC determined at 300 K and 10 K for
Fe80Nb6B14)1-xTbx bulk nanocrystalline alloys

Fig. 55. MR/MS and |BH|max determined at 300 K and 10 K for 
Fe80Nb6B14)1-xTbx bulk nanocrystalline alloys

The observed changes of the parameters are obviously
attributed to the variation of the magnetic phases (see Fig. 52). 
Due to antiferromagnetic coupling of Tb and Fe magnetic 
moments saturation magnetization shows a minimum at about 11
at.% of Tb. This means that for x < 0.11 Fe magnetic moments are 
dominant and for x > 0.11 the situation is reverse. Around this 
point one can observed a significant magnetic hardening i.e. 
maxima of HC, MR/MS and |BH|max. In the sense of hard magnetic
properties, the optimize structure occurs when the balance 
between the phases is: 73% of Tb2Fe14B, 15% of Tb2Fe and 12% 
of paramagnetic Fe. 

As it was mentioned, one can expect some interactions between
the formed phases. Such interactions of grains that posses different
magnetic properties can be analysed with the use of hysteresis loop 
and the so-called virgin magnetization curve. For non-interacting
systems the following formula is fulfilled [98,99]:
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Table 6.
Crystal phases, percentage contribution of a given phase (obtained
from Mössbauer spectra or XRD patterns*) and mean diameter of
the main phase D for the selected bulk alloys

Alloy D [nm] Phases Contribution
[%] 

(Fe80Nb6B14)0.92Gd0.08 28 
Gd2Fe14B, 

Int.Phase,GdFe2
Para. 

77, 6, 5, 12

(Fe80Nb6B14)0.84Gd0.16 13 
Gd2Fe14B, 

Int.Phase,GdFe2, 
Para. 

59, 11, 17, 13

(Fe80Nb6B14)0.68Gd0.32 26 GdFe2, Gd *

(Fe80Nb6B14)0.92Tb0.08 28 Tb2Fe14B, TbFe2, 
Para. 80, 8, 12

(Fe80Nb6B14)0.84Tb0.16 16 Tb2Fe14B, TbFe2, 
Para. 59, 28, 13

(Fe80Nb6B14)0.68Tb0.32 25 TbFe2, TbxFe2-x, 
Para. 83, 7, 10

(Fe80Nb6B14)0.92Ni0.08 12 Fe-Ni (bcc), Fe-B, 
Para. 55, 34, 11

(Fe80Nb6B14)0.84Ni0.16 12 Fe-Ni (bcc/fcc), 
Fe-B, Para. 52, 36, 12

(Fe80Nb6B14)0.68Ni0.32 14 Fe-Ni (fcc), Fe-B, 
Para. 52, 42, 6

(Fe80Nb6B14)0.92Ag0.08 16 Fe (bcc), Fe-B, 
Paramag. 42, 49, 9

This tendency is a key point for controlling magnetic
properties of the (Fe80Nb6B14)1-xTbx alloys. Moreover, the 
materials can be considered as nanocomposites with hard and soft
magnetic phases for which some phenomena related to
interactions between these phases are expected to be present.

Fig. 51. High temperature M(T) curves for (Fe80Nb6B14)1-x Mx
(M=Ni, Ag, Gd, Tb) bulk alloys

Fig. 52. Percentage contribution of the main phases for 
(Fe80Nb6B14)1-xTbx (x=0.08, 0.16, 0.32) bulk nanocrystalline
alloys

Magnetic properties of Fe-Nb-B-Tb bulk nanocrystalline alloy 

Magnetic properties of the (Fe80Nb6B14)1-xTbx (0.02 x 
0.32) bulk nanocrystalline alloys will be discussed based on 
hysteresis loops measured at room temperature and at lower 
temperatures [97]. Figs. 53a-53d show the hysteresis loops for 
some selected alloys. One can see a variation of different 
magnetic parameters (coercivity HC, saturation magnetization MS, 
remanence magnetization MR, |BH|max) with the change of Tb
content. These parameters depend on temperature which suggests 
a contribution of blocking effects described in Section 2.3. 

Fig. 53a. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.04) bulk
nanocrystalline alloys

Indeed, for x > 0.08 one can observe a significant increase of Hc
with decreasing temperature. This means that in this case 
magnetization is a thermal activated process and in lower
temperatures requires higher external field which results in the
observed increase of HC. Interesting are also shapes of the
hysteresis loops that are different from those characteristic for 
classical ferromagnetic materials. As it was mentioned the alloys
contains different magnetic phases i.e. magnetically hard Tb2Fe14B,
and soft Tb2Fe compound. Therefore, for some balance between 

these phases the observed shapes of the hysteresis indicate 
superposition of the components with different magnetic properties. 
Obviously, the rapid jump of the M(H) curve is attributed to the 
Tb2Fe and other soft phases while Hc is related to the Tb2Fe14B. 

Fig. 53b. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.09) bulk 
nanocrystalline alloys 

Fig. 53c. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.1) bulk 
nanocrystalline alloys 

Fig. 53d. Hysteresis loops for (Fe80Nb6B14)1-xTbx (x = 0.12) bulk 
nanocrystalline alloys 

Fig. 54 shows the of HC and MS determined at 300 K and 
10 K versus Tb content, while normalized remanence 
magnetization MR/MS and |BH|max also versus Tb content are 
presented in Fig. 55. 

Fig. 54. MS and HC determined at 300 K and 10 K for 
Fe80Nb6B14)1-xTbx bulk nanocrystalline alloys 

Fig. 55. MR/MS and |BH|max determined at 300 K and 10 K for 
Fe80Nb6B14)1-xTbx bulk nanocrystalline alloys 

The observed changes of the parameters are obviously 
attributed to the variation of the magnetic phases (see Fig. 52). 
Due to antiferromagnetic coupling of Tb and Fe magnetic 
moments saturation magnetization shows a minimum at about 11 
at.% of Tb. This means that for x < 0.11 Fe magnetic moments are 
dominant and for x > 0.11 the situation is reverse. Around this 
point one can observed a significant magnetic hardening i.e. 
maxima of HC, MR/MS and |BH|max. In the sense of hard magnetic 
properties, the optimize structure occurs when the balance 
between the phases is: 73% of Tb2Fe14B, 15% of Tb2Fe and 12% 
of paramagnetic Fe. 

As it was mentioned, one can expect some interactions between 
the formed phases. Such interactions of grains that posses different 
magnetic properties can be analysed with the use of hysteresis loop 
and the so-called virgin magnetization curve. For non-interacting 
systems the following formula is fulfilled [98,99]: 
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M vir H 1
2

M up H M down H 0  (50) 

where Mvir, Mup and Mdown are the magnetizations (determined 
from hysteresis loops at the same H) of the virgin, above and 
below it, respectively. Fig. 56 shows a deviation of equation (50) 
that can be considered as a measure of the inter-grain magnetic 
interactions. 

One can see that in the both cases the deviation appears in 
magnetic field up to about 4 T which suggests some interactions 
between magnetically hard Tb2Fe14B and other relatively soft 
phases. It is clear that for alloy with x =0.12 the interactions are 
stronger than for the alloy with x = 0.1. The other possibility of 
the origin of the “asymmetric” hysteresis loops (or deviation of 
eq. (50)) are blocking effects caused by a local magnetocrystalline 
anisotropy as well as structural disorder introduced by sample 
fabrication technique. 

Fig. 56. Deviation of equation (50) for the alloys with x = 0.1 and 
x = 0.12 

The T-dependent coercivity reveals some blocking and 
thermal activated effects. Therefore, one can expect an appearing 
of the time dependent magnetization or relaxation effects. Fig. 57 
shows M(t) curves measured after switching external magnetic 
field to a value +H, the samples had been saturated in µ0H = -7 T. 
The measurements were performed at 250 K and 300 K. 
The obtained results reveal a strong dependence of the relaxation 
effect on H, T as well as Tb content. For the sample with 8 at. % 
of Tb in H=0, the intensity of remanence relaxation is very weak 
(less than 0.1%) and increases with increasing field (for µ0H = 1 T 
it is 0.5% at 250 K and 0.55% at 300 K). 

For the alloy with 16 at.% of Tb in H=0 T the relaxation 
intensity is much higher (2% at 250K, 1.5% at 300 K) and reveals 
a maximum in µ0H=0.1 T (close to its coercive field) equal to 
2.2% at 250 K and 3% at 300 K. The low intensity of remanence 
relaxation (H=0 T) for x = 0.08 can be explained by taking into 
account that this material is magnetically hard. Magnetic 
moments are “trapped” in energetic caves and therefore, a change 

of their direction requires more energy (the so-called activation 
one) which take place when H>0. 

Fig. 57. M(t) curves for (Fe80Nb6B14)1-xTbx (x=0.08, 0.16) bulk 
nanocrystalline alloys (see the text) 

The observed M(t) dependences are not exponential and 
therefore, a distribution of objects with different relaxation times  
is expected to be present Similarly to the Langevin granulometry 
method one can determine the distribution based on the 
experimental M(t) curves [100]. In order to analyze the relaxation 
times, the SA procedure was used (Sections 2.1. and 2.3). The 
changes in relaxation dynamics allows obtaining distribution of  
that can give more information about magnetization process. The 
SA procedure requires determination of saturation of the 
relaxation so, unsaturated components (if exist) were subtracted. 
The M(t) curves were analysed in H=0 (remamence relaxation) 
and H  HC. It is worth to mention that in the case of the alloy 
with x=0.08 and H=0 the intensity of the observed effect is to 
weak to be analysed. The results are shown in Fig. 58. One can 
see two or three well separated components with Gaussian-like 
shapes. For the alloy with x=0.08 the change of temperature do 
not causes significant change of  distribution but the contribution 
of objects with   800 s is higher at T = 250 K. For the alloy with 
x=0.16 one can observe a shift of the positions of the components 
into lower  with increase of H or T. The first components with 
the lowest  are surely responsible for the observed rapid change 
of magnetization just after the change of magnetic field. The 
others components with higher  are a picture of magnetic 
domains that are characterized by higher activation energy. In 
order to inverse direction of their magnetization it is necessary to 
apply higher magnetic field or higher temperature that is reflected 
in the observed  distribution shift. 

Fig. 58. The distribution of the time relaxation for 
(Fe80Nb6B14)1-xTbx (x=0.08, 0.16) alloys at 250 K and 300 K in 
different H

4.4 Gd/Ni nanoparticles 

A good example of materials that reveal micromagnetic
properties is Gd powder chemically coated by Ni layer (denoted
as Gd/Ni). This type of powder has potential applications from at
least two reasons. On one hand Gd element possesses relatively 
high localized magnetic moment (7 B) and is frequently used as a
magnetic addition in different nanocomposites or as a magnetic 
marker in different biological systems. On the other hand because
of very high Gd reactivity many applications are effectively
impeded or even excluded and Gd/Ni nanoparticles seem to be a 
solution of this problem. 

The Gd/Ni powder preparation procedure consists of two stages: 
i) in order to obtain Gd nanopowder the commercially available Gd 
powder was milled for 3 h (in DMF (Dimetyloformamid) bath to 
prevent a possible oxidation) and ii) Gd nanopowder was nickel-
plating at temperature 323 K via the chemical reaction in the 
following bath (pH=7): C4H6O4Ni 4H2O (4g/100 ml) + C6H8O7 H2O 
(3g/100 ml) + Na2CO3(3g/100 ml) + NaF(0.5g/100 ml) + NaH2PO2
H2O(3g/100 ml) + CH4N2S(1g/100 ml). 

Structural examinations of the obtained Gd/Ni nanopowder
were carried out by applying high resolution transmission electron
microscopy, as shown in Fig. 59. The micrograph reveals that 
diameters of the obtained Gd/Ni particles are in the range of 100 -
500 nm. Moreover in the bigger particles the higher Ni content 
was detected (see the EDS spectra). Magnetic properties of the 
powder were studied by low temperature measurements of M(T) 
and M(H). The results are briefly shown in Fig. 60. 

Fig. 59. TEM micrograph (on the left) and EDS spectrum (on the 
right) obtained in A and B area for milled and chemically nickled 
Gd powder 

As we can see, the M(T) curves measured in µ0H = 0.5 T
result from at least the two magnetic phases: a ferromagnetic one
with TC = 290 K, and a paramagnetic one at lower temperatures. 
The determined value of TC confirms that the ferromagnetic
component is related to metallic Gd. 

Fig. 60. Magnetic moment versus temperature for the Gd/Ni 
nanopowder

An origin of the paramagnetic contribution was examined by
making use of the Langevin glanulometry (SA procedure) for
M(H) magnetic isotherms obtained at T = 5 K (after subtracting 
the ferromagnetic component).The result of this analysis (see
Fig. 61) reveal the narrow magnetic moments distribution 
positioned at 6 µB (from 4 B to about 10 B ), which is close to
the value of free Gd atom. Therefore, the paramagnetic phase is a
Gd compound (not metallic) probably Gd-O or Gd-F introduced
by the preparation procedure. One can also obtain a picture of 
ferromagnetic Gd/Ni particles by applying the same SA method 
but for M(H) determined at T = 100 K after subtracting of the
paramagnetic (nonsaturated) component (see Fig. 62). As shown,
the obtained distribution of magnetic moments id broad up to 
3000 µB.  
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where Mvir, Mup and Mdown are the magnetizations (determined 
from hysteresis loops at the same H) of the virgin, above and
below it, respectively. Fig. 56 shows a deviation of equation (50)
that can be considered as a measure of the inter-grain magnetic
interactions.

One can see that in the both cases the deviation appears in
magnetic field up to about 4 T which suggests some interactions
between magnetically hard Tb2Fe14B and other relatively soft 
phases. It is clear that for alloy with x =0.12 the interactions are 
stronger than for the alloy with x = 0.1. The other possibility of
the origin of the “asymmetric” hysteresis loops (or deviation of
eq. (50)) are blocking effects caused by a local magnetocrystalline 
anisotropy as well as structural disorder introduced by sample 
fabrication technique.

Fig. 56. Deviation of equation (50) for the alloys with x = 0.1 and
x = 0.12

The T-dependent coercivity reveals some blocking and
thermal activated effects. Therefore, one can expect an appearing 
of the time dependent magnetization or relaxation effects. Fig. 57
shows M(t) curves measured after switching external magnetic
field to a value +H, the samples had been saturated in µ0H = -7 T.
The measurements were performed at 250 K and 300 K.
The obtained results reveal a strong dependence of the relaxation 
effect on H, T as well as Tb content. For the sample with 8 at. % 
of Tb in H=0, the intensity of remanence relaxation is very weak 
(less than 0.1%) and increases with increasing field (for µ0H = 1 T
it is 0.5% at 250 K and 0.55% at 300 K). 

For the alloy with 16 at.% of Tb in H=0 T the relaxation
intensity is much higher (2% at 250K, 1.5% at 300 K) and reveals 
a maximum in µ0H=0.1 T (close to its coercive field) equal to 
2.2% at 250 K and 3% at 300 K. The low intensity of remanence 
relaxation (H=0 T) for x = 0.08 can be explained by taking into 
account that this material is magnetically hard. Magnetic
moments are “trapped” in energetic caves and therefore, a change

of their direction requires more energy (the so-called activation
one) which take place when H>0.

Fig. 57. M(t) curves for (Fe80Nb6B14)1-xTbx (x=0.08, 0.16) bulk 
nanocrystalline alloys (see the text) 

The observed M(t) dependences are not exponential and
therefore, a distribution of objects with different relaxation times
is expected to be present Similarly to the Langevin granulometry
method one can determine the distribution based on the
experimental M(t) curves [100]. In order to analyze the relaxation 
times, the SA procedure was used (Sections 2.1. and 2.3). The 
changes in relaxation dynamics allows obtaining distribution of 
that can give more information about magnetization process. The 
SA procedure requires determination of saturation of the 
relaxation so, unsaturated components (if exist) were subtracted. 
The M(t) curves were analysed in H=0 (remamence relaxation) 
and H HC. It is worth to mention that in the case of the alloy
with x=0.08 and H=0 the intensity of the observed effect is to
weak to be analysed. The results are shown in Fig. 58. One can
see two or three well separated components with Gaussian-like 
shapes. For the alloy with x=0.08 the change of temperature do
not causes significant change of distribution but the contribution
of objects with 800 s is higher at T = 250 K. For the alloy with 
x=0.16 one can observe a shift of the positions of the components 
into lower with increase of H or T. The first components with
the lowest are surely responsible for the observed rapid change
of magnetization just after the change of magnetic field. The 
others components with higher are a picture of magnetic
domains that are characterized by higher activation energy. In 
order to inverse direction of their magnetization it is necessary to 
apply higher magnetic field or higher temperature that is reflected 
in the observed distribution shift. 

Fig. 58. The distribution of the time relaxation  for 
(Fe80Nb6B14)1-xTbx (x=0.08, 0.16) alloys at 250 K and 300 K in 
different H 

4.4 Gd/Ni nanoparticles 

A good example of materials that reveal micromagnetic 
properties is Gd powder chemically coated by Ni layer (denoted 
as Gd/Ni). This type of powder has potential applications from at 
least two reasons. On one hand Gd element possesses relatively 
high localized magnetic moment (7 B) and is frequently used as a 
magnetic addition in different nanocomposites or as a magnetic 
marker in different biological systems. On the other hand because 
of very high Gd reactivity many applications are effectively 
impeded or even excluded and Gd/Ni nanoparticles seem to be a 
solution of this problem.  

The Gd/Ni powder preparation procedure consists of two stages: 
i) in order to obtain Gd nanopowder the commercially available Gd 
powder was milled for 3 h (in DMF (Dimetyloformamid) bath to 
prevent a possible oxidation) and ii) Gd nanopowder was nickel-
plating at temperature 323 K via the chemical reaction in the 
following bath (pH=7): C4H6O4Ni 4H2O (4g/100 ml) + C6H8O7 H2O 
(3g/100 ml) + Na2CO3(3g/100 ml) + NaF(0.5g/100 ml) + NaH2PO2
H2O(3g/100 ml) + CH4N2S(1g/100 ml). 

Structural examinations of the obtained Gd/Ni nanopowder 
were carried out by applying high resolution transmission electron 
microscopy, as shown in Fig. 59. The micrograph reveals that 
diameters of the obtained Gd/Ni particles are in the range of 100 - 
500 nm. Moreover in the bigger particles the higher Ni content 
was detected (see the EDS spectra). Magnetic properties of the 
powder were studied by low temperature measurements of M(T) 
and M(H). The results are briefly shown in Fig. 60. 

Fig. 59. TEM micrograph (on the left) and EDS spectrum (on the 
right) obtained in A and B area for milled and chemically nickled 
Gd powder 

As we can see, the M(T) curves measured in µ0H = 0.5 T 
result from at least the two magnetic phases: a ferromagnetic one 
with TC = 290 K, and a paramagnetic one at lower temperatures. 
The determined value of TC confirms that the ferromagnetic 
component is related to metallic Gd.  

Fig. 60. Magnetic moment versus temperature for the Gd/Ni 
nanopowder 

An origin of the paramagnetic contribution was examined by 
making use of the Langevin glanulometry (SA procedure) for 
M(H) magnetic isotherms obtained at T = 5 K (after subtracting 
the ferromagnetic component).The result of this analysis (see 
Fig. 61) reveal the narrow magnetic moments distribution 
positioned at 6 µB (from 4 B to about 10 B ), which is close to 
the value of free Gd atom. Therefore, the paramagnetic phase is a 
Gd compound (not metallic) probably Gd-O or Gd-F introduced 
by the preparation procedure. One can also obtain a picture of 
ferromagnetic Gd/Ni particles by applying the same SA method 
but for M(H) determined at T = 100 K after subtracting of the 
paramagnetic (nonsaturated) component (see Fig. 62). As shown, 
the obtained distribution of magnetic moments id broad up to 
3000 µB.  

4.4.  Gd/Ni nanoparticles
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This example also confirms highly usefulness of the SA 
Langevin granulometry analysis for magnetic powder 
characterization. 

Fig. 61. Distribution of magnetic moments determined at 2 K for 
the Gd/Ni powder 

Fig. 62. Distribution of magnetic moments determined at 2 K for 
the Gd/Ni powder 

5. Concluding remarks
As it was shown, many kind of materials reveal some

attributes of the disorder in different stages including atomic 
disorder, interactions disorder, anisotropy disorder in the both 
atomic and cluster levels. Moreover, for one material a 
contribution of different mechanisms of the disorder is usually 
observed. Therefore, it is of great importance to know how an 
individual factor influences magnetic properties. This review 
present the basic phenomena of low-dimensional systems 
especially for magnetic nanoparticles that are widely studied in 
thin layers, sintered of powders magnets or in nanocomposites. 
According to the disordered materials, one can indicate the main 
three models i.e. random field, random bond and random 
anisotropy. Analysis of results obtaining in the frame of the 
models allows correctly interpreting magnetic characteristics of 

different modern materials such as amorphous and nanocrystalline 
alloys, diluted magnetics, nanocomposites or powders systems. 
Furthermore, the presented theory can draw a line to controlling 
magnetic properties of the materials in order to optimize them for 
different specific applications. The presented models of magnetic 
disorder predict the influence of nanostructure on magnetic 
properties which is important in technologies requiring extremely 
soft or hard magnets. A proper alloy composition and preparation 
technology allows enhanced either soft or hard magnetic 
properties dependently on a kind of nanostructure and introduced 
disorder. It was also shown, based on different examples of 
materials, that numerical methods concerns the elements of 
micromagnetism (determination of magnetic moments and 
relaxation time distribution) are very usefulness for wide 
magnetic characterization in materials science. 
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This example also confirms highly usefulness of the SA 
Langevin granulometry analysis for magnetic powder 
characterization.

Fig. 61. Distribution of magnetic moments determined at 2 K for
the Gd/Ni powder 

Fig. 62. Distribution of magnetic moments determined at 2 K for
the Gd/Ni powder 

5. Concluding remarks
As it was shown, many kind of materials reveal some

attributes of the disorder in different stages including atomic
disorder, interactions disorder, anisotropy disorder in the both
atomic and cluster levels. Moreover, for one material a
contribution of different mechanisms of the disorder is usually
observed. Therefore, it is of great importance to know how an
individual factor influences magnetic properties. This review 
present the basic phenomena of low-dimensional systems 
especially for magnetic nanoparticles that are widely studied in
thin layers, sintered of powders magnets or in nanocomposites. 
According to the disordered materials, one can indicate the main
three models i.e. random field, random bond and random
anisotropy. Analysis of results obtaining in the frame of the 
models allows correctly interpreting magnetic characteristics of 

different modern materials such as amorphous and nanocrystalline 
alloys, diluted magnetics, nanocomposites or powders systems. 
Furthermore, the presented theory can draw a line to controlling
magnetic properties of the materials in order to optimize them for
different specific applications. The presented models of magnetic 
disorder predict the influence of nanostructure on magnetic 
properties which is important in technologies requiring extremely
soft or hard magnets. A proper alloy composition and preparation
technology allows enhanced either soft or hard magnetic
properties dependently on a kind of nanostructure and introduced
disorder. It was also shown, based on different examples of
materials, that numerical methods concerns the elements of 
micromagnetism (determination of magnetic moments and 
relaxation time distribution) are very usefulness for wide 
magnetic characterization in materials science.
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