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Abstract: Draxin belongs to the family of inhibitory axon-guiding factors that regulate neuronal
migration and axonal spreading in the developing brain. This glycoprotein has recently been consid-
ered to play an important role both in hippocampal differentiation and adult neurogenesis in the
dentate gyrus. Given that it has been reported that antipsychotic drugs may affect neurite growth and
neurogenesis, we have therefore investigated whether chronic treatment with olanzapine modulates
draxin immunoreactivity in the adult rat hippocampus. After analysis of local fluorescence intensity,
we found a significant increase of draxin immunoexpression both in the subgranular zone (SGZ) and
granular zone of the rat hippocampus following long-term olanzapine administration. This study
reveals, for the first time, the modulatory effect of the atypical antipsychotic medication olanzapine
on expression of the novel chemorepulsive protein draxin in the context of adult neurogenesis regu-
lation. Moreover, this is the first report dealing with pharmacological aspects of draxin signaling. An
elevated draxin expression may indirectly support a recently formulated hypothesis that olanzapine
may drive adult neurogenesis via paracrine draxin-related signaling. This action of draxin is a
new element in the neurogenesis mechanism that may be part of the action of second-generation
antipsychotics in the treatment of schizophrenia, indicating more detailed molecular studies are
urgently required to fully investigate these potential novel mechanisms of neurogenesis.

Keywords: draxin; olanzapine; hippocampus; adult neurogenesis

1. Introduction

Draxin (dorsal repulsive axon guidance protein, neucrin) is an inhibitory axon guiding
factor and local chemorepulsive glycoprotein involved in neuronal migration and neurite
growth in the developing brain [1–3]. This relatively novel regulatory protein is considered
to play an important role in hippocampal differentiation, as the anterior part of this cortical
structure is highly underdeveloped in draxin knockout mice due to enhanced granule
cell apoptosis [4]. Draxin seems to also be necessary for normal development of the
interhemispheric connections and spinal-cord organization [5], with lack of this protein
causing absence of brain commissural pathways, as well as defasciculation of spinal-cord
fibers [6]. Draxin expression is also found postnatally in several brain structures such
as the hippocampus, olfactory bulb, cortex, midbrain, cerebellum, and pontine nuclei.
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Human draxin comprises 349 amino acids (58 kDa), and contains a signal peptide and
10 cysteine residues in the conserved C-terminal region [7]. An important role of draxin
in hippocampal adult neurogenesis has been recently identified [4,8]. Late Tbr2 and
NeuroD1-expressing neural progenitors are considered to release draxin in a paracine
manner [9]. This regulatory protein is involved in canonical Wnt/β-catenin signaling
as a ligand of LRP5/6 (low-density lipoprotein receptor-related protein) and Frizzled
receptors [10,11], and can also attenuate apoptosis of neuroblasts in the subgranular zone
(SGZ) via netrin DCC (deleted in colorectal cancer) receptor. Indeed, draxin knockout
mice show disturbed proliferation and differentiation of neural stem/progenitor cells in
the dentate gyrus [9]. Neurogenesis, neuroprotection, and cell death are related to the
mechanism of action of second-generation antipsychotic drugs (SGAs) [12,13]. Research
confirms the possibility of SGA-stimulated neurogenesis, mediated via multiple molecular
mechanisms [12]. The mechanisms involved in neurogenesis caused by SGAs are not fully
understood, and getting to know them may help in developing more effective strategies for
schizophrenia treatment. Olanzapine is one of the most effective and most frequently used
second-generation antipsychotic drugs in the treatment of schizophrenia [14]. Olanzapine
in schizophrenia is effective mainly in relation to positive symptoms, but it also has a
beneficial effect on negative symptoms [15]. Olanzapine, like other second-generation
antipsychotics, is less effective for cognitive dysfunctions, which may be associated with
changes in the composition of NMDA receptors [16] caused by them. Despite its high
clinical effectiveness, its use is limited by the occurrence of metabolic disorders (weight
gain, dyslipidemia, and diabetes mellitus) [14]. Among other side effects, somnolence,
prolactin elevation, anticholinergic side effects, and QTc prolongation greater than placebo
are the most common [14].

Olanzapine, an atypical antipsychotic agent, acts as an antagonist of brain dopaminer-
gic receptors (D1-D5), with some affinity to others, including serotoninergic (5-HT2A/2C,
5-HT3, 5-HT6), α1-adrenergic, muscarinic, and histaminergic [17]. Olanzapine reduces
both negative and positive schizophrenia symptoms via selective silencing of mesolimbic
dopaminergic neurons, without depression of striatal neuronal circuits involved in motor
functions [18,19]. In the studies conducted on rats, olanzapine stimulates cellular prolif-
eration in the subventricular zone (SVZ) and brain-derived neurotrophic factor (BDNF)
expression in the hippocampus [20,21]. The stimulatory effect on adult neurogenesis and
neuroprotection may be responsible for the beneficial effects obtained clinically in patients
treated with olanzapine. It has been shown that olanzapine preserves the brain volume in
first episode of schizophrenia [22]. These results were confirmed in the meta-analysis by
Vita et al. [23]. It has shown that, unlike people treated with first-generation antipsychotics,
patients treated with SGAs, including olanzapine, do not have significant gray-matter
loss, and there is even a trend toward increasing the volume of gray matter in the frontal
and temporal lobes [23]. Regarding recent studies reporting that antipsychotic drugs
may affect axonal development and neurogenesis [24–26], we have investigated whether
long-term treatment with olanzapine modulates draxin immunoreactivity in the adult rat
hippocampus. In the present article, we show for the first time an effect of antipsychotic
drug administration via olanzapine on draxin expression in the canonical SGZ zone of the
rat dentate gyrus.

2. Results

Draxin gene deletion causes severe dysregulation of this process within the SGZ in
rats [9]. Here, we have demonstrated a significant increase of draxin immunoexpression
both in the SGZ and granular zone of the rat hippocampus after long-term treatment with
olanzapine. Mean staining/fluorescence intensity was higher in the neuroleptic-treated
group than in the control group (p = 0.0005; F, DFn, Dfd: 2.322, 6, 6). In the analyzed
brain sections, draxin immunoexpression was very dispersed within the subgranular
and granular layers of the dentate gyrus, with diverse intensity of the fluorescent signal
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(Figure 1). This highly diffused reaction may speak for the paracrine manner of draxin
release by special cell populations in the dentate gyrus.
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Figure 1. Draxin expression in the rat hippocampus. Control (A,B), olanzapine (C,D). Micropho-
tographs show granular layers (GL) and subgranular zones (SGZ) of dentate gyrus with disperse
draxin fluorescence. Scale bars: 20 µm (A–D), 10 µm (E,F). Mean gray value of sections examined in
the study + standard error of the mean (SEM), * p < 0.05.

3. Discussion

It was recently suggested that draxin may be necessary for the origin and/or differen-
tiation of neural stem cells and progenitors during hippocampal adult neurogenesis [9].
Previous reports revealed that chronic olanzapine administration supports the origin of
Sox-2 and DCX in BrdU-expressing cells in the rat SGZ and SVZ sites [27,28], and also DCX
in Ki67-positive cells in the rat hypothalamic noncanonical subependymal region [29]. Our
results suggest indirectly and cautiously that olanzapine may promote adult neurogenesis
via stimulation of draxin expression and its signaling in the rat hippocampus. However,
no significant changes in the number of hippocampal TUC-4-expressing cells were found.
On the other hand, these data are also in line with a study reporting a stimulatory and
neuroprotective effect of olanzapine on neuregulin-1 (NRG-1) expression in rats with
PCP-induced failure of axonal spreading and synaptogenesis [30]. Upregulation of NRG-1-
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signaling may be therefore involved in the potential olanzapine-related improvement of
some cognitive deficits. The hyperactivity of the dopamine D2 receptor in the rat pyrami-
dal cortex causes axonal spreading impairment via decrease of pGSK3β signaling by the
complex D2R-DISC1 [25]. Interestingly, the classical and atypical neuroleptics aripiprazole
and haloperidol may reduce this effect and prevent neurite lesions [25]. On the other hand,
in mice prenatally exposed to neuroleptics, haloperidol and risperidone decreased prolif-
eration and differentiation of neural progenitors in SGZ and blocked dendrite branching
of granular cells. However, in the case of haloperidol, but not risperidone, an impaired
dendritic elongation and reduced spine number of local neurons occurred [24]. Thus,
haloperidol, a classical antipsychotic drug, seems to be more harmful to prenatal hippocam-
pal development than the atypical one—risperidone. The selective serotonin reuptake
inhibitor fluvoxamine may also restore NGF-induced axonal growth after its blockade
caused by dexamethasone in vitro; the effects probably are caused by phosphorylation of
p-Akt and stimulation of σ1 receptor [31].

The mechanism of olanzapine action on draxin-releasing cells including Tbr2/NeuroD1-
expressing late neural progenitors in the SGZ is not clear. Studies reporting effects of
dopaminergic agonists/antagonists on hippocampal adult neurogenesis suggest very indi-
rectly that these cell populations may express dopamine receptors (Figure 2). For instance,
a blockade of D2 receptors with haloperidol promoted adult neurogenesis by enhance-
ment of neural-progenitor generation in the rat SGZ [32]; however, no effect of dopamine
modulators on this process was reported [33]. Conversely, another study showed stim-
ulatory effect of D2 agonist on adult neurogenesis in mouse SGZ/SVZ in vitro [34]. The
complete receptor profile of neural stem and progenitor cells remains understudied, which
makes it currently impossible to formulate any convincing conclusions. Possibly, the
enhancement of draxin expression in the adult hippocampus after long-term treatment
with olanzapine may reflect the same neuroleptic effect during developmental neurogen-
esis. Atypical antipsychotic administration in early prenatal life may potentially disturb
cerebral cortex histogenesis and neural circuit organization [35]; however, a potential role
of chemorepulsive draxin signaling in this effect remains unknown. A confirmation of
draxin neurochemistry in the context of pharmacomodulation requires further studies;
e.g., quantification of the peptide concentration with Western blotting or mRNA-level
assessment. Despite the limitations of our study, it may cautiously suggest that draxin can
be considered as novel and potentially important regulatory molecule of the brain.



Pharmaceuticals 2021, 14, 298 5 of 8Pharmaceuticals 2021, 14, x FOR PEER REVIEW 5 of 8 
 

 

 
Figure 2. Hypothetical mechanism of possible olanzapine effect on draxin-releasing cells in the  
hippocampal stem cell niche. Expression and TUC4/NeuroD1-positive neuroblasts are considered 
as the main source of draxin in the dentate gyrus. Draxin secreted into the intercellular environ-
ment binds to membrane LRP6/Frizzled receptors of both aforementioned cells, and to DCC recep-
tors of Sox2/nestin expressing early progenitors that support their proliferation, differentiation, 
and self-renewal within the SGZ niche. 

4. Materials and Methods 
Studies were carried out on adult (2–3 months old, 180–220 g) male Sprague–Dawley 

rats from the Medical University of Silesia Experimental Center housed at 22 °C with a 
regular 12/12 light–darkness cycle with access to standard Murigran chow and water ad 
libitum. All procedures were approved by the Local Bioethic Committee at the Medical 
University of Silesia (decision no. 36/2012) and were conducted in a manner consistent 
with NIH Guidelines for Care and Use of Laboratory Animals. 

Two groups of rats (5 individuals each) received control vehicle or olanzapine (5 
mg/kg/day, dissolved in isotonic saline) by intraperitoneal injection for 4 weeks. This op-
timal, nontoxic dose was established on the basis of pharmacological standards developed 
in preclinical studies on antipsychotics in the context of adult neurogenesis [27,29]. 24 h 
after the last drug administration, rats were quickly anaesthetized with isoflurane and 
then immediately sacrificed by decapitation. Rat brains were excised, fixed with 4% par-
aformaldehyde PBS (pH 7.2–7.4), dehydrated, embedded in paraffin, and finally sectioned 
on the microtome (Leica Microsystems, Mannheim, Germany) in the coronal planes for 
SGZ (−2.00 to −2.80 mm from bregma) at 7 μm-thick slices. The distance between 10 sec-
tions used per animal was 50 μm. After blocking with 5% goat serum, sections were incu-
bated overnight with the rabbit antirat draxin polyclonal antibody (1:1000, Biorbyt Ltd., 
Saint Louis, MO, USA; orb 314002). After incubation with the aforementioned primary 
antibodies, all brain sections were kept in darkness with secondary antibodies labeled 
with FITC (1:200, Abcam) and then mounted on slides with DAPI-containing medium. 

For morphometric assay of draxin immunoreactivity, 5 sections per rat were used. 
Due to the highly dispersed and diffuse draxin immunofluorescence in densely arranged 
granular cell clusters, the number of cells was not calculated. All images (2 per section) 
were captured with Nikon Coolpix optic systems and processed using Image ProPlus soft-
ware (Media Cybernetics, Rockville, MD, USA). Histologically analogous serial sections 

Figure 2. Hypothetical mechanism of possible olanzapine effect on draxin-releasing cells in the
hippocampal stem cell niche. Expression and TUC4/NeuroD1-positive neuroblasts are considered as
the main source of draxin in the dentate gyrus. Draxin secreted into the intercellular environment
binds to membrane LRP6/Frizzled receptors of both aforementioned cells, and to DCC receptors
of Sox2/nestin expressing early progenitors that support their proliferation, differentiation, and
self-renewal within the SGZ niche.

4. Materials and Methods

Studies were carried out on adult (2–3 months old, 180–220 g) male Sprague–Dawley
rats from the Medical University of Silesia Experimental Center housed at 22 ◦C with a
regular 12/12 light–darkness cycle with access to standard Murigran chow and water ad
libitum. All procedures were approved by the Local Bioethic Committee at the Medical
University of Silesia (decision no. 36/2012) and were conducted in a manner consistent
with NIH Guidelines for Care and Use of Laboratory Animals.

Two groups of rats (5 individuals each) received control vehicle or olanzapine (5 mg/
kg/day, dissolved in isotonic saline) by intraperitoneal injection for 4 weeks. This optimal,
nontoxic dose was established on the basis of pharmacological standards developed in pre-
clinical studies on antipsychotics in the context of adult neurogenesis [27,29]. 24 h after the
last drug administration, rats were quickly anaesthetized with isoflurane and then immedi-
ately sacrificed by decapitation. Rat brains were excised, fixed with 4% paraformaldehyde
PBS (pH 7.2–7.4), dehydrated, embedded in paraffin, and finally sectioned on the micro-
tome (Leica Microsystems, Mannheim, Germany) in the coronal planes for SGZ (−2.00 to
−2.80 mm from bregma) at 7 µm-thick slices. The distance between 10 sections used per
animal was 50 µm. After blocking with 5% goat serum, sections were incubated overnight
with the rabbit antirat draxin polyclonal antibody (1:1000, Biorbyt Ltd., Saint Louis, MO,
USA; orb 314002). After incubation with the aforementioned primary antibodies, all brain
sections were kept in darkness with secondary antibodies labeled with FITC (1:200, Abcam)
and then mounted on slides with DAPI-containing medium.

For morphometric assay of draxin immunoreactivity, 5 sections per rat were used.
Due to the highly dispersed and diffuse draxin immunofluorescence in densely arranged
granular cell clusters, the number of cells was not calculated. All images (2 per section)
were captured with Nikon Coolpix optic systems and processed using Image ProPlus
software (Media Cybernetics, Rockville, MD, USA). Histologically analogous serial sections
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were analyzed densitometrically with use of ImageJ (v1.51j8). Pictures were normalized
and background was extracted (rolling ball radius: 100 pix). Further, the green channel was
isolated as a BW (8-bit) picture. At this stage, five ROIs (250 × 250 pix) were selected in the
region of staining to calculate mean grey value, then the average staining intensity was
calculated for the picture. For control and treated groups, seven pictures were analyzed
(mean values were obtained from this assay). The average gray value within the selection
was the sum of the gray values of all the pixels in the selection divided by the number of
pixels, reported in calibrated units (e.g., optical density) if Analyze&gt; Calibrate was used
to calibrate the image. For RGB images, the mean was calculated by converting each pixel
to grayscale using the formula gray = 0.299 red + 0.587 green + 0.114 or: gray = (red + green
+ blue)/3 if &#34; Unweighted RGB to Grayscale Conversion&#34; is checked in Edit&gt;
Options&gt; Conversions. The total number of TUC-4-positive cells in the comparable
SGZ areas was additionally estimated. Cells were counted from standardized frames of
the specimen (5 section per rat, 2 frames per section). Statistical analyses were performed
using Statistica (Systat Software, San Jose, CA, USA). Mean differences between the groups
were analyzed using an unpaired two-tailed t-test and a nonparametric Kruskall–Wallis
test. Differences were considered statistically significant at p ≤ 0.05.

5. Conclusions

We have shown for the first time an increase of draxin immunoexpression in the adult
rat dentate gyrus after long-term treatment with the atypical antipsychotic medication
olanzapine. This may indirectly support a recently formulated suggestion that olanzapine
may increase adult neurogenesis in both the canonical and hypothalamic sites via paracrine
draxin-related signaling; however, further molecular studies are urgently required to
confirm this possible regulatory interplay.
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