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Abstract In the following paper a classi�cation problem with two multivariate
normally distributed classes is considered. The problem is solved in a case of an
empirical real situation (a motors data) using the Karhunen-Loeve transform and
classifying functions based on estimators for unknown parameters of a multivariate
normal distribution. We consider the maximum likelihood estimator and a robust
one. The robust estimator bases on the Huber's functions. The corresponding clas-
sifying functions (classi�ers) are compared using the Leave-One-Out method
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1. Introduction In the article a classi�cation problem will be consid-
ered. The classi�cation is based on empirical discriminant functions for the
Gaussian classi�er which are de�ned by estimators of an unknown expected
value and a covariance matrix for multivariate normal distributions. In the
article several classi�ers will be compared for a motors problem. The mo-
tors problem has been already used in literature (for example [1], [4]). The
problem and the corresponding data were introduced by J. Adamczewski and
H. Gacki [1]. In their article the maximum likelihood method was used to
solve the classi�cation problem. In the following paper the results will be ex-
panded. The classi�ers will base also on a robust estimator and we will try
to choose a better estimator for the motors problem then the classical one
from [1]. For the robust estimator the Huber's functions play a key role. The
function φt : R → R was introduced by P. J. Huber in [8], and is de�ned by
its derivative φ′t of form

φ′t(x) =

{
x, |x| ≤ t,
t2

x , |x| > t,

where t > 0. The constant t is called a tunning constant or a truncation level.

The Huber's functions φt, t > 0, have a property which is unfavorable for
some scienti�c research. The derivatives φ′t of the Huber's functions are not
di�erentiable. To avoid such undesirable property T. Bednarski and S. Zontek
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[2] have presented a modi�cation of the Huber's functions. They propose the
modi�cation (see Figure 1) of form

φ̃′t(x) =


x, |x| ≤ t,
−x− 4t− 2t2

x , −2t < x < −t,
−x+ 4t− 2t2

x , t < x < 2t,
2t2

x , |x| ≥ 2t.

Figure 1: The modi�cations φ̃′t for t ∈ {1.1, 1.3, 1.5, 1.7, 2, 2.5}.

The modi�cations have been already used in literature. A. Kulawik and
S. Zontek [10] used the modi�cation for a robust estimation in the multi-
variate normal model with variance components. Next they [11] applied the
modi�cation in robust estimation of an expected value and a positive de�nite
covariance matrix of a multivariate normal distribution. The modi�cations
were also mentioned by R. Zmy±lony and S. Zontek [13].

In the following article we will try to show an opportunity of using the
modi�cations of the Huber's functions in case of an empirical classi�cation
problem with two classes. In the next chapter the problem and methods are
described precisely. The method bases on the maximum likelihood estimator
and a robust estimator for which a Huber's function is needed. The robust
estimator is presented in the Chapter 3. In the Chapter 4 the computational
results are described. In computations the "R" program has been used. More-
over, the "R" package "expm" (function sqrtm) was used in computing the
robust estimator (see V. Goulet at al. [6]). The "R" package "conics" (func-
tion conicPlot) was used to plot the separating surfaces (see B. Desgraupes
[3]). The article will end with an open problem about �nding the proper Hu-
ber's function for the motors problem.
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2. A formulation of the problem and assumptions of the exper-

iment. Consider the following situation. Let it be a set whose elements will
be called recognition objects. Suppose further that the recognition objects are
divided into a �nite number of classes, which we will call images. We want to
build an algorithm that allows recognition of the object's state class on the
basis of previously learned defect class images and to create a criterion for
recognizing and making decisions. In our considerations we will assume that
there is a certain vector of n measurable features, the determination of which
in each of the unpacked objects is always possible, and which allow reliable
recognition of the state of the object.

Of the many image recognition methods, it was decided to use ([1]) the
Karhunen-Loeve transformation method (the Karhunen-Loeve Transform or
shortly - the KLT) in combination with the maximum likelihood method ([5],
[9], [12]). The KLT transforms n-dimensional input space Z into an output
m-dimensional space Z∗ which is a secondary features space, where m ≤ n.

Let us consider a training set which consists of n-dimensional vectors yj ,
j = 1, . . . , N . Assume that each vector belongs to one of M possible pattern
classes {ωi : i = 1, . . . ,M}. Let µi denote the mean of the random pattern
vectors yi in the class ωi, i = 1, . . . ,M . Now,

zi = yi − µi

denotes the centralized observations from ωi, i = 1, . . . ,M . It is advisable
([5], [9], [12]) to �nd the covariance matrix R for the data z:

R =

M∑
i=1

pr(ωi)E{zi, zTi },

where pr(ωi) denotes a priori probability of the occurrence of the i-th class,
E{zi, zTi } = 1

Ni
ziz

T
i , and Ni is the number of elements in the set ωi and

zi = [zi1, zi2, . . . , zin]T , i = 1, . . . ,M , N1 + · · · + NM = N . Now we take the
vector φj such that

Rφj = λjφj ,

for λj which are the real nonnegative eigenvalues of the matrix R. After
sorting the eigenvalues decreasingly (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ λn) we can take
the normed eigenvectors ε1, . . . , εm and de�ne the matrix φ of the form:

φ =

 εT1
...
εTm

 ,
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where m is the dimension of the new space Z∗. Transformed output data x
we get from the equation:

x = φy.

For the output data we can apply a method of classi�cation which bases
on the Bayes classi�er and the maximum likelihood estimator. Let us consider
M multivariate normally distributed classes with parameters mi ∈ Rm and
ci ∈ Rmm, i = 1, . . . ,M . According to the density function let

p(x, ωi) =
1

(2π)m/2|ci|1/2
exp

(
−1

2
(x−mi)

T c−1
i (x−mi)

)
, x ∈ Rm. (1)

The likelihood function is given by Bayes classi�er:

di(x) = p(x, ωi)pr(ωi), i = 1, . . . ,M.

If we take the equation (1) in the one above and the estimates ofmi, ci, pr(ωi)
instead of their unknown values, and additionally after taking the logarithmic
function of it and missing a constant we will have

d̃i(x) = lnp̃r(ωi)−
1

2
ln|c̃i| −

1

2
(x− m̃i)

T c̃i
−1(x− m̃i),

where

m̃i =
1

Ni

Ni∑
j=1

xj , (2)

c̃i =
1

Ni

Ni∑
j=1

xjx
T
j − m̃im̃i

T (3)

are the maximum likelihood estimates. A classifying function which separates
the classes ωi and ωj (a separating surface) is given by

d̃i(x)− d̃j(x) = 0. (4)

In the case of 2-dimensional space (m = 2 and x = (x1, x2)T ∈ R2) the
separating surface (4) can be written in the form

ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f = 0. (5)

As it will be shown in our article, it is worth considering also other estima-
tors instead of (2) and (3): robust estimators based on the Huber's functions.

3. An estimator based on the Huber's functions

In the article [11] authors consider a problem of a robust estimation for the
family of distributions Nm(Aµ,Σ), where A ∈ Rms is a known matrix with s
independent columns, a vector µ = (µ1, . . . , µs)

T ∈ Rs and a positive de�-
nite matrix Σ ∈ Rmm are unknown parameters. In the case when s = m and
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A = Im is the identity matrix we get the family of distributions Nm(µ,Σ)
with unknown parameters µ and Σ. The authors present a method of a ro-
bust estimation that is based on statistical functionals.

Let G denote a set of cumulative distribution functions F : Rm → [0, 1]
and let Θ be a parameter space.

Definition 3.1 A function de�ned for F ∈ G and taking values in the pa-
rameter space Θ is called a statistical functional.

For a sample X1, . . . ,XN an estimator of a parameter θ ∈ Θ can be
de�ned as

θ̂ = T (F̂N ), (6)

where T is a statistical functional and F̂N : Rm → [0, 1] is the empirical
cumulative distribution function of form

F̂N (t1, . . . , tm) =
1

N

N∑
i=1

1(−∞,t1]×···×(−∞,tm](Xi), (t1, . . . , tm)T ∈ Rm.

Example 3.2 Let T ∗ : G → Θ be the function de�ned by

T ∗(G) = argmin
θ∈Θ

∫
Φ(x|θ)dG(x), (7)

where Φ: Rm ×Θ→ R is a given function and the right side of the equation
(7) denotes the parameter θ for which the function

∫
Φ(x|θ)dG(x) attains the

minimum. The function T ∗ is a statistical functional.

In the article [11] authors present the unknown matrix Σ as Σ =
k∑
i=1

αiWi,

where the matrices W1, . . . ,Wk, k = m(m+1)
2 , are a basis of the space of

real square and symmetric matrices. The parameters α1 ∈ R, . . . , αk ∈ R
are unknown. Denote by µ = (µ1, . . . , µm)T and α = (α1, . . . , αk)

T . The
parameter space Θ can be written in the form

Θ =

{
θ =

(
µ
α

)
∈ Rm+k : µ ∈ Rm ∧ α ∈ Rk ∧

k∑
i=1

αiWi > 0

}
.

The authors use the statistical functional of form (7) with the objective func-
tion Φ of form

Φ(x|θ) = ln |
k∑
i=1

αiWi|
1
2 + ϕ

 1

c2
ϕ

(x− µ)T

(
k∑
i=1

αiWi

)−1

(x− µ)

 , (8)
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where cϕ > 0 is a constant and ϕ : [0,+∞)→ R is a function. For ϕ(u) = 1
2u

and cϕ = 1 the function Φ is the function that corresponds to the maximum
likelihood estimator.

Generally, the function ϕ and the constant cϕ should be properly chosen.
It can be done according to the following theorem and the conditions (B1)-
(B4) which are given below.

Theorem 3.1 Let ξ be a random vector having the multivariate standard
normal distribution Nm(0, Im) and assume that a function ϕ : [0,+∞) → R
satis�es the following conditions.

(B1) The function ϕ has positive derivative on (0,+∞).

(B2) The function uϕ′(u2) has nonnegative derivative on [0,+∞) and there
exists u0 > 0 such that 2u2

0ϕ
′(u2

0) > m.

Then there exists a unique cϕ,m > 0 for which the function

c 7−→ m ln(c) + E
[
ϕ

(
ξT ξ

c2

)]
, c > 0,

attains the global minimum.

A proof of the theorem can be found in the article of S. Zontek [14].

Assume that the function ϕ : [0,+∞) → R satis�es the conditions (B1),
(B2) and also

(B3) The function ϕ′′ is continuous.

(B4) The functions uϕ′(u2) and u2ϕ′′(u2) are bounded.

The authors consider the statistical functional T ∗ given by (7) with the ob-
jective function Φ of form (8) for the constant cϕ = cϕ,m. The estimator (6)
is then robust.

4. An attempt of choosing the most e�ective estimator for the

motors problem

In the article [1] the authors considered data connected with motors
of type SZXb6514 B made by Zakªad Silników Elektrycznych Maªej Mocy
"Silma" in Sosnowiec (Low Power Electric Motors Company "Silma"). They
considered 11 usable motors and 23 motors which are not usable. The not
usable motors were grouped with respect to the following types of defects:

� B - rubbing,

� C - loudness - load operation,

� E - high current,

� F - increased vibration level,
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� G - no rivet in the sheet package.

The motors were represented by 9-dimensional vectors of the features x1A(x, y, z),
x2v(x, y, z), x3a(x, y, z) (Table 1). Using the KLT the authors reduced each of
the three 3-dimensional features to one point and got 3-dimensional vectors
of the features x′1(A), x′2(v), x′3(a) (Table 2 on the left). The 3-dimensional
space was reduced to a 2-dimensional space (x′′1, x

′′
2) by the KLT (Table 2 on

the right).

Table 1: The motors input data.

Amplitude x1A Velocity x2v Acceleration x3a
x y z x y z x y z
2.2 1.9 3 1.5 1.35 2.2 3 3 5.5

1.4 1 3.1 1 0.6 2.5 3.5 2.5 6.5

1.8 1.15 4 1.25 0.9 3 3 2.3 7

2.3 1.9 3.5 1.7 1.6 2.7 4 4 8

1.2 2 1.8 2 1.45 4 2 2.1 4.7

1.3 1 3 2 1.7 8 1.8 1.2 7 A

2.3 1.8 2.1 4 3 3.8 3.6 1.6 2.2

2.5 4.5 2.6 1.7 3.5 2 4.1 2.6 6

4 2.6 5.6 1.9 2 4 2.6 2.2 4.1

2.6 2.5 3.6 2.5 2.1 5.1 3.1 2.6 5.1

1.5 1.7 3.2 2.5 1.3 1.45 2.6 3 6

1.9 1.2 14.5 1.3 1.1 9.5 13.5 10.5 32

4 3.9 7.3 5.5 4.5 9 7.2 7 4 B

2.3 2.2 7 6.5 4.5 5.3 10 10.5 3.5

1.5 1 5 1.25 0.8 3 23 14 30

1.9 1.6 3.3 1.6 1.35 2.5 13.5 9 14

2 1.55 1.4 1.4 1.15 3 19 24 30 C

2.3 1.75 1.1 1.7 1.4 2.5 20.5 10 14.5

1.9 1.2 5.5 1.3 1.1 9.5 13.5 10.5 22

4.5 4 20.5 4 6 13 15 15.5 30

17 14 19 1.1 9 40 15.5 18.5 35

9 6.4 30 7 4.5 20.5 7 7 26

4 3.5 18 7 7 35 5.7 5.5 35 E

8 7 22.1 6 10 27 14.5 14.5 29

30 32 17 2.5 2 11.5 10 15 35

14 24.5 14.5 3.7 6 10 9 16 29

19 17.5 60 15 14 40 18 14 35 F

27.5 26.1 22.1 22 17.4 18 11.8 9 14.9

7.5 5.5 20.5 5.5 3 14 6.2 5.5 15

7 5 18 5.5 3 13 7.5 5.5 14

7.1 5.4 19 5.8 3.2 13.5 7 6 15.1 G

7.4 5.5 19.5 5.6 3.1 14 6.8 5.8 15.1

7.3 5.6 20 5.7 3.2 14 6.2 5.6 15

9.8 9 15.5 2.8 4.9 12.5 7 12.5 12.5

The following classi�cation problems with two classes were considered:
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� USABLE motors (A) - UNUSABLE motors (BCEFG),

� B - CEFG,

� C - BEFG,

� E - BCFG,

� F - BCEG,

� G - BCEF.

The probability p̃r(ω) of the occurrence of a usable object according to the
manufacturer's information is set at 0.98. In the case of testing the type of
defect, it was assumed that the occurrence of the above failure classes is
equally probable with the probability p̃r(ω) of 0.5.

The Figure 2 presents the image of the 2-dimensional output data which
was obtained by KLT.

Figure 2: The 2-dimensional output motors data.

The classifying functions (4) for the following estimators are compared:

� the maximum likelihood estimator MLE,

� the robust estimator θ̂t given by (6) and the statistical functional of form
(7), where the objective function Φ is de�ned by (8) and the function
ϕ : [0,+∞)→ R given by

ϕ(x) = φ̃t(
√
x), x ≥ 0,

where the function φ̃t is de�ned by its derivative

φ̃′t(x) =


x, |x| ≤ t,
−x− 4t− 2t2

x , −2t < x < −t,
−x+ 4t− 2t2

x , t < x < 2t,
2t2

x , |x| ≥ 2t.

for a given t and the corresponding constant c given in Table 3.
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Table 2: The motors data after the �rst (on the left) and the second KLT (on
the right).

x′1(A) x′2(v) x′3(a)
4.144 2.869 6.936

3.498 2.749 7.768

4.452 3.369 7.895

4.586 3.457 9.796

2.795 4.677 5.513

3.375 8.331 6.969 A

3.429 5.623 3.921

5.047 3.392 7.644

7.293 5.14 5.306

5.048 6.02 6.492

3.915 3.412 7.182

12.88 9.263 36

9.192 11.22 9.004 B

7.5 8.244 11.12

5.055 3.339 39.64

4.127 3.171 20.61

2.636 3.493 41.92 C

2.612 3.219 24.3

5.712 9.263 27.77

27.92 11.96 33.83

40.02 11.72 38.79

20.39 13.57 18.07

19.97 14.74 36.93 E

28.41 42.14 42.43

30.5 22.02 27.01

17.55 35.73 33.29

24.02 29.13 35.51 F

63.41 44.95 41.69

40.52 28.6 20.65

21.9 15.25 17.05

19.48 14.36 16.76 G

20.49 14.97 17.66

21.06 15.32 17.49

21.46 15.38 17.09

x′′1 x′′2
8.49 -1.243

8.658 -2.252

9.522 -1.567

11.05 -2.676

7.635 0.1889

10.62 1.429 A

7.392 2.246

9.826 -0.9381

10 2.578

10.12 1.279

8.822 -1.17

36.56 -14.14

16.5 4.5 B

15.8 0.7246

32.75 -23.19

18.49 -10.49

33.13 -25.42 C

20.51 -13.64

27.14 -11.41

43.44 -8.309

64.7 7.559

44.93 7.05

49.35 4.921 E

51.22 2.697

54.07 -2.199

44.36 -3.852

82.83 24.44 F

50.04 21.29

30.37 6.432

28.58 5.111

30 5.29 G

30.32 5.822

30.25 6.311

29.57 4.328

Table 3: The constants t and c.

t 1.1 1.3 1.5 1.7 2 2.5

c 0.373 0.669 0.768 0.810 0.836 0.844

Using the classifying function given by (5) we get di�erent separating
surfaces for the each considered case. The separating surfaces are presented
in the following six �gures (Figures 3 - 8). It is easy to see that the obtained
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shapes of the separating surfaces often di�er radically. This is not surprising
because each of these images graphically describes a di�erent type of damage.

Figure 3: The separating surfaces for the case A - BCEFG.

Figure 4: The separating surfaces for the case B - CEFG.

Figure 5: The separating surfaces for the case E - BCFG.

The above �gures describe the separating surfaces corresponding to six
training sets: A-BCEFG, B-CEFG, C-BEFG, E-BCFG, F-BCEG and G-
BCEF. Let us assume that a new motor with unknown classi�cation is sub-
jected to the recognition process. By measuring the amplitude of displace-
ment, velocity and acceleration of vibrations in three axes, as in the case
of input data (the training set) we form a 9-dimensional vector, which then
through the KLT we transpose into 2-dimensional space according to eigen-
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vectors obtained for the corresponding training set.

Figure 6: The separating surfaces for the case C - BEFG.

Table 4: The percentages of wrongly classi�ed elements for all cases.

t = 1.1 t = 1.3 t = 1.5 t = 1.7 t = 2 t = 2.5 MLE

A - BCEFG 0% 0% 0% 0% 0% 0% 0%

B - CEFG 13% 13% 17.4% 17.4% 17.4% 8.7% 13%

C - BEFG 47.8% 8.7% 4.3% 4.3% 8.7% 4.3% 4.3%

E - BCFG 39.1% 4.3% 13% 8.7% 13% 17.4% 17.4%

F - BCEG 0% 4.8% 4.8% 0% 0% 4.8% 0%

G - BCEF 4.3% 0% 4.3% 0% 0% 0% 4.3%

The average 17.4% 5.1% 7.3% 5.1% 6.5% 5.9% 6.5%

The decision recognition system reviews these partitioning surfaces and
determines the state class based on belonging to the area to which the un-
known object was assigned. This allows to specify the two-state classi�cation
USABLE - UNUSABLE, and then in the case of including the object in the
class UNUSABLE - to de�ne the type of defect of the tested motor. The
process of assigning a class label to a new engine involves the possibility of
making a mistake. The Table 4 shows the percentages of wrongly classi�ed
elements to compare the decision functions corresponding to the considered
estimators (the Leave-One-Out method, see T. Hastie at al. [7]). The Leave-
One-Out method is a type of cross-validation and consists of dividing the
N -element set into N one-element subsets. Each subset in turn becomes the
test set, and the rest together form the training set. As we can see the use
of a Huber's function may reduce the probability of making a mistake in a
classi�cation.

5. Concluding remarks and an open problem The cited considera-
tions were made based on incomplete training sets. The obtained results are,
however, encouraging to undertake further research, because as the method
has shown it allows to determine areas typical for a given object state class. It
could be an interesting open problem to �nd an optimal Huber's function (a
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Figure 7: The separating surfaces for the case F - BCEG.

Figure 8: The separating surfaces for the case G - BCEF.
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tunning constant t) for given data which minimizes the probability of making
a mistake.

Acknowledgments



H. Gacki, A. Kulawik 113

The Authors are indebted to the Reviewers for their valuable remarks and
editorial help.

6. References

[1] J. Adamczewski and H. Gacki. Próba zastosowania metod rozpoznawania
obrazów w eksperymencie diagnostycznym. PAN Zagadnienia eksploat-

acji maszyn, 29(97):161�172, 1994. No cited.

[2] T. Bednarski and S. Zontek. Robust estimation of parameters in a mixed
unbalanced model. Ann. Statist., 24(4):1493�1510, 1996. No cited.

[3] B. Desgraupes. conics: Plot conics, "r" package version 0.3, 2013. No
cited.

[4] H. Gacki and A. Kulawik. Robust estimation and its application to a
classi�cation problem. Mathematica Applicanda, 47(2):81�94, 2019. No
cited.

[5] R. G. Gonzalez and J. Z. Tou. Pattern recognition principles. Addison-
Wesly Publ. Comp, 1974. No cited.

[6] V. Goulet, C. Dutang, M. Maechler, D. Firth, M. Shapira, and M. Stadel-
mann. expm: Matrix exponential, log, 'etc', "r" package version 0.999-4,
2019. No cited.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning, Data Mining, Inference and Prediction. Springer, 2017. No
cited.

[8] P. J. Huber. Robust Statistics. Wiley, New York, 1981. No cited.

[9] F. Jager. Feature extraction and shape representation of ambulatory
electrocardiogram using the karhunen-loeve transform. Electrotechnical

Review, 69(2):83�89, 2002. No cited.

[10] A. Kulawik and S. Zontek. Robust estimation in the multivariate normal
model with variance components. Statistics, 49(4):766�780, 2015. No
cited.

[11] A. Kulawik and S. Zontek. Robust estimation in the multivariate normal
model. Discussiones Mathematicae Probability and Statistics, 36(1-2):
53�66, 2016. No cited.

[12] M. Nieniewski. Probabilistic methods in pattern recognition and com-
puter vision. Lecture Notes and Computer Vision and Arti�cial Intelli-

gence, Ossolineum, 1990. No cited.

[13] R. Zmy±lony and S. Zontek. Robust m-estimator of parameters in
variance component model. Discussiones Mathematicae Probability and

Statistics, 22(1-2):61�71, 2002. No cited.

[14] S. Zontek. Multivariate robust estimation in linear model for spatially
located sensors and random input. Discussiones Mathematicae Algebra

and Stochastic Methods, 18:195�206, 1998. No cited.



114 The Huber's functions and their Application

Funkcje Hubera i ich zastosowanie w pewnym problemie

klasy�kacji

Henryk Gacki, Agnieszka Kulawik

Streszczenie W artykule rozwa»any jest problem klasy�kacji w przypadku dwóch
klas o wielowymiarowym rozkªadzie normalnym. Problem ten jest rozwi¡zywany
na podstawie przykªadu empirycznego (dane dotycz¡ce silników) z wykorzystaniem
transformacji Karhunena-Loevego oraz funkcji klasy�kuj¡cych bazuj¡cych na wybra-
nych estymatorach nieznanych parametrów wielowymiarowego rozkªadu normalnego.
Rozwa»any jest zarówno klasyczny estymator - estymator najwi¦kzej wiarogodno-
±ci, jak równie» estymator odporny, który opiera si¦ o funkcje Hubera. Uzyskane
klasy�katory s¡ porównywane za pomoc¡ sprawdzianu krzy»owego - metoda Leave-
One-Out.

Klasy�kacja tematyczna AMS (2010): 62C12; 62P30.

Sªowa kluczowe: funkcje Hubera, wielowymiarowy rozkªad normalny, estymator od-
porny, klasy�kator, transformacja Karhunena-Loevego.
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