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Abstract A selection of measured cross sections and vec-
tor analyzing powers, Ax and Ay , are presented for the �pd
break-up reaction. The data are taken with a polarized proton
beam with a kinetic energy of 135 MeV using the Big Instru-
ment for Nuclear-polarization Analysis (BINA) at KVI, the
Netherlands. With this setup, Ax is extracted for the first time
for a large range of energies as well as polar and azimuthal
angles of the two outgoing protons. For most of the con-
figurations, the results at small and large relative azimuthal
angles differ in behavior when comparing experimental data
with the theoretical calculations. We also performed a more
global comparison of our data with theoretical calculations.
The cross-section results show huge values of χ2/d.o.f.. The
absolute values of χ2/d.o.f. for the components of vector
analyzing powers, Ax and Ay , are smaller than the ones for
the cross section, partly due to larger uncertainties for these
observables. However, also for these observables no satisfac-
tory agreement is found for all angular combinations. This
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implies that the present models of a three-nucleon force are
not able to provide a satisfactory description of experimental
data.

1 Introduction

Although the nucleon-nucleon (2N) interaction has been
studied extensively in the past using proton–proton and
proton–neutron scattering data, the role of higher-order
forces, such as the three-nucleon force (3NF) remains mys-
terious. The need for an additional three-nucleon poten-
tial became evident when comparing three-body scattering
observables [1,2] and binding energies of light nuclei [3] with
state-of-the-art calculations [1–3]. The two nucleon force
models such as CD Bonn, Argonn V18, Reid93, Nijmegen I
and Nijmegen II [4–6] are able to describe the two nucleon
systems very well below the pion-production threshold. The
next step would be to significantly extend the world database
in the three-nucleon scattering system as a benchmark to
eventually have a better understanding of the structure of
the three-nucleon interaction. For almost all observables in
nucleon–deuteron elastic scattering, the calculations which
only include two nucleon forces (2NFs) fail to a large extent
to describe the data, in particular at energies above 60 MeV
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and at large center-of-mass scattering angles. In addition to
the elastic channel, the deuteron break-up reaction offers a
rich spectrum of kinematical configurations and as such pro-
vides a good testing ground for understanding the structure
of the nuclear force [7].

Fujita and Miyazawa described the 3NF with two-pion
exchange (TPE) between three nucleons with an intermedi-
ate excitation of one nucleon into its first excited state, the Δ-
isobar [8]. Later, more refined ingredients have been added
leading to the Tucson-Melbourne (TM) [9] and corrected
Tucson–Melbourne (TM′ or TM99) 3NFs [10,11] allow-
ing for additional processes contributing to the re-scattering
of the mesons. In addition to this, other 3NF models such
as Urbana IX were developed [12]. One could also treat
the intermediate Δ as a dynamic state to create an effec-
tive 3NF [13,14]. These theoretical approaches have been
embedded within rigorous calculations using the Faddeev-
type equations by, for example, Bochum–Kraków [15–18]
and Hannover–Lisbon [13,14,19,20] groups. Besides these
phenomenological approaches, also two- and three-nucleon
forces 3NF have been constructed from chiral perturbation
theory (ChPT). The leading 3NF in ChPT shows signifi-
cant contributions to the nuclear force [21], but the most
advanced nowadays complete and consist chiral calculations
at the third order of chiral expansion [22] give a description
of three-nucleon data with similar quality as the one provided
by semi-phenomenological models.

In the non-relativistic limit and in the center-of-mass
frame, the dynamics of the wave function before scattering is
the solution of the Schrödinger equation. As soon as the wave
packet approaches the interaction region, the time evolution
of the state is given by the Hamiltonian of H = H0 + V ,
where H0 is the Hamiltonian of a freely moving particle and
V is the interaction potential. In the three-body system the
Hamiltonian can be decomposed as

H = H0 + Vi + V i ≡ Hi + V i , (1)

where H0 is the kinetic energy, Hi the so-called channel
Hamiltonian with one pair interaction Vi ≡ Vjk ( j �= i ,
k �= i) and V i the sum of the remaining two interactions
with the i th particle. We shall use this convenient notation to
denote a pair by the number of the third particle. Obviously
φi is an eigenstate of Hi with the eigen energy, E . Now, using
the resolvent identities, we obtain

G± = G0 + G0V
iG, (2)

for i = 1, 2, 3, where G0 = (E − H0 ± iε)−1 is the free-
particle propagator. We can define G± = (E −H ± iε)−1 as
the resolvent or Green’s function for the Helmholtz equation.
In the scattering process, we are interested in the transition
of the initial state to a final state via the intermediate state,

|ψ+〉. The transmutation operator, t , is defined by

V |ψ+〉 ≡ t |φ〉. (3)

Multiplying the Lippmann-Schwinger Equation (LSE) by V
from the left results in

t = V + VG0t. (4)

The t-matrix can be evaluated iteratively (Born series) by

t = V + VG0(V + VG0t)

= V + VG0V + VG0VG0V + VG0VG0VG0V + · · ·
(5)

The matrix elements of the transition operator in the momen-
tum space are used to obtain the cross section. Nowadays,
exact theoretical descriptions for the 3N system can be
obtained by using the Faddeev equations with realistic poten-
tials and with model 3NF interactions. The non-uniqueness of
the Lippmann–Schwinger equation (LSE) has been pointed
out by Faddeev and he could overcome this problem by split-
ting up the LSE to three equations with a unique solution [23].

The proton–deuteron break-up is a suitable reaction to
study three nucleon systems since one can measure various
observables in a large part of the available phase space of this
reaction. In this paper, cross sections and vector analyzing
powers, Ax and Ay , for the d( �p, pp)n reaction at 135 MeV
are extracted from configurations whereby the two final-state
protons scatter at small polar angles between 14◦-30◦ . The
data taken at other scattering angles have been reported in
Refs. [24–26].

2 Experimental setup

The �pd break-up reaction was studied using a polarized pro-
ton beam of 135 MeV impinging on a liquid deuterium tar-
get which was located at the center of BINA (Big Instru-
ment for Nuclear-polarization Analysis). The polarized beam
is provided with POLIS (POLarized Ion Source) [27]. The
beams of (polarized) protons and deuterons are accelerated
by AGOR (Accelerateur Groningen ORsay) [28] at KVI,
the Netherlands. The proton-deuteron break-up reaction was
studied with BINA. The BINA detector is particularly suited
to study the elastic and break-up reactions at intermediate
energies. BINA is composed of two major parts, the forward-
wall and the backward-ball. The forward-wall measures the
energy and scattering angles of final-state particles in the
range 10◦–37◦. The forward-wall is composed of three main
parts, Energy scintillators (E-scintillators), ΔE-scintillators,
and a Multi-Wire Proportional Chamber (MWPC). The ΔE-
scintillators are used in combination with the E-scintillators
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to identify the type of particle. The backward-ball is made of
149 small cut pyramid-shaped scintillator detectors by a ball-
shaped detector which covers the rest of the polar angles up to
165◦. Therefore, the BINA detector covers almost the com-
plete phase space of the break-up and elastic reactions. For a
more detailed description of the detector, we refer to [23,29].
In this work, we present the results of break-up configurations
in which the final-state protons are registered in coincidence
by the forward-wall.

3 Data analysis

The data analysis of �pd break-up reaction, taken with a
proton-beam energy of 135 MeV, was performed with the
goal of measuring the vector analyzing powers, Ax and Ay ,
and the differential cross sections.

Events of the break-up reaction are identified by recon-
structing the scattering angles and energies of the two final-
state protons. During data taking, a hardware trigger was
used requiring at least two of the ten E-scintillators to give
a signal above the threshold (∼1 MeV). These events were
further processed offline by combining the information of
the MWPC with the corresponding E-scintillators. In this
way, two proton candidate tracks were reconstructed for fur-
ther analysis. The E-scintillators were calibrated by match-
ing their raw charge-to-digital converter (QDC) information
with the expected energy correlation of break-up events.

The two dominant channels in �pd scattering are the elas-
tic and break-up reactions. The phase space of the break-up
reaction is significantly larger than that of the elastic chan-
nel. With the high event rate, there is a large probability for
receiving, within the coincidence window of the hardware
trigger, two uncorrelated events. The proton track with the
largest scattering angle is labeled as particle 1 and the other
as particle 2. In the case the two reconstructed proton tracks
fall within the same bin in scattering angle, we randomly
label one of the tracks as particle 1 and the other as particle
2.

To reduce the time-uncorrelated background, we exploit
the relative time-of-flight information (TOF1–TOF2) induced
by the two coincidence particles. Here, TOF1 and TOF2 refer
to the sum of the TDC values of the discriminated signals of
the left and right PMTs of the E-scintillators for two particle
tracks (1 and 2), respectively. The TOFs are measured with
respect to the radio frequency (RF) of the accelerator. Details
of the analysis can be found in Ref. [23].

The energy correlation between the two outgoing protons,
E2 versus E1, after the calibration for a particular configu-
ration (θ1, θ2, φ12) = (24◦ ± 2◦, 24◦ ± 2◦, 180◦ ± 5◦) is
shown in the left panel of Fig. 1, whereby θ1 and θ2 are the
polar angles of two outgoing protons and φ12 is their rela-
tive azimuthal angle (φ12 = φ1 − φ2). The solid line shows

the kinematical S-curve calculated for the central values of
the angular bins. The kinematic variable S corresponds to
the arc-length along the kinematic curve with S = 0 at the
point wherby E2 is at its minimum. To measure the break-up
observables, at the first step, we make several slices along the
kinematical S-curve with a window of ∼9.5 MeV. We note
that the energy resolution, ∼4 MeV, is significantly smaller
than this window size. The projection of the indicated region
on the line perpendicular to the S-curve (D-axis) is shown in
the right panel of Fig. 1. The peak around zero corresponds
to break-up events. Most of the events on the left-hand side
of the peak are also due to break-up events. In these cases, the
protons have lost energy due to hadronic interactions inside
the detector. The amount of accidental background is small
as can been seen from the small amount of events on the
right-hand side of the peak. We fit this spectrum by using
a third-order polynomial, representing the hadronic interac-
tions and the accidental background, and a Gaussian func-
tion, representing the signal. The extracted number of signal
events was corrected by the data-acquisition dead-time and
the down-scaling factor. This number is subsequently used
to measure the cross sections and vector analyzing powers.

The cross section of the break-up reaction can be obtained
by:

d5σ

d	1d	2dS
= N

Q
Z tεΔ	1Δ	2ΔS

, (6)

whereby N is, the number of break-up events in each slice
along the S-curve corrected for the down-scaling factor and
the dead-time, Q is the total integrated charge, Z is the pro-
jectile charge (here Z =1), t is the number of the scattering
centers, ε is the multiplication of all the efficiencies including
the MWPC efficiency, hadronic correction and geometrical
efficiency, Δ	s are the solid angles for the two outgoing
protons and ΔS is, the width of the selected window in each
slice along S-curve [23]. We studied various sources that we
identified as the main contributors to the systematic uncer-
tainty in the cross section measurements. In the following,
we briefly summarize each of them and we give a descrip-
tion on how magnitudes of corresponding errors have been
estimated.

The first source we identified as a contributor to the sys-
tematic error is related to uncertainties in the determination of
the effective target thickness. Taking into account the bulging
of the target, we estimated an effective target thickness of
3.85±0.20 mm. The resulting error in this measurement (5%)
is assigned as a systematic error in the cross section measure-
ments. This value has been estimated by earlier cross section
studies of the elastic proton–proton scattering process using
similar targets by comparing data with precision calculations
of this reaction [30].
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Fig. 1 The left panel shows E2
versus E1, kinetic energies of
the two outgoing protons at the
lab reference with (θ1, θ2,
φ12) = (24◦ ± 2◦, 24◦ ± 2◦,
180◦ ± 5◦). The solid line shows
the kinematical S-curve
calculated for the central values
of the experimental angular
ranges. The right panel is the
projection of events along the
D-axis for one slice shown in
the left panel

The second systematic uncertainty that we considered is
related to the error in estimating the fraction of events that
suffered from a hadronic interaction in the scintillators of
BINA. Since in the calculation of the number of break-up
events, we only account for those events for which the energy
of both protons are well reconstructed, one needs to correct
for the hadronic interaction effect. To determine this effect,
we used Monte Carlo studies that are based on the interaction
models provided by the GEANT-3 simulation package [31].
Typically, we found that about 12% of all break-up events
suffered from hadronic interactions. The uncertainty of this
value (6%) is assigned as a source of systematic uncertainty.
It has been estimated by taking the difference between the
number of hadronic background events derived from simu-
lations with the value estimated from a fit of the measured D
spectrum (right panel of Fig. 1) [32–34].

The third source of systematic uncertainty is associated
with the trigger efficiency. This efficiency has been studied
using Monte Carlo simulations based on GEANT-3. It was
found that for break-up events whereby φ12 is larger than 20◦,
the trigger efficiency is about 98% and that it drops to 88% for
selected events associated with φ12=20◦. To be conservative,
we assigned a systematic error due to the trigger efficiency
by taking the observed inefficiencies using the Monte Carlo
results, therefore 2% for φ12 > 20◦ and 12% for φ12 =
20◦ [35].

The fourth source of systematic error is due to uncertain-
ties in the efficiency determination of the MWPC. Proton
tracks from the elastic proton–deuteron scattering process
were identified using the information of the E and ΔE detec-
tors. The E − ΔE hodoscope provides a surface grid that is
used to map onto the MWPC. This allows us to measure
the MWPC efficiency for protons at various locations corre-
sponding to every E − ΔE hodoscop. Typically, we found
an efficiency of about (92±1)% for each proton, whereby the
error corresponds to statistical fluctuations of the unbiased

data sample that is used in this study. We associated a sys-
tematic error due to uncertainties of the MWPC efficiency
for the cross section measurements by summing up the effi-
ciency errors of the two final-state protons, i.e. 2% [35].

The total systematic uncertainties for the cross sections at
small relative azimuthal angles (≤ 20◦) are about 14% and
for the larger relative azimuthal angles (> 20◦) is about 9%.
For this, we added up, quadratically, the systematic errors of
the various sources assuming them to be independent.

To measure the vector analyzing powers, the number
of break-up events were normalized to the collected beam
charge for the two polarization states (up and down). The
relation between the normalized number of events with the
polarized beam, Ns

ξ,φ12
(φ), and unpolarized beam, N 0

ξ,φ12
, is

given by [36]:

Ns
ξ,φ12

(φ) = N 0
ξ,φ12

(1 + psz Ay(ξ, φ12) cos φ

−psz Ax (ξ, φ12) sin φ), (7)

whereby s indicates the spin of the beam. ξ defines a given
kinematical point (θ1, θ2, S). The component of the vector
polarization of the beam is given by psz and the vector ana-
lyzing powers are indicated by Ax and Ay . Here, φ is the
angle between quantization axis for the polarization and the
normal to the scattering plane in the laboratory frame of ref-
erence shown in Fig. 2. φ12 is the relative azimuthal opening
angle of the two protons.

The polarization of the proton beam is defined as:

pz = N+ − N−

N+ + N− , (8)

whereby N+,− are the number of particles with a particular
spin (up or down). The beam polarization has been deter-
mined using the in-Beam Polarimeter (IBP) [37] that was
installed at the high-energy beam at KVI. The IBP measured
regularly the beam polarization by recording the azimuthal
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Fig. 2 Definition of the coordinate systems for the break-up reaction
with transversally-polarized beam. The laboratory system (x ′, y′, z′),
with z′ along the beam-momentum direction and y′ vertically upward,
is used to define the angular configuration of the outgoing protons (with
momenta p1 and p2). The reaction coordinate system is defined with
z along the beam-momentum direction and x obtained by projection
of p1 onto the plane perpendicular to z. The angle φ is defined as the
angle between the y axis and the spin quantization axis s, which, in the
present case, is vertical (parallel to y′) [36,38,39]

asymmetries of the H( �p, pp) reaction. The vector analyzing
power of the proton-proton scattering process was used as
input to the polarization measurements and its uncertainty is
the main source of error.

Since the statistics obtained with an unpolarized beam
for d( �p, pp)n reaction was limited, we extracted the spin
observables by solely using N↑

ξ,φ12
(φ) and N↓

ξ,φ12
(φ), corre-

sponding to the normalized number of events for the spin-up
and spin-down polarized beams, respectively. The analyzing
powers Ax and Ay are extracted using the following relation:

fξ,φ12(φ) = N↑
ξ,φ12

(φ) − N↓
ξ,φ12

(φ)

N↑
ξ,φ12

(φ)p↓
z − N↓

ξ,φ12
(φ)p↑

z

= Ay(ξ, φ12) cos φ − Ax (ξ, φ12) sin φ,

(9)

whereby p↑
z and p↓

z are the values of up (0.57 ± 0.03) and
down (−0.70 ± 0.04) beam polarizations. Parity conserva-
tion imposes the following restrictions on the components of
the vector analyzing powers [36]:

Ax (ξ,−φ12) = −Ax (ξ, φ12);
Ay(ξ,−φ12) = Ay(ξ, φ12),

(10)

whereby for φ12 = 180◦, we expect Ax = 0. By taking the
sum and difference of fξ,φ12(φ) and fξ,−φ12(φ) in combina-

tion with the results of Eq. 10, the following combination of
asymmetries for mirror configurations (ξ ,φ12) and (ξ ,−φ12)
can be obtained [29]:

gξ,φ12(φ) = fξ,φ12(φ) + fξ,−φ12(φ)

2
,

= Ay(ξ, φ12) cos φ;
hξ,φ12(φ) = fξ,φ12(φ) − fξ,−φ12(φ)

2
,

= −Ax (ξ, φ12) sin φ.

(11)

The components of vector analyzing-power values, Ax and
Ay , are obtained from the fits of Eq. 11 for various kinemat-
ical configurations.

The error of the beam polarization is about 6%. For
instance, the beam polarization for the down-mode has been
measured at a value of 0.70 ± 0.04, which gives rise to
6% systematic uncertainty in the beam polarization. We esti-
mated the impact of the polarization uncertainty on the ana-
lyzing powers by recalculating both analyzing powers with an
input polarization that differs by +6% (−6%) for the spin-up
(down) mode. The difference with the results using the nom-
inal values of the beam polarizations is used as an estimate
of the corresponding systematic error. We also considered a
systematic error due to asymmetries that are induced by rate-
or polarization-dependent differences in detection efficien-
cies that do not cancel in Eq. 9. This uncertainty has been
estimated by exploiting data at particular kinematical con-
figurations for which the vector analyzing powers are known
or constrained. For Ay , we have analyzed various symmet-
ric configurations for which both protons scatter to the same
polar angle with a relative azimuthal angle of 180◦. By taking
the average vector analyzing power for the covered S-range,
one expects a value of zero. We have performed a fit with a
free offset value to the data and we used the corresponding
offset as a measure of the systematic uncertainty for Ay . To
estimate the systematic error for Ax , we analyzed the data
for a relative azimuthal angle of 180◦ for which Ax should
be zero, and extracted the corresponding value for Ax as a
function of S. Subsequently, these results are fitted with a
zeroth-order polynomial and its value is used as an estimate
for the corresponding systematic error. This error and the
error in the polarization are added in quadrature assuming
them to be independent, to form the total systematic uncer-
tainty.

Figures 3, 4, 5 show the cross-sections and vector analyz-
ing powers as a function of S for symmetric and asymmet-
ric configurations at small, intermediate and large relative
azimuthal angles. The results of our analysis are indicated
as black dots. The error bars indicate statistical uncertainties
which are in some cases smaller than the symbol sizes. The
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cyan bands depict the systematical uncertainty whereby the
width corresponds to 2σ . The various lines present the results
of Faddeev calculations using 2NF and 2N+3NF models.
The results show a different behavior between the data and
theoretical calculations at small and large relative azimuthal
angles.

The results of the cross sections and vector analyzing pow-
ers as a function of S for about hundred configurations (with
14◦ < θ1 < 30◦, 14◦ < θ2 < 30◦ and 0◦ < φ12 < 180◦) for
incident proton energy of 135 MeV were extracted. A small
subset of vector analyzing power data for selected symmet-
ric configurations was presented in Ref. [29]. An extensive
overview of all the results can be found in the supplementary
material associated with this paper [43].

For most of the configurations, the results at small and
large relative azimuthal angles show a similar behavior
when compared to the ones shown in Figs. 3, 4, 5. Simi-
lar behaviours were also observed in the measurements of
the same observables at 190 MeV [44].

To have a more efficient study and to compare globally the
theoretical predictions with the complete data set, a global
analysis is performed with averages of observables [23,24].
For this purpose, we follow the same procedure as presented
in earlier work [45] whereby we analyzed the average differ-
ence between data and the available theoretical calculations
in units of the experimental uncertainties. The quantity χ2

per degree of freedom is defined by

χ2
m/d.o. f. = 1

N − 1

N∑

i=1

{Oi − Tm
i

σi

}2
, (12)

whereby N is the number of specific configuration in (S,
θ1, θ2, φ12), Oi is one of the observables (Ax , Ay , or
d5σ/d	1d	2dS), σi is the measured statistical error of a
data point and Tm

i is the results of the theoretical calcula-
tion whereby m refers to a specific model, namely, CDB,
CDB+TM′, CDB+Δ and CDB+Δ+Coulomb. The subindex
i refers to a specific configuration in (S, θ1, θ2, φ12) and N
is the number of specific configuration in (S, θ1, θ2) as pre-
sented in the right panels of Figs. 6 and 7 or the number of
specific configuration in (S, φ12) as shown in the left panels
of Figs. 6 and 7. We note that we do not minimize the chi-
square variable by performing a fit. Hence, the chi-square
value is merely a quality measure of the theoretical results
with respect to the data taking into account the experimental
errors. Figures 6 and 7 show the results of χ2/d.o.f. for sum
over (S, φ12) for specific (θ1, θ2) versus the angular combina-
tion (θ1 and θ2) (left panels) and for sum over (S, θ1, θ2) for
specificφ12 versusφ12 (right panels) for different observables
(Ax , Ay and d5σ/d	1d	2dS) for data taken with a proton-
beam energy of 135 MeV and 190 MeV [46], respectively.
The asymmetric error bars reflect the systematic uncertainty

Fig. 3 Cross sections at (20◦,16◦) (left) and (28◦,28◦) (right) as a
function of S at small, intermediate and large relative azimuthal angles
for data taken with a proton beam of 135 MeV. Error bars show the
statistical uncertainties for the data points. The red (dotted-dashed),
blue (dotted), black (solid) and green (double dotted-dashed) lines
show predictions of Faddeev calculations using CD-Bonn, CDB+Δ,
and CDB+Δ+Coulomb and CDB+TM′ calculations [15–18,20,40–
42], respectively. The cyan bands depict the systematic uncertainties
(2σ )

of the data with respect to one of the theoretical calculations,
namely CDB+Δ+Coulomb. These errors were obtained by
rescaling the measured observable within the range corre-
sponding to twice the estimated systematic uncertainty, i.e.
±σ . The smallest and largest chi-square values found within
this range correspond to the two outer edges of the depicted
error bars.

4 Discussion

As observed in Fig. 3, at small azimuthal opening angles the
results are closer to the predictions of the theoretical approach
that the CDB+Δ+Coulomb potential. This demonstrates the
Coulomb effect is sizeable for this observable at these con-
figurations. Note that in this case the relative energy between
the two protons is small. For large relative azimuthal angles,
the model based on the CDB+TM′ potential appears to be
the closest to the experimental data, albeit that the differ-
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Fig. 4 The same as in Fig. 3 but for Ax . The red lines in the bottom
panels correspond to a zero line

Fig. 5 The same as in Fig. 3 but for Ay

Fig. 6 The results of χ2/d.o.f. versus (θ1 and θ2) (left panels)
and versus φ12 (right panels) for different observables (Ax , Ay and
d5σ/d	1d	2dS) for data taken with a proton-beam energy of 135 MeV.
The symbols show the theoretical calculations such as CDB (squares),
CDB+Δ (open circles) and CDB+Δ+Coulomb (solid circles) and
CDB+TM′ (triangles). The error bars reflect the systematic uncertainty.
For details, see text

Fig. 7 Same as Fig. 6 except for 190 MeV

ences between the various models are in general small. For
intermediate values of φ12, the predicted shape of the cross
sections differ significantly with the data. In Figs. 4 and 5, the
measurements of Ax for relative azimuthal angles of 180◦ is
found to be consistent with zero as expected from Eq. 10. This
demonstrates that our procedure to extract the analyzing pow-
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ers does not suffer from experimental asymmetries. This is
also confirmed by our estimate of the systematic uncertainty,
which is found to be small. Our polarization observables are
reasonably well described by the calculations for kinemat-
ical configurations with intermediate and large φ12 that the
three-nucleon force effect is predicted to be small. However,
striking discrepancies are observed at specific configurations,
in particular in cases whereby the relative azimuthal angle
between the two outgoing protons becomes small. In this
range, the measured values of Ay are close to the results of
the 2NF calculation. Although, the disagreement is still sig-
nificant, the effects of the Coulomb force are very small. The
addition of the TM′ 3NF makes the agreement even worse.
Therefore, the origin of this discrepancy must lie in the treat-
ment of 3NFs. The same behavior was observed for the data
taken at a beam energy of 190 MeV [46]. Based on this obser-
vation, we suggest to improve the short-range part of the 3NF
for which the data presented n this paper and those in Ref. [46]
can be used as a benchmark.

The results of the analyzing powers for different combi-
nations of (θ1 = θ2, φ12) for small φ12 which corresponds
to d( �p, 2He)n for 135 MeV proton beam energy were also
compared to the results using a proton beam with an energy
of 190 MeV [47] to study the spin-isospin sensitivity of the
3NF models [29,48,49].

By inspecting Fig. 6, we note that the absolute values of
the χ2/d.o.f. for the analyzing powers Ax and Ay appear
to behave better than the ones for the cross section. How-
ever, also for analyzing powers, there are clear trends to be
observed in which all the model predictions deviate, beyond
statistical and systematic uncertainties, from the data. For
Ay , the trend observed in the plots as a function of polar
angle combination looks similar to what is observed for the
cross section. The models show a larger discrepancy towards
larger angles. The trends as a function of φ12 are vastly dif-
ferent compared to the ones observed in the cross section.
Although Ay features a worse agreement towards small φ12

(and partly large φ12), the observable Ax is well predicted at
small φ12 except for CDB+TM′. By comparing all the model
predictions, the calculation based on the CDB+Δ+Coulomb
model is the most compatible with the data. By comparing
the results between the two energies, see Figs. 6 and 7, in gen-
eral, similar trends as a function of φ12 are observed for the
cross section and Ay . For the cross section data taken at 190
MeV, the calculation that is based on CDB+Δ+Coulomb
potentials shows the worst agreement, in particular for large
values of φ12. The sensitivity to 3NF effects appears to be
larger at the higher energy. For both energies, it is clear that
the inclusion of the TM′ 3NF is by far not sufficient to remedy
the observed discrepancies. We also note that the Coulomb
effect is very small for both spin observables. By globally
reviewing the chi-square data, we note that CDB+TM′ gives
the worst description of the data for analyzing powers.

5 Summary and conclusions

Finding a suitable theory of nuclear forces is one of the main
challenges in nuclear physics. To study the three nucleon
systems, the reaction d( �p, pp)n was studied at KVI using a
polarized proton beam. In this paper, the results of the vec-
tor analyzing powers, Ax and Ay , and the cross section for
data taken with a proton-beam energy of 135 MeV are pre-
sented. Moreover, we performed a global review of a rich
set of cross section and vector analyzing-power data taken
with proton-beam energies of 135 MeV and 190 MeV. The
results were compared with theoretical Faddeev calculations
using 2N and 2N+3NF models such as CD-Bonn, CDB+Δ,
CDB+Δ+Coulomb and CDB+TM′ [15–18,20,40–42] for
the kinematics in which both protons scatter to polar angles
smaller than 30◦ and with a relative azimuthal opening angle
varying between 20◦ and 180◦. The results of cross sections
and analyzing powers, Ax ans Ay , as a function of S for dif-
ferent configurations (θ1, θ2, φ12) are shown in Figs. 3, 4,
5. At small azimuthal opening angles, the calculation, which
is based on the extended CDB+Δ and with Coulomb cor-
rections, CDB+Δ+Coulomb, shows a smaller discrepancy
with the data than the other calculations. The results show
that there is a general disagreement between the data and the
calculations using two- and three-nucleon forces. In particu-
lar, predictions for the vector analyzing powers show a sys-
tematic deficiency at small relative azimuthal angles, which
corresponds to small relative energies. In this range, the data
for Ay are closest to the three-body calculation that is based
on a 2N potential. The addition of 3NF makes the agreement
even worse.

The results of the global review show very large values
of χ2/d.o.f. for the cross sections at specific scattering and
relative azimuthal angles. The deviations, independent of the
model and beam energy, appear to increase towards large val-
ues of φ12. This implies that the present models are not able
to provide a reasonable description of the data. The absolute
χ2/d.o.f. for the analyzing powers Ax and Ay are much closer
to unity than the ones observed for the cross sections. How-
ever, also for these observables no satisfactory agreement is
found for all the angular combinations (θ1, θ1) and φ12.
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