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Abstract. Based on iteration of random-valued functions we study the problem of solvability
in the class of continuous and Hölder continuous functions ϕ of the equations

ϕ(x) = F (x) −
∫
Ω

ϕ
(
f(x, ω)

)
P (dω),

ϕ(x) = F (x) +

∫
Ω

ϕ
(
f(x, ω)

)
P (dω),

where P is a probability measure on a σ-algebra of subsets of Ω.
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1. Introduction

Fix a probability space (Ω,A, P ), a complete and separable metric space (X, ρ)
with the σ-algebra B of all its Borel subsets, and a B ⊗A-measurable function
f : X × Ω → X.

We continue the research of continuous solutions ϕ : X → R of the equa-
tions

ϕ(x) = F (x) −
∫

Ω

ϕ
(
f(x, ω)

)
P (dω), (1)

ϕ(x) = F (x) +
∫

Ω

ϕ
(
f(x, ω)

)
P (dω). (2)
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K. Baron AEM

We refer mainly to [2,5]. Like in these papers we focus on the iteration of
random-valued functions:

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f
(
fn−1(x, ω1, ω2, . . .), ωn

)
for n ∈ N, x ∈ X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that for n ∈ N

the nth iterate fn mapping X × Ω∞ into X is B ⊗ An-measurable, where An

denotes the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}
with A from the product σ-algebra An. (See [13, section 1.4], [10].)

Let πf
n(x, ·) denote the distribution of fn(x, ·), i.e.,

πf
n(x,B) = P∞(

fn(x, ·) ∈ B
)

for n ∈ N ∪ {0}, x ∈ X and B ∈ B.

If ∫
Ω

ρ
(
f(x, ω), f(z, ω)

)
P (dω) ≤ λρ(x, z) for x, z ∈ X (3)

with a λ ∈ (0, 1), and∫
Ω

ρ
(
f(x, ω), x

)
P (dω) < ∞ for x ∈ X, (4)

then (see [2, Theorem 3.1]) there exists a probability Borel measure πf on X
such that for every x ∈ X the sequence (πf

n(x, ·))n∈N converges weakly to πf ,
and (see [11, Corollary 5.6 and Lemma 3.1], also [3, Lemma 2.2]) for every
non-expansive u : X → R the inequality∣∣∣∣

∫
X

u(z)πf
n(x, dz) −

∫
X

u(z)πf (dz)
∣∣∣∣ ≤ λn

1 − λ

∫
Ω

ρ
(
f(x, ω), x

)
P (dω) (5)

holds for x ∈ X and n ∈ N.
This limit distribution πf plays an important role in solving (1) and (2),

see [5, Theorem 3.1], [2, Corollary 4.1], [3, Theorem 2.1]. In particular:
(I) If F : X → R is continuous and bounded, then any continuous and

bounded solution ϕ : X → R of (1) has the form

ϕ(x) = F (x) − 1
2

∫
X

F (z)πf (dz)

+
∞∑

n=1

(−1)n

(∫
X

F (z)πf
n(x, dz) −

∫
X

F (z)πf (dz)
)

for x ∈ X;
(6)

if additionally F is Lipschitz, then (6) defines a Lipschitz solution ϕ : X → R

of (1).
(II) If F : X → R is continuous and bounded and (2) has a continuous and

bounded solution ϕ : X → R, then∫
X

F (x)πf (dx) = 0, (7)
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and any such solution has the form

ϕ(x) = c + F (x) +
∞∑

n=1

∫
X

F (z)πf
n(x, dz) for x ∈ X

with a real constant c.
(III) If F : X → R is Lipschitz, then it is integrable for πf and (2) has a

Lipschitz solution ϕ : X → R if and only if (7) holds.
The limit distribution πf and facts cited above will be used in the main

part of the paper. A characterization of this limit for some special random-
valued functions in Hilbert spaces have been given by [3, Theorem 3.1] and, in
Banach spaces, by [4, Theorem 2.1].

Actually we do not have a sufficiently satisfactory theorem to guarantee the
existence of continuous solutions to the equations considered. An explanation
of this situation is given in the paper [9] by Witold Jarczyk (see also [13, Note
3.8.4]). Namely, in the case where Ω is a singleton and X is a compact real
interval, for the appropriate f the set of continuous F : X → R such that the
equation has a continuous solution is small in the sense of Baire category. It
is also small from the measure point of view (see [1]). We will go also in this
direction but, above all, we are looking for conditions under which Eqs. (1)
and (2) have continuous and Hölder continuous solutions ϕ : X → R. In the
case where Ω is a singleton, see [12, Chapter II, §7].

2. Results

We will consider Eqs. (1) and (2) assuming the following hypothesis (H).
(H) (Ω,A, P ) is a probability space, (X, ρ) is a complete and separable

metric space, f : X × Ω → X is B ⊗ A-measurable, (3) holds with a λ ∈ (0, 1)
and (4) is satisfied.

We regard λ as fixed in (0, 1), and for any metric space X we define F(X) as
the set of all continuous functions F : X → R such that there are a sequence
(Fn)n∈N of real functions on X and constants ϑ ∈ (0, 1), L ∈ (0, 1

λ ) and
α, β ∈ (0,∞) such that

|F (x) − Fn(x)| ≤ αϑn for x ∈ X, n ∈ N,

and

|Fn(x) − Fn(z)| ≤ βLnρ(x, z) for x, z ∈ X, n ∈ N.

Clearly any real Lipschitz function defined on X belongs to F(X).

Theorem 2.1. Assume (H). If F ∈ F(X), then formula (6) defines a continu-
ous solution ϕ : X → R of (1), and if additionally (7) holds, then the formula

ϕ0(x) = F (x) +
∞∑

n=1

∫
X

F (z)πf
n(x, dz) for x ∈ X (8)
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defines a continuous solution ϕ0 : X → R of (2).

The proof will be based on three lemmas. In each of them we assume (H).

Lemma 2.2. If F ∈ F(X), then the integrals∫
Ω

∣∣F (
f(x, ω)

)∣∣P (dω) for x ∈ X,

∫
X

|F (z)|πf (dz)

are finite, and the function

x �→
∫

Ω

F
(
f(x, ω)

)
P (dω), x ∈ X, (9)

is continuous.

Proof. Corresponding to F choose a sequence (Fn)n∈N of real functions on X
and constants ϑ ∈ (0, 1), L ∈ (0, 1

λ ) and α, β ∈ (0,∞) as in the definition of
F(X). Then∫

Ω

∣∣F (
f(x, ω)

)∣∣P (dω) ≤ αϑ + βL

∫
Ω

ρ
(
f(x, ω), x

)
P (dω) + |F1(x)|

for x ∈ X, and ∫
X

|F (z)|πf (dz) ≤ αϑ +
∫

X

|F1(z)|πf (dz),

see also (III). Moreover, for every n ∈ N the function

x �→
∫

Ω

Fn

(
f(x, ω)

)
P (dω), x ∈ X,

is Lipschitz:∣∣∣∣
∫

Ω

Fn

(
f(x, ω)

)
P (dω) −

∫
Ω

Fn

(
f(z, ω)

)
P (dω)

∣∣∣∣ ≤ βLnλρ(x, z)

for x, z ∈ X, and therefore function (9), as their uniform limit, is continuous.
�

Lemma 2.3. If F ∈ F(X), then∫
X

|F (z)|πf
n(x, dz) < ∞ for x ∈ X and n ∈ N,

and for every n ∈ N the function

x �→
∫

X

F (z)πf
n(x, dz), x ∈ X,

is continuous.
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Proof. By induction, (3) and (4),

∫
Ω∞

ρ
(
fn(x, ω), fn(z, ω)

)
P∞(dω) ≤ λnρ(x, z) for x, z ∈ X and n ∈ N

(10)

and

∫
Ω∞

ρ
(
fn(x, ω), x

)
P∞(dω) < ∞ for x ∈ X and n ∈ N.

Since

∫
X

F (z)πf
n(x, dz) =

∫
Ω∞

F
(
fn(x, ω)

)
P∞(dω) for x ∈ X and n ∈ N, (11)

an application of Lemma 2.2 with f replaced by fn, n ∈ N, finishes the proof.
�

Lemma 2.4. If F ∈ F(X), then there are constants θ ∈ (0, 1) and M ∈ (0,∞)
such that

∣∣∣∣
∫

X

F (z)πf
n(x, dz) −

∫
X

F (z)πf (dz)
∣∣∣∣

≤ Mθn
(
1 + ρ(x, x0) +

∫
Ω

ρ
(
f(x0, ω), x0

)
P (dω)

)

for x, x0 ∈ X and n ∈ N.

Proof. Corresponding to F choose a sequence (Fn)n∈N of real functions on X
and constants ϑ ∈ (0, 1), L ∈ (0, 1

λ ) and α, β ∈ (0,∞) as in the definition of
F(X), and put

θ = max{ϑ, λL}, M = 2max
{

α,
β

1 − λ

}
.

Then θ ∈ (0, 1), and by Lemmas 2.3 and 2.2, (5) with u = Fn

βLn and (3) for
every x, x0 ∈ X and n ∈ N we have

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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∣∣∣∣
∫

X

F (z)πf
n(x, dz) −

∫
X

F (z)πf (dz)
∣∣∣∣

≤
∣∣∣∣
∫

X

F (z)πf
n(x, dz) −

∫
X

Fn(z)πf
n(x, dz)

∣∣∣∣
+

∣∣∣∣
∫

X

Fn(z)πf
n(x, dz) −

∫
X

Fn(z)πf (dz)
∣∣∣∣

+
∣∣∣∣
∫

X

Fn(z)πf (dz) −
∫

X

F (z)πf (dz)
∣∣∣∣

≤
∫

X

|F (z) − Fn(z)|πf
n(x, dz) + βLn λn

1 − λ

∫
Ω

ρ
(
f(x, ω), x

)
P (dω)

+
∫

X

|Fn(z) − F (z)|πf (dz) ≤ 2αϑn + βLn λn

1 − λ

∫
Ω

ρ
(
f(x, ω), x

)
P (dω)

≤ 2αθn +
β

1 − λ
θn

(
λρ(x, x0) +

∫
Ω

ρ
(
f(x0, ω), x0

)
P (dω) + ρ(x, x0)

)

≤ Mθn
(
1 + ρ(x, x0) +

∫
Ω

ρ
(
f(x0, ω), x0

)
P (dω)

)
.

�

Proof of Theorem 2.1. It follows from Lemmas 2.2–2.4 that formula (6) defines
a continuous function ϕ : X → R and arguing like in the proof of Theorem
3.1(ii) of [5] (see also the calculations below) we show that it solves (1).

Assume now that also (7) holds. Then it follows from Lemmas 2.3 and
2.4 that formula (8) defines a continuous function ϕ0 : X → R. Applying
(11), Lemma 2.4, the Lebesgue dominated convergence theorem and the Fubini
theorem we observe that for every x ∈ X the function ϕ0 ◦ f(x, ·) is integrable
for P and∫

Ω

ϕ0

(
f(x, ω)

)
P (dω) =

∫
Ω

F
(
f(x, ω)

)
P (dω)

+
∫

Ω

∞∑
n=1

(∫
X

F (z)πf
n

(
f(x, ω), dz

))
P (dω) =

∫
X

F (z)πf
1 (x, dz)

+
∞∑

n=1

∫
Ω

(∫
Ω∞

F
(
fn

(
f(x, ω1), ω2, ω3, . . .

))
P∞(

d(ω2, ω3, . . .)
))

P (dω1)

=
∫

X

F (z)πf
1 (x, dz) +

∞∑
n=1

∫
Ω∞

F
(
fn+1(x, ω1, ω2, . . .)

)
P∞(

d(ω1, ω2, . . .)
)

=
∫

X

F (z)πf
1 (x, dz) +

∞∑
n=1

∫
X

F (z)πf
n+1(x, dz) = ϕ0(x) − F (x).

�
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Proposition 2.5. If F is a real function on a metric space X and

|F (x) − F (z)| ≤ βρ(x, z)α for x, z ∈ X (12)

with some constants α ∈ (0, 1), β ∈ [0,∞), then F ∈ F(X).

Proof. Fix L ∈ (1, 1
λ ), put

ϑ = L− α
1−α , θ = ϑ

1
α ,

and for every n ∈ N let An be a maximal for inclusion subset of X such that

ρ(x, z) ≥ θn for every pair of distinct points x, z of An.

By the maximality,

X =
⋃

z∈An

{x ∈ X : ρ(x, z) < θn} for n ∈ N.

If n ∈ N and x, z are distinct points of An, then by (12),

|F (x) − F (z)| ≤ βρ(x, z)α−1ρ(x, z) ≤ βθ(α−1)nρ(x, z) = βLnρ(x, z).

It follows from this, using Kirszbraun–McShane extension theorem [7, Theorem
6.1.1], that for every n ∈ N there exists an Fn : X → R such that

Fn |An
= F |An

and |Fn(x) − Fn(z)| ≤ βLnρ(x, z) for x, z ∈ X.

If n ∈ N and x ∈ X, then there is a z ∈ An such that ρ(x, z) < θn, and

|F (x) − Fn(x)| ≤ |F (x) − F (z)| + |Fn(z) − Fn(x)|
≤ βρ(x, z)α + βLnρ(x, z)

≤ βθαn + βLnθn = 2βϑn.

�

Corollary 2.6. Assume (H). If F : X → R satisfies (12) with some constants
α ∈ (0, 1), β ∈ [0,∞), then formula (6) defines a solution ϕ : X → R of (1)
such that

|ϕ(x) − ϕ(z)| ≤ β

1 − λα
ρ(x, z)α for x, z ∈ X,

and if additionally (7) holds, then formula (8) defines a solution ϕ0 : X → R

of (2) such that

|ϕ0(x) − ϕ0(z)| ≤ β

1 − λα
ρ(x, z)α for x, z ∈ X.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



K. Baron AEM

Proof. By Proposition 2.5 and Theorem 2.1 formula (6) defines a solution
ϕ : X → R of (1). Using (6), (11), (12), Jensen’s inequality and (10) for every
x, z ∈ X we have

|ϕ(x) − ϕ(z)| ≤ |F (x) − F (z)|

+
∞∑

n=1

∫
Ω∞

∣∣F (
fn(x, ω)

) − F
(
fn(z, ω)

)∣∣ P∞(dω)

≤ βρ(x, z)α +
∞∑

n=1

∫
Ω∞

βρ
(
fn(x, ω), fn(z, ω)

)α
P∞(dω)

≤ βρ(x, z)α + β

∞∑
n=1

(∫
Ω∞

ρ
(
fn(x, ω), fn(z, ω)

)
P∞(dω)

)α

≤ βρ(x, z)α + β

∞∑
n=1

(
λnρ(x, z)

)α =
β

1 − λα
ρ(x, z)α.

For the second part we argue similarly. �

Regarding the uniqueness of solutions, we have the following theorem.

Theorem 2.7. Assume (H) and let F : X → R.
(i) If ϕ1, ϕ2 ∈ F(X) are solutions of (1), then ϕ1 = ϕ2.
(ii) If ϕ1, ϕ2 ∈ F(X) are solutions of (2), then ϕ1 − ϕ2 is a constant

function.

Proof. Let ϕ1, ϕ2 ∈ F(X) and put ϕ = ϕ1 − ϕ2. Then ϕ ∈ F(X). Corre-
sponding to ϕ choose a sequence (Fn)n∈N of real functions on X and constants
ϑ ∈ (0, 1), L ∈ (0, 1

λ ) and α, β ∈ (0,∞) as in the definition of F(X).
If ϕ1, ϕ2 are solutions of (1), then ϕ solves (1) with F = 0, and, by induc-

tion,

ϕ(x) = (−1)n

∫
Ω∞

ϕ
(
fn(x, ω)

)
P∞(dω) for x ∈ X, n ∈ N.

If ϕ1, ϕ2 are solutions of (2), then ϕ solves (2) with F = 0, and

ϕ(x) =
∫

Ω∞
ϕ
(
fn(x, ω)

)
P∞(dω) for x ∈ X, n ∈ N.

In both cases

|ϕ(x) − ϕ(z)| ≤
∫

Ω∞

∣∣ϕ(
fn(x, ω)

) − ϕ
(
fn(z, ω)

)∣∣P∞(dω)

for x, z ∈ X, n ∈ N. Moreover,

|ϕ(x) − ϕ(z)| ≤ |ϕ(x) − Fn(x)| + |Fn(x) − Fn(z)| + |Fn(z) − ϕ(z)|
≤ 2αϑn + |Fn(x) − Fn(z)| for x, z ∈ X, n ∈ N.
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Consequently, applying among others (10),

|ϕ(x) − ϕ(z)| ≤ 2αϑn +
∫

Ω∞

∣∣Fn

(
fn(x, ω)

) − Fn

(
fn(z, ω)

)∣∣P∞(dω)

≤ βLnλnρ(x, z) for x, z ∈ X, n ∈ N,

whence ϕ(x) = ϕ(z) for x, z ∈ X, i.e., ϕ is a constant function. Noting that if
a constant ϕ solves (1) with F = 0, then ϕ = 0, we end the proof. �

We finish with a qualitative result.
Following [6] by Jens Peter Reus Christensen we say that a Borel subset B

of an abelian Polish group G is a Haar zero set if there is a probability Borel
measure μ on G such that μ(B + x) = 0 for every x ∈ G. See also [8] where
measurability in abelian Polish groups related to Christensen’s Haar zero set
is studied.

Assume
(H0) (Ω,A, P ) is a probability space, (X, ρ) is a compact metric space,

f : X × Ω → X is B ⊗ A-measurable and (3) holds with a λ ∈ (0, 1).
Assuming (H0) we have in particular (4):

∫
Ω

ρ
(
f(x, ω), x

)
P (dω) ≤ diam(X) for x ∈ X.

Moreover one can consider the Banach space C(X) of all continuous real func-
tions on X with the uniform norm and its subspace Cf ,

Cf =
{

F ∈ C(X) :
∫

X

F (x)πf (dx) = 0
}

.

Clearly Cf is a closed linear subspace of C(X) and (see, e.g., [7, Corollary
11.2.5]) C(X) is a separable Banach space. We have also the following lemma.

Lemma 2.8. Assume (H0). If F : X → R is continuous, then so is the function

x �→
∫

Ω

F
(
f(x, ω)

)
P (dω), x ∈ X.

Proof. Fix ε ∈ (0,∞) and choose δ ∈ (0,∞) such that

|F (x) − F (z)| ≤ ε for x, z ∈ X with ρ(x, z) ≤ δ.
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Then, by (3), for all x, z ∈ X,∣∣∣∣
∫

Ω

F
(
f(x, ω)

)
P (dω) −

∫
Ω

F
(
f(z, ω)

)
P (dω)

∣∣∣∣
≤

∫
Ω

∣∣F (
f(x, ω)

) − F
(
f(z, ω)

)∣∣P (dω)

≤ ε +
∫

{ω∈Ω:ρ(f(x,ω),f(z,ω))>δ}

∣∣F (
f(x, ω)

) − F
(
f(z, ω)

)∣∣P (dω)

≤ ε + 2‖F‖P
({ω ∈ Ω : ρ

(
f(x, ω), f(z, ω)

)
> δ})

≤ ε + 2‖F‖1
δ

∫
Ω

ρ
(
f(x, ω), f(z, ω)

)
P (dω) ≤ ε +

2λ‖F‖
δ

ρ(x, z),

and therefore the discussed function is continuous. �

Let

F1 = {F ∈ C(X) : equation (1) has a continuous solution ϕ : X → R},

F2 = {F ∈ Cf : equation (2) has a continuous solution ϕ : X → R}.

Theorem 2.9. Under the assumptions (H0):
(i) F1 is a Borel and dense subset of C(X), and if F1 �= C(X), then F1 is

of first category in C(X) and a Haar zero subset of C(X).
(ii) F2 is a Borel and dense subset of Cf , and if F2 �= Cf , then F2 is of

first category in Cf and a Haar zero subset of Cf .

Proof. By Lemma 2.8 the formulas

T1(ϕ)(x) = ϕ(x) +
∫

Ω

ϕ
(
f(x, ω)

)
P (dω),

T2(ϕ)(x) = ϕ(x) −
∫

Ω

ϕ
(
f(x, ω)

)
P (dω) for ϕ ∈ C(X) and x ∈ X,

define self-mappings T1, T2 of C(X). Clearly, these operators are linear and
continuous. Moreover,

T1(C(X)) = F1.

Furthermore, for every F ∈ T2(C(X)) Eq. (2) has a continuous solution ϕ :
X → R. Hence (II) gives T2(C(X)) ⊂ Cf , and

T2(C(X)) = F2.

Applying now [1, Lemma] we see that F1 is a Borel subset of C(X), and if
F1 �= C(X), then F1 is of first category in C(X) and a Haar zero subset of
C(X), and F2 is a Borel subset of Cf , and if F2 �= Cf , then F2 is of first
category in Cf and a Haar zero subset of Cf .

Since by (I) the set

{F ∈ C(X) : F is Lipschitz}
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is contained in F1 and (see [7, Theorem 11.2.4]) dense in C(X), the set F1 is
dense in C(X).

To show that F2 is dense in Cf , fix F ∈ Cf and ε ∈ (0,∞). Choose
a Lipschitz F1 : X → R so that ‖F − F1‖ < ε

2 . According to (III), F1 −∫
X

F1dπf ∈ F2. Moreover,∥∥∥∥F − (
F1 −

∫
X

F1dπf
)∥∥∥∥ ≤ ∥∥F − F1

∥∥ +
∣∣∣∣
∫

X

F1dπf −
∫

X

Fdπf

∣∣∣∣ < ε.

�

Remark 2.10. It is possible that (H0) holds and F1 = C(X), F2 = Cf .

To see it consider an A-measurable ξ : Ω → X and let f(x, ω) = ξ(ω) for
(x, ω) ∈ X × Ω. Then fn(x, ω) = ξ(ωn) for (x, ω) ∈ X × Ω∞, so πf

n(x,B) =
P (ξ ∈ B) = πf (B) for n ∈ N, x ∈ X, B ∈ B, and

∫
X

Fdπf =
∫
Ω

F ◦ ξdP

for F ∈ C(X). Consequently for every F ∈ C(X) the function F − 1
2

∫
X

Fdπf

solves (1), and every F ∈ Cf solves (2).
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