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Abstract: Rock outcrops have promoted a high level of species diversity and provided a stable mi-

croclimate for long time periods. The present study is devoted to plant diversity of natural Quater-

nary outcrops of basaltic rocks. Chorological and ecological investigations were carried out at 35 

such outcrops, located within five physiogeographic units of the Sudetes Mountains. The focus was 

on 120 xerothermic taxa of vascular plants: 62 strictly xerothermic (steppe) taxa of the Festuco valesi-

acae-Brometea erecti class, and 58 thermophilous taxa representing classes Trifolio medii-Geranietea 

sanguinei and Quercetea pubescentis. Limited geographical ranges of these plants are manifested by 

variable frequency of their occurrence. Species distribution is determined by natural factors, like 

surface area of the outcrop, the type of basaltic rock and the type of plant communities developed. 

Basaltic outcrops in the Sudetes meet the criterion of habitat islands (inselbergs), serve as regional 

centers of vascular flora, and are refugia for marginal populations of relict species. 

Keywords: palaeovolcanoes; habitat islands; strictly xerothermic (steppe) plants; thermophilous 

plants; isolation; refugia 

1. Introduction

An important feature of different areas on Earth, in all of the geographical regions, is 

the spatial diversity of habitats. Places with nearly uniform abiotic parameters of environ-

ment usually form mosaics of more or less isolated habitats, which often become “islands” 

for various groups of organisms. Habitat fragmentation is a process of gradual division 

into smaller, more isolated parts. The fragmentation may result in different spatial con-

figurations of habitat patches in the landscape and different patterns of species richness, 

at local to continental scales [1–7]. Habitat islands may have both natural and anthropo-

genic origin. Examples of natural habitat islands on land [8–14] are: Lakes, oxbow lakes 

and peatlands of different sizes—habitat islands for aquatic and marsh organisms, sum-

mit parts of high mountains isolated by deep valleys—for high mountain species, small 

forest complexes in the agricultural landscape—for shrub and forest species and rock out-

crops (inselbergs) of a structure different from their surroundings—for rock species. The 

latter are often examples of small natural objects sensu small natural features (SNF) or 

small island effect (SIE) [13,15–22], which are characterized by high heterogeneity of abi-

otic factors, the presence of contrasting plant communities and species diversity and sep-

arateness, in comparison to the surrounding landscape diversity, as well as the risk of 

extinction events. Due to their geographic nature, rock outcrops (monadnocks) are re-

garded as specific environmental islands [23–34] because most of them show a clear eco-

logical isolation from the surrounding landscape. Regardless of their surface area, habitat 

islands of the rock outcrops type are often the only places of occurrence or refugia for 

many groups of plants, including xerothermic and thermophilous species. 
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The development of steppe vegetation in Central Europe took place in the Preboreal 

period when xerothermic plants from the Pontic and Mediterranean regions began to en-

ter forestless parts of Central Europe [8,35,36]. Next, geographical ranges of xerothermic 

plant communities shrank as the climate continued to warm up, which resulted in an in-

crease of forest cover. This process was followed by their re-development that was in turn 

stimulated by human activity from the beginning of Neolithic settlement. Therefore, some 

researchers [37–39] believe that the majority of Central European xerothermic grasslands 

are relatively young communities and that their character is to a large extent anthropo-

genic. Formation of the current isolated localities of xerothermic plants and shaping of 

their geographical ranges is explained by phylogeographic studies using molecular mark-

ers [36]. However, due to the heterogeneous history of postglacial migration, it is difficult 

to find a common scenario for the evolution of extrazonal xerothermic flora in this part of 

Europe. The xerothermic species entered the Sudetes Mountains and spread from two re-

gions: (i) on the south, from the Pannonian Plain (Hungarian Plain) through the Moravian 

Gate along the Odra valley and the Sudetes foreland; (ii) on the west, from Czech Republic 

and Germany refugia (České Sředohoři Mountains and Thuringian Highlands) along the 

Elbe valley and the northern depression of the Sudetes [40–42]. At the beginning of the 

last century, there were still relatively numerous traces of the former distribution of xe-

rothermic vegetation clusters in the foreland of the Sudetes [43,44]. Currently, many of 

these species occur in the Sudetes only on rock hills. They were reported from limestones, 

serpentinites, as well as basaltic hills [45–47].  

In Central Europe, xerothermic vegetation occurs only in places with special oro-

graphic, soil and microclimate conditions, i.e., the most dry places, with high ground tem-

peratures and low rainfall (<600 mm per year), often related to rock habitats with reaction 

close to alkaline. Fragments of this vegetation that developed extrazonally are located far 

away from the Eurasian zone of steppes. Due to the history of their development in Post-

glacial and the simultaneous influence of the sub-oceanic and sub-continental climate, 

these fragments are characterized by a mixed floristic composition. Such transitory floris-

tic nature makes the xerothermic grasslands of Central Europe unique natural objects 

[38,39,48]. Places of their occurrence, usually limited to small areas, are very often located 

within hills composed of various types of rocks. They include, among others, the hills of 

the Cainozoic Central European Volcanic Formation [49–51]. Their remains in the Sudetes 

have been preserved in the landscape till present and are referred to as volcanism relics 

or “palaeovolcanoes”. 

Palaeovolcanoes, i.e., basaltic outcrops, differ in terms of age range, mineralogical 

composition, as well as petrographic and geochemical properties. They are necks, which 

are remnants of former volcanic cones, lava flows or intrusive forms. As a product of the 

alkali volcanism from Oligocene–Pliocene, they are built of various types of fine-grained 

rocks of the basaltic formation [52–54], including basanites, plagioclase basalts, nephele-

nites, phonolites, trachites and trachybasalts. These rocks are distinguished by an in-

creased content of magnesium and a low content of silicon, sodium and potassium. Basalt 

is a characteristic type of bedrock, on which strongly skeletal soils are formed, mainly 

from the group of lithosols or rankers. The chemical composition of the basic minerals 

that build basaltic rocks (alkaline plagioclases, pyroxenes, amphiboles, feldspars, olivines 

and biotytes), the availability of magnesium compounds and high temperature of rock 

heating, altogether determine the richness and separateness of flora and promote the set-

tlement of plants that have higher thermal requirements and are adapted to water scarcity. 

Among basaltic outcrops in the Sudetes there are objects of various sizes—from small 

intrusions, which occur within hills built of other types of rocks, to vast basaltic hills with 

a characteristic conical shape (Figure 1). They provide habitats of semi-natural dry grass-

lands that require conservation according to the Directive 92/43 EEC (EUR 27). So far, 

however, only a few of these objects have been the subject of floristic and phytosociologi-

cal studies [55–60]. Therefore, chorological and ecological investigations were carried out 

at basaltic outcrops, located within five physiogeographic units of the Sudetes Mountains. 
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Possible relationships between regional distribution and floristic richness of xerothermic 

plant species, abiotic environmental factors and locally developed classes of vegetation, 

were examined. 

 

Figure 1. Basaltic outcrops of the Sudetes Mountains. (A) isolated tephrite cone of Knorrberg; (B) isolated nephelenite cone 

of Landeskrone; (C) peak nephelenite outcrop of Stożek Perkuna; (D) isolated basanite cone of Ostrzyca; (E,F) xerothermic 

grasslands of tephrite outcrop Krzyżowa Góra and (G,H) complex of xerothermic and thermophilous vegetation of the 

nephelenite outcrop Czartowska Skała. 
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2. Materials and Methods 

2.1. Basaltic Outcrops 

The Sudetes Mountains are part of the Czech Massif [61,62], which together with the 

Vosges, Black Forest, Massif Central and Harz belong to the Hercynian (Variscan) moun-

tains of Central and Western Europe. They are distinguished by a complex geological 

structure [63] and numerous exposures of volcanic rocks of various age. The investiga-

tions were carried out at 35 basaltic outcrops located in the Sudetes Mountains, in the 

ranges of Lusatian Hills (Lausitzer Hügelland), Izera Plateau (Pogórze Izerskie), Western 

Kaczawa Plateau (Pogórze Zachodniokaczawskie), Eastern Kaczawa Plateau (Pogórze 

Wschodniokaczawskie) and Strzegom Hills (Wzgórza Strzegomskie) (Figure 2, Table 1), 

during vegetation seasons 2014–2020.  

 

Figure 2. Location of the studied area, marked by a black rectangle (A), and distribution of the 

investigated basaltic outcrops (B). The locality labels (numbers) are explained in Table 1. Relief 

maps were obtained from www.maps-for-free.com. 

For each outcrop the following parameters were considered. The summit coordi-

nates, elevation and surface area were measured using a device with a global positioning 

system (Garmin GPS map; WGS 84 reference system). The type of basaltic rock was as-

signed to each outcrop based on the available geological materials [51,52,54,64]. In case of 

basaltic outcrops for which the literature data were available, habitat conditions were de-

termined on the basis of the physico-chemical parameters of the bedrock (Table 2) [54,65–

68]. Classification of the outcrops to specific types of volcanic rocks was done according 

to Le Maitre et al. [69]. Floristic richness of the outcrop was the total number of xerother-

mic species that were noted during field investigation.
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Table 1. General information about location, geological structure and xerothermic vascular flora at the investigated outcrops. Upper indices after the outcrop names refer 

to physiographic units: a—Lusatian Hills; b—Izera Plateau; c—Western Kaczawa Plateau; d—Eastern Kaczawa Plateau and e—Strzegom Hills. 

Number of 

Locality 
Locality 

Summit 

Coordinates 
Elevation (m) Area (ha) Rocks Quarry 

No. of Strictly 

Xerothermic 

Taxa 

No. of 

Thermophilous 

Taxa 

1 Rottstein a 
51°6′19.619” 

14°45′53.518” 
455 100 Nephelenite  15 30 

2 Knorrberg a 
51°0′50.784” 

14°52′59.693” 
378 10 Tephrite × 15 19 

3 Hutberg a 
51°3′19.284” 

14°53′12.452” 
310 9 Nephelenite × 18 26 

4 Kleiner Hutberg a 
51°3′4.231” 

14°53′15.220” 
298 7 Nephelenite  17 23 

5 Landeskrone a 
51°7′46.156” 

14°55′58.394” 
419 60 Nephelenite  20 24 

6 Koło Obserwatora b 
50°53′44.419” 

14°59′24.850” 
341 4 Phonolite × 8 12 

7 Kodešův vrch b 
50°53′52.703” 

15°0′12.634” 
342 9 Nephelenite × 9 14 

8 Borowa b 
51°2′46.166” 

14°59′26.163” 
280 5 Nephelenite  9 18 

9 Czubatka b 
51°4′24.142” 

15°10′20.605” 
353 4 Basanite × 6 13 

10 Stożek Perkuna b 
51°1′3.395” 

15°14′1.726” 
385 2 Nephelenite × 5 17 

11 Krzyżowa Góra b 
51°6′23.644” 

15°19′12.764” 
250 4 Nephelenite × 4 15 

12 Zamkowa c 
50°57′59.604” 

15°38′39.203” 
311 13 Basanite × 9 29 

13 Grodziec c 
51°10′37.178” 

15°45′34.052” 
389 40 Nephelenite  19 31 

14 Świątek c 51°6′6.037” 330 2 Nephelenite × 6 11 
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15°44′7.583” 

15 Ostrzyca c 
51°3′20.838” 

15°45′46.460” 
501 23 Basanite  10 28 

16 Kamienna Góra c 
51°6′16.514” 

15°49′49.944” 
350 32 Nephelenite × 8 23 

17 Gruchacz c 
51°8′4.352” 

15°53′36.743” 
260 5 Nephelenite × 13 17 

18 Jeziorna c 
51°5′39.453” 

15°51′55.703” 
293 11 Basanite × 15 20 

19 Czerwony Kamień d 
51°5′27.615” 

15°52′44.524” 
325 15 Basanite × 15 29 

20 Wilcza Góra d 
51°6′18.260” 

15°54′44.721” 
367 24 Basanite × 34 30 

21 Kostrza d 
51°6′43.674” 

15°56′1.351” 
313 2 Basanite  11 17 

22 Kozia Góra d 
51°5′39.259” 

15°56′12.938” 
373 17 Basanite × 12 20 

23 Łysanka d 
51°3′40.113” 

15°56′5.445” 
444 15 Nephelenite × 13 24 

24 Krzyżowa Góra d 
51°5′28.003” 

16°2′35.622” 
258 3 Tephrite × 29 26 

25 Winnik d 
51°4′48.408” 

16°5′23.713” 
251 2 Trachyandesite × 24 22 

26 Srebrnik d 
51°5′41.301” 

16°6′50.722” 
205 1 Trachyandesite  16 15 

27 Kopista d 
51°5′11.895” 

16°6′24.275” 
264 30 Trachyandesite × 40 42 

28 Czartki d 
51°3′44.191” 

16°4′50.883” 
273 1 Trachyandesite  16 15 

29 Górzec d 
51°3′23.438” 

16°4′30.961” 
442 29 Nephelenite  6 30 

30 Czartowska Skała d 
51°2′16.150” 

16°1′43.094” 
468 6 Nephelenite × 21 25 
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31 Rataj d 
51°1′17.339” 

16°7′30.777” 
350 10 Trachybasalt × 13 30 

32 Bazaltowa Góra d 
51°0′48.041” 

16°7′59.992” 
367 80 Trachybasalt × 16 35 

33 Radogost d 
50°59′50.690” 

16°7′45.402” 
398 14 Trachybasalt  5 25 

34 Góra Św. Jerzego e 
50°58′25.105” 

16°20′0.496” 
354 9 Basanite × 11 19 

35 Krzyżowa Góra e 
50°58′24.923” 

16°20′11.138” 
358 8 Basanite × 13 15 

Table 2. Chemical composition of basaltic rocks from selected outcrops. 

[w/w%] Knorrberg Hutberg 
Kleiner 

Hutberg 

Landesk

rone 

Koło 

Obserwatora 

Stożek 

Perkuna 

Krzyżowa 

Góra 
Zamkowa 

Wilcza 

Góra 

Łysan

ka 

Krzyżow

a Góra 

Kopist

a 

Góra Św. 

Jerzego 

Krzyżow

a Góra 

SiO2 47.2 39.3 40.4 41 42.06 39.8 42.87 40.49 40.66 43.66 40.09 47.15 45.35 45.88 

TiO2 2.9 3.06 2.99 3.18 2.59 2.61 3.29 3.2 2.64 2.44 2.6 2.29 2.38 2.1 

Al2O3 14.7 12 11.5 11.7 12.69 10.72 14.08 12.59 13.31 14.22 12.73 14.56 15.89 15.43 

Fe2O3 13.8 13.7 13.4 13.9 11.15 12.14 12.86 12.23 12 12.03 12.25 11.29 11.52 11.46 

MnO 0.29 0.27 0.26 0.25 0.24 0.2 0.18 0.18 0.21 0.18 0.19 0.17 0.16 0.17 

MgO 4.4 11.2 11.4 11.4 9.92 15.87 8.92 12.86 11.6 11.56 11.75 9.38 8.7 9.9 

CaO 9.6 13.6 13.4 13.1 10.99 12.38 10.37 11.2 12.25 9.77 12.46 9.15 10.13 9.74 

Na2O 4.16 4.61 4.2 3.7 3.8 3.04 3.42 3.4 3.32 3.67 3.31 2.89 3.16 3.23 

K2O 1.72 1.12 0.96 0.84 0.96 1.14 1.31 1.11 1.01 1.12 0.9 0.82 0.83 0.88 

P2O5 1.14 1.05 1.07 0.87 0.98 0.96 0.73 0.71 0.66 0.66 1.07 0.4 0.42 0.35 

others 0.09 0.36 1.38 1.77 4.62 1.14 1.96 1.93 2.34 0.69 2.65 1.9 2.09 0.86 
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2.2. Plant Species 

Classification of plants follows Jäger [70]. Among all the vascular plants encountered 

in the course of field investigations, two thermal groups were considered: Strictly xe-

rothermic and thermophilous species. Plants were classified to the appropriate thermal 

group based on the phytosociological criterion [71–74], which distinguishes strictly xe-

rothermic taxa of the Festuco valesiacae-Brometea erecti Br.-Bl. and Tüxen ex Br.-Bl. 1949 class 

and its lower syntaxa: Brometalia erecti Br.-Bl. and Tüxen ex Br.-Bl. 1949, Festucetalia valesi-

acae Br.-Bl. and Tüxen ex Br.-Bl. 1949; and thermophilous species included in communities 

of the Trifolio medii-Geranietea sanguinei Müller 1962 class (Antherico ramosi-Geranietalia san-

guinei Julve ex Dengler in Dengler, Berg, Eisenberg, Isermann, Jansen, Koska, Löbel, 

Mathey, Bazolt, Spangenberg, Timmermann and Wollert 2003, Origanetalia vulgaris Müller 

1962) and oak forests of the Quercetea pubescentis Doing Kraft ex Scamoni and Passarge 

1959 class. Each of the examined taxa was affiliated to phytogeographical elements based 

on the general distribution ranges of vascular plant species [75–78]. Furthermore, Ellen-

berg indicator values [79], describing preferences to light, temperature and moisture, were 

assigned to each species.  

2.3. Statistical Analysis 

All the analyses were performed using the Statistics toolbox of Matlab (The Mat-

works, Natick, MA, USA). The hierarchical classification method included in the Matlab 

package was used in the ordination analysis. Statistical significance was tested using pair-

wise Student’s t-test. 

3. Results 

3.1. Phytogeographical Elements, Distribution of Xerothermic Species and Floristic Richness of 

Outcrops 

Xerothermic flora of the investigated basaltic outcrops comprises 120 taxa of vascular 

plants, 62 of which are strictly xerothermic (steppe) taxa, which are typical of Euro-Asian 

steppe grasslands, and 58 are thermophilous species (see Appendix A—Table A1). The 

outcrops are located in the warmer part of Central Europe. Therefore, the xerothermic 

flora, next to the predominant Euro-Mediterranean, European and Euro-Siberian ele-

ments, includes also Pontic-Pannonian and Sub-Mediterranean species (e.g., Achillea pan-

nonica, Bupleurum falcatum, Medicago minima, Ornithogalum angustifolium, Prunella grandi-

flora, Sorbus torminalis and Trifolium striatum). Moreover, some of the species attain the 

north-western limit of their geographical range in Europe, as also observed in other Eu-

ropean countries [42,46,80–82]. These include Cotoneaster integerrimus, Festuca pallens, Mel-

ica transsilvanica and Staphyllea pinnata. 

The distribution varies among individual species. It is manifested both by the total 

number of localities, from which the species was reported (frequency of species occur-

rence), and by species attachment to certain parts of the studied area (geographical range). 

On the basis of the occurrence frequency the species were divided into five classes (Figure 

3). Among the thermophilous species, the majority of species are widespread and some 

were recorded from all of the basaltic outcrops (Astragalus glycyphyllos, Clinopodium vul-

gare, Lathyrus sylvestris and Securigera varia). The rarest species, i.e., those limited to one 

isolated locality, are either strictly xerothermic (e.g., Allium lusitanicum—Grodziec; 

Cirsium acaule—Landeskrone; Crepis praemorsa—Bazaltowa Góra; Medicago minima and 

Prunella grandiflora—Kopista and Trifolium striatum—Wilcza Góra) or thermophilous 

plants (e.g., Bupleurum falcatum—Borowa; Campanula cervicaria—Zamkowa; Hieracium 

schmidtii—Ostrzyca; Staphyllea pinnata—Grodziec and Thalictrum minus—Kopista).  
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Figure 3. Variation in frequency of strictly xerothermic (red) and thermophilous taxa (green). Fre-

quency classes: I—species occurring on 1 locality, II—2-3 localities, III—4-8, IV—9-17 and V—18-

35. 

The distribution of some species is correlated with geographical regions of the Sude-

tes. Therefore, differences in the xerothermic flora of basaltic outcrops located in the dif-

ferent geographical regions are in the absence/presence of species with limited geograph-

ical range. This tendency is confirmed by the hierarchical cluster analysis of the basaltic 

outcrop flora. The floristic distance between the outcrop floras (measured by one minus 

Jaccard coefficient) is within the range 0.1–0.7 for strictly xerothermic species and 0.1–0.5 

for thermophilous species (Figure 4). The dendrograms indicate the existence of outcrop 

clusters. The first cluster, apparent in both the dendrograms, comprises the outcrops sit-

uated in Lusatian Hills. They exhibit a similar level of floristic richness (Table 1) and are 

distinguished by the presence of several taxa: Anthemis tinctoria, Cerastium glutinosum, 

Cirsium acaule and Crataegus rhipidophylla. The second cluster, apparent in the dendrogram 

for strictly xerothermic species, includes some of the outcrops of the Eastern Kaczawa 

Plateau where fragments of Festuco valesiacae-Brometea erecti xerothermic grasslands have 

developed. Hence the presence of a number of species unknown from the remaining out-

crops or species with the largest number of localities in this geographical region, like Alys-

sum alyssoides, Anthericum ramosum, Camelina microcarpa, Cerastium brachypetalum, Hypo-

chaeris maculata, Medicago minima, Petrorhagia prolifera, Phleum phleoides, Prunella grandi-

flora, Salvia pratensis, Scabiosa ochroleuca and Thalictrum minus. The remaining basaltic out-

crops, which are scattered within the investigated area, form only small clusters, including 

two or three outcrops. An example can be Góra Św. Jerzego-Krzyżowa Góra (Strzegom 

Hills—Figure 4, No. 34–35), for which Dianthus carthusianorum and Melica transsilvanica 

are the common locally distinguishing xerothermic species. 
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Figure 4. Hierarchical cluster analysis showing floristic similarity of the investigated basaltic outcrops based on strictly 

xerothermic (red dendrogram) and thermophilous taxa (green). The locality labels (numbers) are explained in Table 1. The 

distance was computed as 1 minus Jaccard coefficient. 

3.2. Relationships between Xerothermic Species Richness and Outcrop Parameters 

The investigated basaltic outcrops are low hills (205–501 m above sea level) built of 

various basaltic rocks of the tertiary age (Table 1). They occur in open places as isolated 

hills surrounded by agricultural landscape or in forested areas (Figure 1). There are voids 

and quarries at most of the outcrops. Mining activities are currently carried out at only a 

few of them (Kozia Góra, Kopista, Łysanka and Wilcza Góra), the others are abandoned 

and unexploited workings with rock formations. Such places sometimes create secondary 
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habitats for the development of rarer xerothermic species. However, no correlation was 

found between the presence of voids and quarries and the number of xerothermic species.  

Individual basaltic outcrops differ considerably by the surface area, which ranges 

from 1 to 100 ha. This parameter of the outcrop affects the richness of thermophilous spe-

cies but not that of strictly xerothermic species. In particular, heavily forested and quite 

extensive outcrops have relatively rich thermophilous flora while the richness of strictly 

xerothermic species is similar to that of small rock outcrops. Representatives of the former 

are: Rottstein (surface area of 100 ha /15 strictly xerothermic species /30 thermophilous 

species), Bazaltowa Góra (80/16/35) and Landeskrone (60/20/24); while of the latter: 

Krzyżowa Góra (3/29/26) and Winnik (2/24/22). The mean number of thermophilous spe-

cies noted for outcrops of surface area smaller than 10 ha (mean = 17.78; standard error 

(SE) = 1.12; n = 18) is smaller than that noted for bigger outcrops (mean = 27.59; SE = 1.41; 

n = 17; statistically significant difference, Student’s t-test; p = 4.57 × 10−6) (Figure 5) while 

in the case of strictly xerothermic species the difference is not significant (p = 0.3067).  

 

Figure 5. Variation of thermophilous species richness of basaltic outcrops of different surface area. 

Boxes delimit the first and third quantiles; red lines within boxes are medians; whiskers extend 

from each end of the box to the adjacent values in the data on condition that the most extreme 

values are within 1.5 times the interquartile range from the ends of the box; red crosses represent 

outliers. Number of smaller outcrops = 18 and number of bigger outcrops = 17. 

Chemical composition of basalts, of which the investigated outcrops are built, differs 

from other igneous rocks. Basalts are silicate rocks devoid of carbonates but the propor-

tion of silicon compounds, occurring mainly in the form of silica (SiO2), is relatively low 

(up to 50%—Table 2). These rocks are also characterized by an increased content of mag-

nesium oxides (MgO) and a low content of sodium and potassium oxides (Na2O and K2O). 

Moreover, they contain significant amounts of iron (Fe2O3), with a low content of phos-

phorus (P2O5). The black or dark green color of basaltic rocks causes relatively strong heat-

ing up of their surface. Six types of basalt build the investigated outcrops (Table 1). Neph-

elenites and basanites are much more common than the other types. The richness of 

strictly xerothermic and thermophilous flora on different types of basaltic rocks is pre-

sented in Figure 6. Outcrops of basanite (Wilcza Góra), tephrite (Krzyżowa Góra) and 

trachyandesite (Kopista) gather the largest number of strictly xerothermic taxa. A rela-

tively low number of such species occurs on nephelenite, trachybasalt, and the majority 

of basanite outcrops. Similar relationships apply to thermophilous species with exception 
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of trachybasalts, where the number of thermophilous species is relatively high, unlike that 

of strictly xerothermic species. The largest number of thermophilous species was noted 

for the Kopista hill (trachyandesite). 

 

Figure 6. Numbers of strictly xerothermic (red circles) and thermophilous taxa (green) reported 

from outcrops built of different basaltic rocks. Abbreviations: Neph—nephelenite, Bas—basanite, 

Tr-b—trachybasalt, Tr-a—trachyandesite, Teph—tephrite and Phon—phonolite. 

Habitats can be indirectly characterized using the system of Ellenberg indicators [79], 

the values of which represent relationships between plant species and environment, in 

particular the species preferences to light, temperature and moisture. Indicator values for 

species, the distribution of which was investigated, are in accordance with their xerother-

mic character (Table 1). Values of the indicator of light for all the xerothermic species (the 

strictly xerothermic and thermophilous species taken together) encountered at the inves-

tigated outcrops range from four (plants preferring shade) to nine (always full sun). Con-

tribution of heliophilous plants, with indicator of light values eight to nine, is high (66%) 

especially in the group of species regarded as strictly xerothermic. Mean values of this 

indicator computed for all the species from a given locality fluctuate around seven, the 

value which represents species associated with the “open” habitat type (Figure 7). As al-

ready mentioned, basaltic habitats are distinguished by a strong degree of heating of the 

rock surface. Accordingly, mean values of the indicator of temperature for xerothermic 

species reported from the outcrops are high, close to six, which indicates high contribution 

of plants preferring high substrate temperature. On the other hand, low values of the in-

dicator of moisture, between three and four, which represent mainly species preferring 

very dry and extremely dry habitats, apply to both strictly xerothermic and thermophi-

lous species of basaltic outcrops (Figure 7). 
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Figure 7. Variation of mean Ellenberg indicators computed for species reported from given out-

crop: Ellenberg indicators: L—light; T—temperature and M—moisture. See Figure 5 legend for 

box plot explanation. 

The investigated species that are associated with different biotopes belong to differ-

ent syntaxonomic units. Some of species (51.66% of the investigated taxa) have narrow 

habitat requirements and are species of xerothermic grasslands of the Festuco valesiacae-

Brometea erecti class. As a rule, they occupy exposed, unshaded fragments of the slopes of 

the basalt hills with southern exposure. The presence of such xerothermic grasslands is 

manifested in the increased floristic richness of strictly xerothermic species (Figure 8) (out-

crops without grasslands: Mean number of strictly xerothermic species = 12.44; SE = 1.19; 

n = 27; outcrops with grasslands: Mean = 21.25; SE = 3.40; n = 8; the difference between 

means is statistically significant, Student’s t-test; p = 0.004). Distribution of species of xe-

rothermic grasslands of the Festuco valesiacae-Brometea erecti class to a large extent coin-

cides with one of the above-described clusters of basaltic outcrops. In particular, the larg-

est number of these species were found in the Eastern Kaczawa Plateau. On the other 

hand, the lowest contribution of the xerothermic grassland species distinguishes the Izera 

Plateau. Smaller groups are species of thermophilous fringes of the Trifolio medii-Geranietea 

sanguinei class (32.23%), and species of thermophilous oak forests of the Quercetea pubes-

centis class (16.11%). The latter group plays a greater role in the outcrops of Bazaltowa 

Góra and Kopista, where fragments of submontane thermophilous oak forest with ser-

vice-tree Sorbo torminalis-Quercetum petraeae Svoboda ex Blažková 1962 have developed. 

These localities mark the northern border of the geographical range of this association in 

Europe. The fact that the association is locally attached to the basaltic substrate resulted 
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in the development of its endemic form Sorbo torminalis-Quercetum petraeae cephalanthere-

tosum longifoliae Kwiatkowski 2003 [83]. 

 

Figure 8. Variation of richness of strictly xerothermic species for basaltic outcrops differing by the 

absence (27 outcrops) or presence (8 outcrops) of xerothermic grasslands. See Figure 5 legend for 

box plot explanation. 

4. Discussion 

The positive relation between species richness and the size of the investigated area is 

probably the most common pattern in nature—the larger the area, the more species one 

can expect. This relation is manifested by the so-called island effect on species richness 

[6,15,84–87]. Typically, when habitat islands are smaller and more isolated, the chances of 

the survival of species on the island are lower as well as the chances of the species coloni-

zation outside [88,89]. The hypothesis of habitat heterogeneity assumes that as the surface 

area increases, new habitats appear together with new species, which are associated with 

the new habitats, the effect of which is an increase of the total number of species [90–92]. 

The logarithmic relationship between species richness and the surface area is well known, 

but there are also many cases where small patches of habitats may have a more beneficial 

effect on the richness than a few larger ones [5,93,94]. Smaller islands, or their parts, are 

colonized mainly by narrowly specialized species. The lack of suitable habitats thus blocks 

the possibility of colonization of the islands by these “specialists”. For the basaltic out-

crops, the investigation of which is presented in this paper, this phenomenon applies to a 

number of species that have a characteristic single locality. For example, Anthericum ra-

mosum, Medicago minima, Prunella grandiflora and Pulmonaria angustifolia inhabit only one 

of the trachyandesite outcrops (Kopista). In this case, the floristic richness and species di-

versity are determined by the specific type of rock and the mosaic arrangement of micro-

habitats. 

Habitat heterogeneity is therefore not a simple function of the size of the object—

even within small areas, a number of ecological niches may appear, which are to a various 

extent preferable for specialized species. On the other hand, there is a hypothesis on rich-

ness-reducing disturbances that lead to a decline in species diversity in small areas 

[13,95,96]. However, the disturbance hypothesis does not apply to the results obtained 

from numerous basaltic outcrops investigated in this paper. The appearance of xerother-

mic taxa in secondary habitats, i.e., quarries of basalts, are against the disturbance hypoth-

esis. It is indeed expected that the quarry exploitation in the initial phase resulted in the 
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destruction of many species niches or even the complete disappearance of some species. 

On the other hand, the currently closed quarries, where no far-reaching succession phe-

nomena took place, frequently became the main refugia of xerothermic species. This net-

work of secondary habitats often gathers localities of specialized species that are region-

ally endangered taxa of the vascular flora of the Sudetes [97,98], including Campanula cer-

vicaria (Zamkowa), Cerastium brachypetalum (Kopista), Ornithogalum angustifolium, Stachys 

germanica and Trifolium striatum (Wilcza Góra). Thus, “anthropogenic disturbances” in the 

structure of the rocky outcrops sometimes promote species diversity. Such tendencies 

have been described for the vascular flora of quarries composed not only of basalts but 

also of other types of rocks [99–104]. 

In the case of environmental islands that make up “archipelagos”, the distance be-

tween the islands is important. Regardless of the propagule carrier (wind, birds or peo-

ple), quite high mutual floristic similarity of the islands located close to each other may 

result from easier colonization by species from the immediate vicinity [105–107]. In the 

investigated area, such relationships were found for several outcrops located in the East-

ern Kaczawa Plateau (Krzyżowa Góra, Winnik, Srebrnik and Kopista), the distances be-

tween which oscillate around several kilometers. The result is a common group of several 

species (Camelina microcarpa, Hypochaeris maculata, Petrorhagia prolifera, Polygala comosa and 

Veronica prostrata), which here have the main center of occurrence in the investigated area. 

On the other hand, many species have a disjunctive pattern of distribution. Due to the fact 

that the basaltic outcrops where the species occur are tens of kilometers away, effective 

flow of genes and diaspores between them is not likely and the SIE may lead to extinction 

events. However, a transport of diaspores cannot be completely excluded. Examples of 

such local disjunctions are the geographical ranges of Bromus erectus (Laden-

skrone/Krzyżna Góra—hills separated by 120 km), Festuca pallens (Ostrzyca/Góra Św. 

Jerzego—40 km), Potentilla inclinata (Wilcza Góra/Czartowska Skała—20 km), Trifolium 

rubens (Wilcza Góra/Bazaltowa Góra—20 km) and Verbascum lychnitis (Hutberg/Zam-

kowa—30 km). 

From the ecological point of view, the most important chemical properties of basaltic 

rocks are slightly alkaline reaction, low content of phosphorus, potassium and calcium, 

and high magnesium content. The soils formed from such a substrate create specific, 

strongly heating, low-fertile habitats with a significant content of skeletal parts (rock frag-

ments), which makes them permeable to water. Plants that occur in these extreme habitats 

are characterized by a scleromorphic structure and are adapted to water scarcity (xerism). 

Easily heating basaltic habitats with specific physical and chemical parameters can be 

treated as “edaphic islands”. Such features are typical also for serpentine habitats 

[47,108,109]. In general, low soil moisture and high insolation distinguish the areas occu-

pied by xerothermic species of the Festuco valesiacae-Brometea erecti class, as confirmed in 

other studies regarding other European countries [110–112]. Their localities are usually 

related with steep, dry and often rocky slopes of the southern exposure. The habitats 

formed by such exposed rocks influence the flora also through the low albedo of their 

surface, which makes them warmer and drier. It is reported that slopes with such expo-

sure receive on average up to 35% more direct sunlight per year than flat areas [27,113–

115]. In turn, thermophilous species of the Trifolio medii-Geranietea sanguinei and Quercetea 

pubescentis classes, apart from slopes with southern or nearly southern exposure, occur 

also on the summits of basaltic outcrops and rocks with variable exposure and degree of 

slope.  

The patterns of species diversity of the studied basaltic outcrops are therefore signif-

icantly influenced by the overall system of abiotic environmental factors generating a mo-

saic of developed habitat types. A similar relationship was shown for hills with a different 

geological structure [25,87,116–118].  

Diagnosis of abiotic environment parameters can be complemented by the system of 

Ellenberg indicators [119–123]. In the present investigation, results of Ellenberg indicator 
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analysis (the values of selected indicators representing species preferences for light, tem-

perature and moisture) are to some extent obvious because only a specific group of plants, 

i.e., xerothermic species, was considered. Nevertheless, the results support the adequate 

selection of xerothermic species. In particular, within the analyzed flora, there is a signif-

icant predominance of species adapted to higher substrate temperature, high degree of 

insolation and very dry substrate.  

The obtained results show a specific floristic composition of basaltic outcrops, that 

differs from the vascular flora of the surrounding areas (matrix vegetation). Thus, basaltic 

outcrops are specific habitats while the settlement of the outcrop plant species, which are 

often under stress conditions, into the surrounding matrix is often limited [27]. The basal-

tic outcrops, nevertheless, make a significant contribution to the local and regional species 

diversity. 

5. Conclusions 

Basaltic outcrops are not only specific environmental islands, which have a unique 

geological structure, topography, soils and microclimatic conditions, but also refugia for 

species with high thermal requirements. Due to the extremely northern location of the 

studied objects in the Sudetes and the influence of the humid oceanic climate, the investi-

gated outcrops differ in terms of floristic richness from the more southern basalt hills of 

other parts of the Czech Massif (České Sředohoří Mountains), where numerous species 

representing sub-continental types of geographical range occur. Basalt outcrops also func-

tion as regional centers of xerothermic flora in the Sudetes.  

A number of xerothermic species reach the northern limit of their geographical range 

in Europe in the investigated area. The localities of xerothermic taxa on the border of the 

geographical range seem to be very interesting both from a historical and evolutionary 

perspective. Marginal and relict populations are often subject to stronger local selection 

than those occupying the center of the species range, which can lead to the emergence of 

many genetically diverse populations, each adapted to its own habitat conditions. In times 

of global climate change, they can be the starting point for future migrations to other parts 

of Europe, which could be important for the long-term survival of populations. Therefore, 

one can conclude that due to their environmental vulnerability, geographical range and 

relict nature, it is appropriate to provide in situ conservation actions for those plant spe-

cies that are at greater risk as well as for their habitats [124–126]. 
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Appendix A 

Table A1. Species list of the investigated basaltic outcrops and their Ellenberg indicators. Abbreviations: *—strictly xe-

rothermic taxon, L—light, T—temperature and M—moisture. 

Name of Species Family 
Ellenberg Indicator Value 

L T M 

* Achillea pannonica Scheele Asteraceae 7 7 3 

* Acinos arvensis (Lam.) Dandy Lamiaceae 9 6 2 

Agrimonia eupatoria L. Rosaceae 7 6 4 

* Ajuga genevensis L. Lamiaceae 8 6 3 

* Allium lusitanicum Lam. Alliaceae 9 6 2 

* Allium oleraceum L. Alliaceae 7 6 3 

* Allyssum alyssoides (L.) L. Brassicaceae 9 6 3 

* Anthemis tinctoria L. Asteraceae 8 6 3 

* Anthericum ramosum L. Anthericaceae 7 5 3 

* Anthyllis vulneraria L. subsp. vulneraria Fabaceae 8 6 3 

* Arabis hirsuta (L.) Scop. Brassicaceae 7 5 4 

* Artemisia campestris L. subsp. campestris Asteraceae 9 6 2 

Astragalus glycyphyllos L. Fabaceae 6 6 4 

* Brachypodium pinnatum (L.) P. Beauv. Poaceae 6 5 4 

* Bromus erectus Huds. Poaceae 8 5 3 

Bupleurum falcatum L. Apiaceae 6 6 3 

* Camelina microcarpa DC. Brassicaceae 7 6 4 

Campanula cervicaria L. Campanulaceae 6 6 5 

* Campanula glomerata L. subsp. glomerata Campanulaceae 7 6 4 

Campanula persicifolia L. Campanulaceae 5 5 4 

* Carex caryophyllea Latourr. Cyperaceae 8 5 4 

Carex montana L. Cyperaceae 5 6 4 

* Carlina vulgaris L. Asteraceae 7 5 4 

* Centaurea scabiosa L. subsp. scabiosa Asteraceae 7 6 3 

* Centaurea stoebe L. Asteraceae 8 7 3 

Cephalanthera longifolia (L.) Fritsch Orchidaceae 5 5 4 

* Cerastium brachypetalum Pers. subsp. brachypetalum Caryophyllaceae 9 7 3 

* Cerastium glutinosum Fr. Caryophyllaceae 9 7 3 

* Cerastium pumilum Curtis Caryophyllaceae 8 7 2 

Cervaria rivini Gaertn. Apiaceae 8 7 5 

* Cirsium acaule Scop. Asteraceae 9 5 3 

Clinopodium vulgare L. Lamiaceae 7 5 4 

Cotoneaster integerrimus Medik. Rosaceae 8 6 3 

* Crepis praemorsa (L.) Walther Asteraceae 6 7 3 

Crataegus rhipidophylla Gand. s.str. Rosaceae 7 6 5 

Dactylorhiza sambucina (L.) Soó Orchidaceae 7 5 4 

* Dianthus carthusianorum L. Caryophyllaceae 8 5 3 

Digitalis grandiflora Mill. Plantaginaceae 7 4 5 

Drymocallis rupestris (L.) Soják Rosaceae 7 7 4 

Festuca brevipila (L.) R. Tracey Poaceae 8 6 3 

* Festuca pallens Host Poaceae 9 7 2 

* Filipendula vulgaris Moench Rosaceae 7 6 3 

Fragaria moschata Weston Rosaceae 6 6 5 

Fragaria viridis Weston Rosaceae 7 5 3 

Gagea villosa (M. Bieb) Sweet Liliaceae 6 7 4 
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Galium verum L. s.str. Rubiaceae 7 6 4 

Genista germanica L. Fabaceae 7 5 4 

Genista tinctoria L. subsp. tinctoria Fabaceae 8 6 6 

* Gentianopsis ciliata (L.) Ma Gentianaceae 7 6 3 

Geranium sanguineum L. Geraniaceae 7 6 3 

* Helianthemum nummularium (L.) Mill. subsp. obscurum (Wahlenb.) 

Holub 
Cistaceae 8 5 3 

Hieracium diapahanoides Lindeb. Asteraceae 5 5 4 

Hieracium schmidtii Tausch Asteraceae 8 6 4 

* Holosteum umbellatum L. Caryophyllaceae 8 6 3 

Hypericum montanum L. Hypericaceae 5 6 4 

* Hypochaeris maculata L. Asteraceae 7 6 4 

Inula conyzae (Griess.) DC. Asteraceae 6 6 4 

* Inula hirta L. Asteraceae 7 6 3 

* Jovibarba globifera (L.) J. Parn. subsp. globifera Crassulaceae 9 6 2 

* Koeleria macrantha (Ledeb.) Schult. Poaceae 7 6 3 

Lathyrus niger (L.) Bernh. Fabaceae 5 6 3 

Lathyrus sylvestris L. subsp. sylvestris Fabaceae 7 6 4 

Lychnis viscaria L. Caryophyllaceae 7 6 3 

Medicago falcata L. Fabaceae 8 6 3 

* Medicago minima (L.) L. Fabaceae 9 7 3 

* Melica transsilvanica Schur Poaceae 7 8 3 

Melittis melissophyllum L. Lamiaceae 5 7 4 

Orchis mascula (L.) L. subsp. speciosa (W. D. J. Koch) Hegi Orchidaceae 6 6 4 

Origanum vulgare L. subsp. vulgare Lamiaceae 7 6 3 

* Ornithogalum angustifolium Boreau Hyacinthaceae 9 8 2 

* Petrorhagia prolifera (L.) P. W. Ball et Heywood Caryophyllaceae 8 7 3 

Peucedanum oreoselinum (L.) Moench Apiaceae 6 6 3 

* Phleum phleoides (L.) H. Karst. Poaceae 8 6 3 

* Pilosella bauhinii (Schult.) Arv.-Touv. subsp. bauhinii Asteraceae 9 7 3 

* Poa angustifolia L. Poaceae 7 6 5 

* Poa bulbosa L. Poaceae 8 7 3 

* Polygala comosa Schkuhr Polygalaceae 8 6 3 

Polygonatum odoratum (Mill.) Druce Ruscaceae 7 5 3 

Potentilla alba L. Rosaceae 6 6 4 

* Potentilla inclinata Vill. Rosaceae 9 7 2 

* Potentilla leucopolitana P. J. Müll Rosaceae 9 6 2 

* Potentilla neumanniana Rchb. Rosaceae 8 6 3 

Potentilla recta L. Rosaceae 9 7 3 

* Prunella grandiflora (L.) Scholler Lamiaceae 9 7 3 

Pulmonaria angustifolia L. Boraginaceae 5 7 5 

Ranunculus polyanthemos L. subsp. polyanthemos Ranunculaceae 6 6 4 

* Salvia pratensis L. Lamiaceae 8 6 3 

* Sanguisorba minor Scop. subsp. minor Rosaceae 7 6 3 

* Saxifraga tridactylites L. Saxifragaceae 8 6 2 

* Scabiosa columbaria L. Dipsacaceae 8 5 3 

* Scabiosa ochroleuca L. Dipsacaceae 8 7 3 

Securigera varia (L.) Lassen Fabaceae 7 6 4 

* Seseli annuum L. Apiaceae 8 7 3 

Silene nutans L. Caryophyllaceae 7 6 3 

Sorbus torminalis (L.) Crantz Rosaceae 4 7 4 
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* Stachys germanica L. Lamiaceae 7 7 3 

Staphyllea pinnata L. Staphyleaceae 7 7 5 

Tanacetum corymbosum (L.) Sch. Bip. Asteraceae 6 7 4 

* Taraxacum sect. Erythrosperma (H. Lindb.) Dahlst. Asteraceae 8 6 3 

* Teucrium botrys L. Lamiaceae 9 6 2 

Thalictrum minus L. subsp. minus Ranunculaceae 6 6 3 

Trifolium alpestre L. Fabaceae 7 6 3 

Trifolium medium L. Fabaceae 7 6 4 

* Trifolium montanum L. Fabaceae 8 6 3 

Trifolium rubens L. Fabaceae 7 6 3 

* Trifolium striatum L. Fabaceae 8 7 3 

* Turritis glabra L. Brassicaceae 6 6 3 

Valeriana pratensis Dierb. subsp. angustifolia (Soó) Kirschner et al. Valerianaceae 7 6 4 

Verbascum lychnitis L. Scrophulariaceae 7 6 3 

* Veronica prostrata L. s.str. Plantaginaceae 9 7 2 

Veronica teucrium L. Plantaginaceae 7 6 3 

Vicia dumetorum L. Fabaceae 6 6 5 

Vicia pisiformis L. Fabaceae 6 7 4 

Vicia sylvatica L. Fabaceae 7 6 4 

Vicia tenuifolia Roth s.str. Fabaceae 7 8 4 

Vincetoxicum hirundinaria Medik. Apocynaceae 6 5 3 

* Viola collina Besser Violaceae 6 5 3 

Viola hirta L. Violaceae 6 5 3 

* Viola rupestris F. W. Schmidt Violaceae 6 5 3 

Viola scabra F. Braun Violaceae 6 5 3 
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