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Abstract. The aim of this paper is to derive the exponential ergodicity in the Wasserstein distance for a piecewise-deterministic
Markov process (PDMP), being typically encountered in biological models, defined via interpolation of some discrete-time Markov
chain. The key idea of the presented approach is to show that existence of an appropriate Markovian coupling between two instances
of the chain implies that the transition semigroup associated with the continuous-time process is exponentially contracting.

INTRODUCTION
We shall consider a special case of the random dynamical system described in [1, 2, 3] (cf. also [4, 5]), which can serve
as a framework for a stochastic description of single gene expression process in the presence of transcriptional bursting
(see e.g. [6]). Such a system can be viewed as a PDMP that evolves through random jumps, occurring according to
a homogeneous Poisson process, while the behaviour between jumps is governed by a continuous semiflow. Our goal
is to show that the transition semigroup of this process is exponentially ergodic in the Wasserstein distance (cf. [7, 4]).

Let (X, ρ) be a Polish metric space endowed with the Borel σ-field B(X). In the analysis that follows, we will also
confine ourselves to the case where X is bounded, and, for simplicity, we further assume that ρ ≤ 1. The deterministic
evolution of the aforementioned process will be governed by a continuous semiflow S : R+ × X → X satisfying

ρ(S (t, x), S (t, y)) ≤ Leαtρ(x, y) for any x, y ∈ X, t ≥ 0, (1)

with some α < 0 and some L < ∞. Further, we let {wθ : θ ∈ Θ} be a collection of transformations from X to itself,
such that Θ × X 3 (θ, x) 7→ wθ(x) is continuous. The set of indexes Θ can be chosen as an arbitrary topological
space equipped with a finite Borel measure ϑ. The transformations wθ will be related to the post-jump locations of the
process; more specifically, if the system is in the state x just before a jump, then its position directly after the jump
should be wθ(x) with some randomly selected θ ∈ Θ. The choice of θ depends on x and is determined by a probability
density function θ 7→ p(x, θ), such that p : X × Θ → R+ is continuous, and

∫
Θ

p(x, θ)ϑ(dθ) = 1 for any x ∈ X. The
jump rate of the process will be denoted by λ > 0.

To provide that the Markov chain constituted by the post-jump positions enjoys certain suitable ergodic proper-
ties, we impose several additional restrictions on the functions p and {wθ : θ ∈ Θ}. Namely, we assume that there exist
positive constants Lw, Lp and δp such that, for any x, y ∈ X, the following conditions hold:

LLw +
α

λ
< 1, (2)∫

Θ

ρ(wθ(x),wθ(y))p(x, θ)ϑ(dθ) ≤ Lwρ(x, y),
∫

Θ

|p(x, θ) − p(y, θ)|ϑ(dθ) ≤ Lpρ(x, y), (3)∫
Θ(x,y)

min{p(x, θ), p(y, θ)}ϑ(dθ) ≥ δp, where Θ(x, y) := {θ ∈ Θ : ρ(wθ(x),wθ(y)) ≤ Lwρ(x, y)}. (4)



For any given probability measure µ on X, we first introduce a discrete-time X-valued stochastic process {Φn}n∈N0

with initial distribution µ, defined on a suitable probability space endowed with a probability measure Pµ, so that

Φn = wθn (S (∆τn,Φn−1)) with ∆τn := τn − τn−1 for any n ∈ N, (5)

where {τn}n∈N0 and {θn}n∈N are two sequences of random variables with values in R+ and Θ, respectively, constructed
in such a way that τ0 = 0, τn−1 < τn for any n ∈ N, τn → ∞ (as n→ ∞) Pµ-a.s, and, for every n ∈ N,

Pµ(∆τn ≤ t | Gn−1) = 1 − e−λt whenever t ≥ 0,

Pµ(θn ∈ D | S (∆τn,Φn−1) = x; Gn−1) =

∫
D

p(x, θ)ϑ(dθ) for all D ∈ B(Θ), x ∈ X,

where Gn−1 is the σ-field generated by the variables Φ0, τ1, . . . , τn−1 and θ1, . . . , θn−1.
Under the assumption that θn and ∆τn are conditionally independent given Gn−1 for any n, it is easy to check that

{Φn}n∈N0 is a time-homogeneous Markov chain with transition probability kernel Π : X × B(X)→ [0, 1] of the form

Π(x, A) = Pµ(Φn+1 ∈ A |Φn = x) =

∫ ∞

0

∫
Θ

λe−λt
1B(wθ(S (t, x)))p(S (t, x), θ)ϑ(dθ) dt for x ∈ X, A ∈ B(X). (6)

On the same probability space, we can now define an interpolation of the chain {Φn}n∈N0 as follows:

Φ(t) := S (t − τn,Φn) whenever t ∈ [τn, τn+1) for any n ∈ N0. (7)

It is easily seen that {Φ(t)}t≥0 is a time-homogeneous Markov process satisfying Φ(τn) = Φn for any n ∈ N0. By {Πt}t≥0
we will denote the transition semigroup of this process, i.e.

Πt(x, A) = Pµ(Φ(s + t) ∈ A |Φ(s) = x) for any x ∈ X, A ∈ B(X), s, t ≥ 0. (8)

Letting P(X) denote the set of all probability Borel measures on X, we can introduce the Markov operators
P, Pt : P(X)→ P(X). t ≥ 0, associated with the kernels (6) and (8), respectively, given by

Pµ(A) :=
∫

X
Π(x, A) µ(dx) and Pt µ(A) :=

∫
X

Πt(x, A) µ(dx) for any A ∈ B(X), µ ∈ P(X).

Obviously, P and {Pt}t≥0 describe the evolution of the distributions µn := Pµ(Φn ∈ ·) and µ(t) := Pµ(Φ(t) ∈ ·),
respectively, that is, µn = Pµn−1 for any n ∈ N, and µ(s + t) = Pt µ(s) for any s, t ≥ 0.

Since X is bounded, we can endow P(X) with the Wasserstein metric, defined by

dW(µ, ν) := sup
{∣∣∣∣∣∫

X
f d(µ − ν)

∣∣∣∣∣ : f ∈ BL(X), | f |Lip ≤ 1
}

for any µ, ν ∈ P(X), (9)

where BL(X) stands for the space of all bounded, Lipschitz continuous functions f : X → R, and | f |Lip denotes the
minimal Lipschitz constant of f ∈ BL(X). In our framework, where diam X ≤ 1, the Wasserstein metric coincides with
the so-called Fortet–Mourier metric (a.k.a. bounded Lipschitz distance), defined in a similar fashion, but taking the
supremum over all f ∈ BL(X) such that | f |Lip ≤ 1 and supx∈X | f (x)| ≤ 1 (see [8, p. 234]). Consequently, the topology
induced on P(X) by dW equals to the topology of weak convergence of measures (see [8, Theorem 8.3.2]).

In what follows, we will show that, under hypotheses (1)-(4), the process {Φ(t)}t≥0 admits a unique stationary
distribution ν∗ ∈ P(X) such that, for any µ ∈ P(X), dW(Pt µ, ν∗)→ 0 (as t → ∞) at an exponential rate.

MAIN RESULTS

First of all, we need to consider a joint Markov chain Ψ := {(Φn, τn)}n∈N0 with state space X2 × R+, wherein
Φ := {(Φ(1)

n ,Φ(2)
n )}n∈N0 is a Markovian coupling between two instances of the chain {Φn}n∈N0 , and {τn}n∈N0 is a copy of

{τn}n∈N0 . More precisely, the transition probability kernel of Ψ, say B, should satisfy

B((x, y, s), (A × X) × R+) = P(x, A), B((x, y, s), (X × A) × R+) = P(y, A) for all A ∈ B(X),

B
(
(x, y, s), X2 × T

)
=

∫
T
λe−λ(t−s)

1(s,∞)(t) dt for every T ∈ B(R+),
(10)



with any (x, y, s) ∈ X2 × R+. In practise, it is convenient to assume that Ψ is the coordinate process defined on the
path space (Ω,F ) :=

(
(X2 × R+)N,B(X2 × R+)⊗N

)
, endowed with an appropriate collection {Bm : m ∈ P(X2 × R+)}

of probability measures. This means that Ψn(ω) = ωn for ω = (ω0, ω1, . . .) ∈ Ω, and each Bm is constructed so that
Ψ is a Markov chain on (Ω,F ,Bm) with transition law B and initial measure m. As usual, we then write Em for the
associated expectation operator. If m is the Dirac measure at some (x, y, s) ∈ X2 × R+, i.e. m = δ(x,y,s), then we write
E(x,y,s) instead. In the case where m = π ⊗ δ0, where π ∈ P(X2), we will simply write Eπ rather than Eπ⊗ δ0 .

Within this framework, we can also consider two copies of the process {Φ(t)}t≥0, defined as follows:

Φ(i)(t) := S
(
t − τn,Φ

(i)
n

)
whenever t ∈

[
τn, τn+1) for any n ∈ N0, i ∈ {1, 2}.

Keeping in mind that ρ ≤ 1 and proceeding similarly as in the proof of [9, Lemmas 2.1 and 2.2] (cf. also [10]),
under conditions (1)-(4), one can construct Ψ = {(Φ(1)

n ,Φ(2)
n , τn)}n∈N0 in such a way that its transition probability

kernel B satisfies (10) and the following holds:

Eπ
[
ρ
(
Φ(1)

n ,Φ(2)
n

)]
≤ Cqn for all π ∈ P(X2), n ∈ N, (11)

with some q ∈ (0, 1) and some C ∈ R (being independent on π). In particular, from (9) and (11) it then follows that

dW (Pnµ, Pnν) ≤ Cqn for any µ, ν ∈ P(X), n ∈ N. (12)

We now aim to show that the semigroup {Pt}t≥0 is exponentially contracting in the Wasserstein metric, i.e. there
exists L ∈ R such that

dW(Pt µ, Pt ν) ≤ LeαtdW(µ, ν) for any µ, ν ∈ P(X) and any t ≥ 0. (13)

It is essential to stress that, although the framework adopted here essentially refers to a particular model, our proof of
this statement uses only the existence of a coupling of {Φn}n∈N0 with property (11) and condition (1), imposed on the
semiflow S . The crucial piece of the proof is the following lemma, which draws heavily on the coupling technique
developed by Hairer in [7].

Lemma 1. Suppose that condition (11) holds with certain constants C < ∞ and q ∈ (0, 1) for some properly con-
structed Ψ with transition law satisfying (10). Moreover, assume that (1) is fulfilled with some L < ∞ and some α < 0.
Then, there exists t0 > 0 such that

Eπ
[
ρ
(
Φ(1)(t),Φ(2)(t)

)]
≤ LeαtEπ

[
ρ
(
Φ

(1)
0 ,Φ(2)

0

)]
for all t ≥ t0 and any π ∈ P(X2).

Sketch of the proof. Let π ∈ P(X2). For each t ≥ 0, we define two sequences {ξ(i)
n (t)}n∈N0 (i = 1, 2) of random variables

on the space (Ω,F ,Bπ) (associated with Ψ) by setting ξ(i)
n (t) := Φ(i)(τn ∧ t) for i ∈ {1, 2}. Letting {N(s)}s≥0 denote the

Poisson process with arrival times {τn}n∈N0 , i.e. N(s) = max{n ∈ N0 : τn ≤ s}, we see that ξ(i)
n (t) can be also written as

ξ(i)
n (t) =

Φ
(i)
n if τn ≤ t,

S
(
t − τN(t),Φ

(i)
N(t)

)
if τn > t.

Obviously, ξ(i)
0 (t) = Φ

(i)
0 = Φ(i)(0) and limn→∞ ξ

(i)
n (t) = Φ(i)(t) for any i = 1, 2. Moreover, η(t) := {(ξ(1)

n (t), ξ(2)
n (t), τn)}n∈N0

is a time-homogeneous Markov chain with respect to its natural filtration, further denoted by {Fn}n∈N0 . Let us fix t ≥ 0,
n ∈ N, and write

Eπ
[
ρ
(
ξ(1)

n (t), ξ(2)
n (t)

)
| Fn−1

]
= Eπ

[
1{τn≤t} ρ

(
Φ(1)

n ,Φ(2)
n

)
| Fn−1

]
+ Eπ

[
1{τn>t} ρ

(
Φ(1)(t),Φ(2)(t)

)
| Fn−1

]
. (14)

Applying sequentially the Markov property and (1) we obtain

Eπ
[
1{τn>t} ρ

(
Φ(1)(t),Φ(2)(t)

)
| Fn−1

]
= Eηn−1(t)

[
1{τ1>t} ρ

(
S
(
t,Φ(1)

0
)
, S

(
t,Φ(2)

0
))]
≤ Leαt Eηn−1(t)

[
ρ
(
Φ

(1)
0 ,Φ(2)

0

)]
= LeαtEηn−1(t)

[
ρ
(
ξ(1)

0 (t), ξ(2)
0 (t)

)]
= Leαtρ

(
ξ(1)

n−1(t), ξ(2)
n−1(t)

)
.

If we now combine the last estimate with (14) and take the expectation of both sides of the resulting inequality, then
we see that

Eπ
[
ρ
(
ξ(1)

n (t), ξ(2)
n (t)

)]
≤ Eπ

[
ρ
(
Φ(1)

n ,Φ(2)
n

)]
+ LeαtEπ

[
ρ
(
ξ(1)

n−1(t), ξ(2)
n−1(t)

)]
.



Now, using condition (11) and proceeding inductively on n, one can deduce that, for sufficiently large t ≥ 0,

Eπ
[
ρ
(
ξ(1)

n (t), ξ(2)
n (t)

)]
≤ C(Leαt + q)n + Leαt Eπ

[
ρ
(
Φ

(1)
0 ,Φ(2)

0

)]
for all n ∈ N. (15)

Finally, choosing t0 > 0 so large that Leαt0 + q < 1 and passing to limit as n→ ∞ in (15) for any t ≥ t0, we obtain the
assertion of the lemma.

For any two probability measures µ, ν ∈ P(X), let us now define

R(µ, ν) :=
{
π ∈ P(X2) : π(dx × X) = µ(dx) and π(X × dx) = ν(dx)

}
and 〈ρ, π〉 :=

∫
X2
ρ dπ for π ∈ R(µ, ν).

From Lemma 1 and the definition of dW, given in (9), it follows that, for any µ, ν ∈ P(X),

dW(Pt µ, Pt ν) ≤ Eπ
[
ρ
(
Φ(1)(t),Φ(2)(t)

)]
≤ Leαt 〈ρ, π〉 whenever π ∈ R(µ, ν) for all t ≥ t0. (16)

On the other hand, due to the celebrated Kantorovich–Rubinshtein theorem (see e.g. [8, Theorem 8.10.45]), we have

dW(µ, ν) = inf {〈ρ, π〉 : π ∈ R(µ, ν)} for any µ, ν ∈ P(X). (17)

Consequently, taking the infimum over all π ∈ R(µ, ν) in (16) and applying (17), we obtain the announced result:

Theorem 1. Under hypotheses of Lemma 1, the transition semigroup {Pt}t≥0 of the Markov process (7) is exponentially
contracting in the Wasserstein metric, that is, (13) holds with some L ≥ L. Moreover, L depends only on L and α.

Finally, let us note that (12) implies that {Pnµ}n∈N0 is a Cauchy sequence in (P(X), dW) for any µ ∈ P(X).
Consequently, since the space (P(X), dW) is complete (cf. [8, Theorem 8.9.4]), there must exist µ∗ ∈ P(X) such that
dW(Pnµ, µ∗) → 0 (as n → ∞), independently of the choice of µ. If the operator P enjoys the Feller property, i.e.
x 7→ 〈 f , Pδx〉 is continuous for any bounded continuous function f : X → R, which is the case if P is given by (6),
then µ∗ is a unique invariant probability measure for P, i.e. Pµ∗ = µ∗. Consequently, P is then geometrically ergodic
in dW (c.f. Theorem 4.1 in [1] or [2]), i.e.

dW(Pnµ, µ∗) ≤ Cqn for any µ ∈ P(X), n ∈ N.

In the case where P is defined by (6), there is a one-to-one correspondence between invariant probability measures
for P and those for the semigroup {Pt}t≥0 (see [1, Theorem 4.4]). In particular there is a unique invariant measure
ν∗ ∈ P(X) for {Pt}t≥0, i.e. Ptν∗ = ν∗ for any t ≥ 0. Hence, appealing to (13), we come to the following conclusion:

Corollary 1. Suppose that the process {Φt}t≥0, given by (7), interpolates the Markov chain with transition law (6), and
that conditions (1)-(4) are satisfied. Then, the transition semigroup {Pt}t≥0, corresponding to {Φt}t≥0, admits a unique
invariant measure ν∗ ∈ P(X), and it is exponentially ergodic in the Wasserstein metric, that is

dW(Pt µ, ν∗) ≤ LeαtdW(µ, ν∗) for any µ ∈ P(X) and any t ≥ 0.
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