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Revisiting the Logistic Growth
with Random Disturbances

Abstract We reconsider a one-dimensional probabilistic model of a �re-induced
tree-grass coexistence in savannas introduced by D'Odorico, Laio and Ridol� in [5].
We rewrite it as a logistic growth model with random tree biomass losses caused by
�re occurring at random times. We study it by using the stochastic semigroup the-
ory and we give new su�cient conditions for the existence and stability of a unique
stationary density of woody biomass.
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1. Introduction Population dynamics models in ecology use mathemat-
ical tools to study changes of parameters such as population size or age distri-
bution. During over 100 years of population ecology history, theoretical ecol-
ogists/biologists and mathematicians developed many di�erent approaches to
the problem. Nowadays, modeling approaches are based on variations of the
basic ones like the Lotka�Volterra model or the logistic population model.
The latter, despite being one of the �rst and simple, is extremely useful and
has been used recently [5] to help address the so-called savanna question[11].

Savannas cover roughly 20% of the Earth's land surface and are mixed
woodland-grassland ecosystems characterized by open canopy of woody veg-
etation. There are many environmental disturbances that are said to be re-
sponsible for such tree-grass coexistence, including: seasonal rainfalls, grazing
and browsing of animals, human activity, and especially �res. Regular �res are
characteristic for tropical savannas. The main sources of ignitions are light-
nings and human activity (e.g. [13]). Similarly to [7] we work with a model
where tree-grass coexistence is induced by �re-vegetation feedbacks empha-
sizing signi�cant role of �res in stabilizing savannas [6]. Existing in literature
disturbance-driven savanna models including �res di�er in applied mathemat-
ical methods, e.g. [3] they use the loop analysis for graphs while the model
presented in [15] is based on impulsive di�erential equations.

http://dx.doi.org/10.14708/ma.v47i2.6483
https://orcid.org/0000-0001-9413-3434


178 Revisiting the Logistic Growth with Random Disturbances

In this paper we put the probabilistic model of [5] on a �rm mathematical
ground. We propose a logistic growth model of the biomass of trees with
random disturbances that exhibits the same type of behaviour. We assume
that a random fraction of the biomass survives random occurrences of �res
leading to an appropriate piecewise deterministic Markov process (PDMP) [4].
In our previous work (jointly with M. Tyran-Kami«ska) [7] we assumed that
always the same fraction of trees survives each �re. We study the existence
of a unique stationary density of the trees biomass. We also show its stability
when it exists by using the results of [8]. Asymptotic properties of randomly
disturbed population growth models have been studied recently in [9], where
it was assumed that the time of occurrence of disturbances is modelled as a
Poisson process with constant intensity λ. In our model the intensity depends
on the current amount of the biomass which is the extension of results from
[9, Section 5] to non-constant λ.

2. Logistic tree biomass model of mesic savanna We give a brief de-
scription of a minimalistic model of tree-grass coexistence in �re-prone semi-
arid ecosystems given in [5]. The authors considered the case of mesic savannas
where the tree-grass coexistence cannot appear without disturbances, and
interspecies competition just slows down the growth of dominating woody
vegetation. Fires damage both, trees and grasses, but much slower growth
of woody vegetation enables grasses to occupy space left available by trees
[12, 14]. Between the �res trees reclaim the space form grasses by outcompet-
ing them since no niche separation is assumed. Without �res it is a simple
1-dimensional model with a state variable re�ecting the total woody biomass
(a classical logistic growth). The authors assumed that the ecosystem carry-
ing capacity is constant so the state variable can be normalized to be a given
fraction of it. Namely, the tree biomass is denoted by v ∈ [0, 1] in the logistic
equation of the form:

dv

dt
= αv(1− v)− vF (t, v), (1)

where F (t, v) is a noise re�ecting the random occurrences of �re and α is
the tree growth rate. The grass biomass is assumed to be proportional to
the resources left available by trees. Equation (1) is interpreted in [5] as a
stochastic di�erential equation with multiplicative noise. This model supports
the "disequilibrium" theories of tree-grass coexistence in savannas via �re-
vegetation feedbacks (e.g. [1]).

We consider a similar logistic model with tree biomass losses being due to
random �res and rewrite it as an appropriate piecewise deterministic Markov
process (PDMP). Using the tools of linear semigroup theory we provide a
more careful analysis of the model.

We begin the description of the model with some modeling assumptions:
again a state variable v ∈ [0, 1] denotes the tree biomass, the grass biomass
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is assumed to be proportional to 1 − v (remaining resources that are being
reclaimed by trees in periods between �res), and �res are discrete in time
events resulting with the woody biomass losses. In the absence of �res the
tree biomass is modeled by a classical logistic equation:

dv

dt
= αv(1− v) (2)

with some growth rate constant α > 0. So, the stable stationary point v = 0
re�ects the landscape dominated by grasses while for v > 0 we have a system
describing a logistic growth of the biomass of trees leading to a maximal
woody vegetation amount for a given area (in reality in such a situation there
would still be grass in the space between the trees so the biomass of grasses
we refer to is actually the fraction of it occupying the space left available by
trees and not the total biomass). Let πt(w) = v(t) be the solution of (2) with
initial condition v(0) = w. We have

πt(w) =
w

w + e−αt(1− w)
, w ∈ [0, 1].

Now we add �res into the model by introducing the random disturbances
of a woody biomass growth at random times (tn)n>1. Let t0 = 0 and denote by
ξ(t0) = w some initial tree biomass amount (an arbitrary value from (0, 1]).
The system evolves according to equation (2) in periods t ∈ (tn−1, tn), n =
1, 2, . . . , between the consecutive �re occurrences, so that we have ξ(t) =
πt−tn−1(ξ(tn−1)). For each n ∈ N the biomass loss is given by:

ξ(tn) = (1− θn)ξ(t−n ), (3)

where (θn)n>1 is a sequence of independent random variables taking values
from the interval (0, 1) with some density h and we use the short notation
for left limits ξ(t−n ) = lims→t−n ξ(s). We characterize occurrences of �re by
introducing a sequence of random variables (σn)n>1 such that:{

tn = tn−1 + σn for n > 1,

Pr
(
σn > t | ξ(tn−1) = w

)
= e−

∫ t
0 λ(πs(w))ds,

(4)

where λ : [0, 1] → R+ with λ(0) > 0 is a bounded continuous function re-
�ecting the �re intensity. Note that this model is a more general case of a
continuous time model considered in [9, p. 501, eq. 9] where the authors con-
sidered the situation with λ being a constant. Here the �re intensity depends
on the current amount of biomass, so more real factors can be taken into ac-
count, e.g. the fuel load for �res is provided mainly by the biomass of grasses
and after the main result of this paper we consider λ from [5] as an example
taking this into account. In the next section we provide su�cient conditions
for the existence of the unique stationary density of the tree biomass actually
re�ecting the savanna speci�c tree-grass codominance.
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Observe that if ξ(0) = 0, then ξ(t) = 0 for all t. Thus, we restrict our
analysis to (0, 1].

3. Results for the model

The process ξ(t), t > 0, is an example of PDMP with state space (0, 1].
Denote byD the subset of the space L1 = L1(0, 1] which contains all densities,
i.e.

D = {f ∈ L1 : f > 0,

∫ 1

0
|f(v)|dv = 1}.

Let p(t, v) be the probability density of ξ(t), namely p(t, ·) ∈ D and satis�es

Pr(ξ(t) ∈ B) =

∫
B
p(t, v)dv

for any Borel subset of (0, 1]. Then, p is a solution of the following Fokker-
Planck type equation

∂p(t, v)

∂t
+

∂

∂v

(
αv(1− v)p(t, v)

)
= −λ(v)p(t, v) +

∫ 1

v
h
(

1− v

w

) λ(w)

w
p(t, w)dw, (5)

where h is the probability density of the random variables θn. This equation
is supplemented with the initial condition

p(0, v) = f(v), f ∈ D, (6)

(f is the probability density of v(0)).

We assume that the function λ is continuous and a strictly positive func-
tion on [0, 1]. We consider two conditions:

α+ λ(0)

∫ 1

0
ln(1− z)h(z)dz > 0 (7)

and

αλ̄+ λ2
∫ 1

0
ln(1− z)h(z)dz < 0, (8)

where λ̄ = sup{λ(v) : v ∈ [0, 1]} and λ = inf{λ(v) : v ∈ [0, 1]}. Observe that

α+ λ(0)

∫ 1

0
ln(1− z)h(z)dz 6 α

λ̄

λ
+ λ

∫ 1

0
ln(1− z)h(z)dz

and equality holds when λ is a constant function. We have the following result
that extends [9, Theorem 5.1] to non-constant λ:
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Theorem 3.1 If condition (7) holds true, then there exists a unique density

p∗(v) which is a stationary solution of (5) and every solution of (5)�(6)
converges to it, i.e.

lim
t→∞

∫ 1

0

∣∣p(t, v)− p∗(v)
∣∣dv = 0.

If condition (8) holds true, then (5)�(6) has no stationary solutions.

Remark 3.2 Consider as in [5] λ(v) = λ0 + bv with b 6 0 and b > −λ0.
Suppose that θn are uniformly distributed random variables on (0, 1). Then
h(z) = 1 for z ∈ (0, 1) and

∫ 1
0 ln(1− z)dz = −1. Thus, condition (7) holds if

and only if α > λ0. In this case, the invariant density is the beta distribution
of the same form as in [5, Equation (6)] with ω0 = 1.

Before we give the proof let us introduce some notions. We say that a linear
mapping P : L1 → L1 is a stochastic (or Markov) operator if P (D) ⊂ D. A
density f∗ is said to be invarinat for the operator P if Pf∗ = f∗. Recall that a
stochastic semigroup is a family {P (t)}t>0 of stochastic operators satisfying
the conditions:

(a) P (0) = id and P (t+ s) = P (t)P (s) for s, t > 0,

(b) the function t 7→ P (t)f is continuous for each f ∈ L1.

We say that a density is invariant for the semigroup {P (t)}t>0 if it is invariant
for each operator P (t).

From [10, Section 4.2.4] it follows that the process ξ(t), t > 0, induces a
stochastic semigroup {P (t)}t>0 on L1(0, 1], so that the solution of (5)�(6) is
given by p(t, v) = P (t)f(v), t > 0, v ∈ (0, 1]. To show that this semigroup has
an invariant density we look at the process at times (tn)n>1. Since ξ(t

−
n ) =

πtn−tn−1(ξ(tn−1)) and σn = tn − tn−1, equation (3) can be rewritten as

ξ(tn) = (1− θn)πσn(ξ(tn−1)), n > 1.

We �nd the density of the random variable ξ(tn) if ξ(tn−1) = w. For any
bounded measurable function V we have

E(V (ξ(tn)) =

∫ 1

0

∫ ∞
0

V ((1− θ)πt(w))h(θ)λ(πt(w))e−
∫ t
0 λ(πs(w))dsdtdθ. (9)

Substituting πt(w) = z and (1− θ)z = v we see that

E(V (ξ(tn)) =

∫ 1

0
V (v)k(v, w)dv,
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where

k(v, w) =

∫ 1

max{v,w}
h
(

1− v

z

) q(z)
z
e−

∫ z
w q(y)dydz, q(y) =

λ(y)

αy(1− y)
.

Thus, k(v, w) is the density of ξ(tn) given ξ(tn−1) = w. Consequently, if
ξ(tn−1) has a density fn−1, then ξ(tn) has a density fn = Kfn−1 where the
operator K is of the form

Kf(v) =

∫ 1

0
k(v, w)f(w)dw, f ∈ L1. (10)

Using 0 < λ ≤ λ̄ <∞ we obtain from [2, Section 3] the following result:

Proposition 1 The operator K has an invariant density, if and only if the

semigroup {P (t)}t≥0 has an invariant density. 2

We also have the following, e.g. by [2, Corrolary 4.4].

Proposition 2 The operator K is either sweeping with respect to compact

subsets of (0, 1], i.e. for any compact set F ⊂ (0, 1] we have

lim
n→∞

∫
F
Knf(v)dv = 0, f ∈ L1,

or the operator K has a unique invariant density f∗. In the latter case, this

density is strictly positive almost everywhere. 2

Proof (of Theorem 3.1) We �rst show that condition (7) implies that
the operator K is not sweeping from compact subsets of (0, 1], by using [2,
Proposition 2.3]. To this end we take an unbounded Lyapunov-type function
V (w) = − lnw for w ∈ (0, 1] and we check that the function

w 7→ Ew
(
V (ξ(t1))− V (ξ(t0))

)
is bounded on compact subsets of (0, 1] and has a negative supremum in the
neighbourhood of 0, where Ew is the expectation conditioned on ξ(t0) = w.
For ξ(t0) = w with t0 = 0 we have σ1 = t1, and

V (ξ(t1))− V (ξ(t0)) = − ln(1− θ1) + ln(w + e−αt1(1− w)).

Fatou's lemma and condition (7) give

lim sup
w→0

Ew (V (ξ(t1))− V (ξ(t0))) 6 −E(1− θ1)

+

∫ ∞
0

ln(e−αs)λ(πs(0))e−
∫ t
0 λ(πr(0))drds < 0.
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Thus the operator is not sweeping. Now, Proposition 2 together with [8, The-
orem 6 and Remark 2] implies that the semigroup {P (t)}t>0 is asymptotically
stable.

Next, assume condition (8). Suppose that {P (t)}t>0 has an invariant den-
sity. Then, Proposition 1 implies that the operator K has an invariant density
f∗. Take any β > 0 and consider the function V (w) = wβ , w ∈ (0, 1). Since
V is bounded, we have∫ 1

0
V (v)f∗(v)dx =

∫ 1

0
V (v)Kf∗(v)dx =

∫ 1

0
Ew(V (ξ(t1))f∗(w)dw. (11)

Recall that if ζ is a random variable, then

lim
β→0

(
E(|ζ|β)

)1/β
= eE(ln |ζ|).

Since πs(w) 6 weαs for all w and s, we see that

V (ξ(t1)) =
(
(1− θ1)πt1(w)

)β
6 wβ(1− θ1)βeαβt1

and for ζ = (1− θ1)eαt1 we have Ew ln ζ = E(1− θ1) + αEw(t1), where

Ew(t1) =

∫ ∞
0

sλ(πs(w))e−
∫ s
0 λ(πr(w))drds 6

λ̄

(λ)2
.

Condition (8) implies that Ew ln ζ < 0 and shows that equality (11) is impos-
sible, leading to a contradiction. �

Remark 3.3 Using the more sophisticated methods from [10] one can prove
that if there is no invariant density, then the semigroup is sweeping.

4. Summary We proved Theorem 3.1 specifying when the presented
model can describe a stable tree-grass coexistence re�ecting a savanna. Namely,
when condition (7) holds true, then there exists a unique absolutely contin-
uous stationary distribution for positive amount of woody biomass while in
the situation (8) such a distribution does not exist. The condition (7) takes a
much simpler form for a speci�ed case, in Remark 3.2 we show as an example
the situation for a model analogical to the one presented in [5].

The whole analysis in the paper is performed in 1D but it can be straight-
forwardly taken to higher dimensions, e.g. it can be applied for the author's
and M. Tyran-Kami«ska's previous paper on the topic with 2D model [7].

One can revisit the logistic model more by taking into consideration
putting the term 1−f

(
v(t−n )

)
(where f is a function depending on the biomass
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of trees before �re loss) instead of 1− θn in equation (3). It would be another
interesting generalization of [9, p. 501, eq. 9] and we leave it for future work.
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Ponowna analiza modelu logistycznego z losowymi skokami

Paweª Klimasara

Streszczenie Modele populacyjne oparte o równanie logistyczne wzi¡» s¡ popu-
larne w modelowaniu ekosytemów i pozwalaj¡ lepiej zrozumie¢ ró»ne zjawiska. W
tym artykule rozwa»amy prosty 1-wymiarowy model sawanny zaproponowany przez
D'Odorico, Laio i Ridol�'ego w pracy [5], który jest modelem wspóªistnienia traw i
drzew na sawannach indukowanego losowymi po»arami. Jednak zamiast wprowadza¢
ubytki biomasy spowodowane wyst¦powaniem po»arów bezpo±rednio do równa« mo-
delu, de�niujemy odpowiedni proces stochastyczny. Nast¦pnie badamy go z wyko-
rzystaniem teorii póªgrup stochastycznych. Zasadniczym wynikiem jest twierdzenie
3.1 okre±laj¡ce, kiedy przedstawiony model mo»e opisywa¢ stabilne wspóªistnienie
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traw i drzew charakterystyczne dla sawann. Mianowicie przy speªnionym warunku
(7) istnieje jedyny absolutnie ci¡gªy rozkªad stacjonarny biomasy drzew, do któ-
rego caªy ukªad b¦dzie d¡»yª, natomiast w sytuacji (8) taki rozkªad nie istnieje.
Powy»szy wynik mo»na ªatwo przenie±¢ na wy»sze wymiary i zastosowa¢ np. w dwu-
wymiarowym modelu podanym w poprzedniej pracy (na ten temat) autora i Marty
Tyran-Kami«skiej [7].

2010 Klasy�kacja tematyczna AMS (2010): Primary: 92D40; Secondary: 60J25,
92D25.

Sªowa kluczowe: dynamika populacyjna, równanie logistyczne, modelowanie ekosys-
temów, sawanna, g¦sto±¢ stacjonarna, kawaªkami deterministyczne procesy Markova.
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