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Abstract
The paper presents a technique for micropropagation of endangered in Europe and extinct in Poland Pulsatilla vulgaris for ex 
situ conservation of the genetic resources. Genotype-dependent induction of somatic embryogenesis and rooting was revealed 
in series of two experiments (I and II) performed under the same experimental conditions. Shoot tips of seedlings were the best 
explants in both experiments and Murashige and Skoog (MS) medium supplemented with 0.25 or 0.5 mg  L−1 BAP was suitable 
for induction of somatic embryos (SE) and adventitious shoots. Mass SE was obtained in experiment I after explants transfer on ½ 
MS (2% sucrose) + 0.45 mg  L−1 B1 and extending culture to 2–3 months without passages. Rooting of adventitious shoots was a 
critical point. Out of seven rooting media used in experiment I, only two, ½ MS hormone free (2% sucrose) + 0.45 mg  L−1 B1 or 
MS + 5 mg  L−1 NAA + 3.76 mg  L−1 B2 resulted in altogether 36.4% rooted shoots. In experiment II, somatic embryogenesis, root-
ing and acclimatization of adventitious shoots failed. Regenerated plantlets and seedlings converted from SE from experiment I 
were acclimatized to ex vitro conditions. Both genome size, determined by flow cytometry, and genetic diversity analyzed by ISSR 
markers, confirmed the compatibility of regenerants from experiment I with P. vulgaris initial seedlings and commercial cultivar. 
Regenerants obtained in experiment II differed genetically from the regenerants of experiment I and cultivar. Propagated in vitro 
tissues/organs (SE, adventitious shoots) of P. vulgaris could be a source of material for cryopreservation, artificial seed production 
and/or for acclimatization of regenerated plantlets and could be used for restoration of the extinct populations.

Key Message 
The micropropagation technique via organogenesis and somatic embryogenesis of endangered in Europe pasqueflower was 
developed as a tool for species recovery. The critical point is that somatic embryogenesis is genotype-dependent, which 
affects the repeatability of the experiments and also imposes applying molecular techniques to confirm the genetic fidelity 
of the regenerants with the initial material and other genotypes.
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Introduction

The preservation of endangered and/or threatened plant spe-
cies by biotechnological methods such as in vitro culture is 
one of the ex situ conservation pathways. 42% of threatened 
European species are in ex situ collections (Sharrock and 
Jones 2011), which prevents loss of plant biodiversity and 
allows to recover genetic diversity from ex situ preserved 
material. Although the final step, translocation of the focal 
species or population from botanical gardens to the nature, 
is highly challenging task, 60% of cases of ex situ conser-
vation were successful or partially successful (Abeli et al. 
2020, 2021).

Nine occurring in Europe Pulsatilla species are rare, 
endangered and/or endemic, occupy small populations 
on local, light habitats acting as refugia (Akeroyd 1993). 
Overall species decline through Europe has been principally 
driven by the competition with grasses in the absence of 
appropriate management regimes, reduced grazing pres-
sure, enhanced nitrogen deposition with acid rains and 
illegal transfer to gardens (Walker and Pinches 2011). In 
Poland main threat is a secondary succession from grassland 
through light, semi-open pine forest to shady, dense pine or 
pine-oak forest, maybe also flower picking and collecting 
herbarium specimens (Zarzycki et al. 2014).

Pulsatilla vulgaris Mill. of Ranunculaceae (2n = 2x = 16 
or 2n = 4x = 32, Sramkó et  al. 2019) was widespread 
throughout calcareous grasslands and open pine forests in 
western and central Europe, but now its populations are 
strongly declined (DiLeo et al. 2017). In Poland the species 
is extinct, its natural occurrence has not been confirmed in 
formerly known locations since 1930s (Zarzycki et al. 2014). 
Ex situ living collections from several Polish historical sites 
are cultivated in botanical gardens (Galera et al. 1999).

The effective technique to preserve genetic resources 
of Pulsatilla species is ex situ conservation using in vitro 
culture for plant multiplication via organogenesis and/
or somatic embryogenesis (SE) (Šedivá 2002, 2012; 
Rybczyński and Mikuła 2006; Danova et al. 2009; Nau-
movski et al. 2009; Sauliene and Brinkyte 2009; Lin et al. 
2011; Priede and Kļaviņa 2011; Šedivá and Žlebčík 2012). 
Development of synthetic seeds through encapsulation sys-
tem (enclosing totipotent plant parts e.g., somatic embryos) 
provides a proficient method for continuous distribution and 
short/medium-term conservation of the germplasms (Gan-
tait et al. 2015). In twenty-first century the germplasm of 
increasing number of endangered species is propagated via 
SE and protected as synthetic seeds or cryopreserved (e.g., 
Moon et al. 2013; Kang et al. 2014).

We aimed to: (1) develop an efficient micropropagation 
technique of P. vulgaris, extinct in Poland, using as an initial 
material indigenous plants from ex situ collection of botani-
cal garden; (2) confirm genetic fidelity of regenerants with 
initial material by molecular markers; (3) estimate genome 
size of the source material and regenerants by flow cytom-
etry. For practical purpose, the protocol could be used for 
mass micropropagation of P. vulgaris for restoration of Pol-
ish extinct populations.

Materials and methods

Plant material

The following material was used: (1) Pulsatilla vulgaris 
plants (Fig. 1a) from the collection of the Botanical Garden 
of the Polish Academy of Science – Center for Biological 
Diversity Conservation in Powsin (Powsin BG) as a source 
material; (2) seeds collected from these plants in two seasons 
(2019 for the in vitro experiment I and 2020 for the experi-
ment II); (3) P. vulgaris cultivar commercially obtained from 
Łobzów Garden in Kraków (Poland) as a reference for plants 
from Powsin BG (P. vulgaris in Poland does not grow in 
nature); (4) P. pratensis growing close to Skołczanka nature 
reserve (Kraków, Poland) collected with the permission of 
the Regional Directorate for Environmental Protection. It 
was necessary to include this species in the study because 
in the vicinity of P. vulgaris in Powsin BG, specimens of P. 
pratensis grew and cross-pollination resulting in possible 
hybrid origin of the collected seeds could not have been 
excluded.

Fig. 1  Organogenesis and somatic embryogenesis (SE), seedlings 
development and regenerated plants acclimatization of Pulsatilla vul-
garis in experiment I. a Plant at blooming in the collection of Pow-
sin Botanical Garden (Poland); b seeds on ½ MS medium with 2% 
sucrose for germination; c seedling used as explants for in vitro cul-
ture; d explants (shoot tips, cotyledons and hypocotyls with roots) on 
MS + 0.25 mg  L−1 BAP inducing medium; e callus on shoot tips with 
developing SE (arrows), visible SE with cotyledons and embryonic 
root (asterisk) after callus transfer from MS + 0.25  L−1 BAP on hor-
mone free ½ MS with 2% sucrose; f adventitious shoots developed 
on MS + 0.25 mg  L−1 BAP inducing medium; g fragment of morpho-
genic callus with adventitious shoots (arrow) and somatic embryos 
(asterisk); h, i – mass of developing seedlings on ½ MS with 2% 
sucrose + 0.45 mg  L−1 B1 inside the plastic container (h) and taken 
out of the container (i); j different stages of seedlings and juvenile 
plants converted from SE; k seedlings of converted SE in plastic con-
tainers filled with sterile perlite in ex situ conditions

◂
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Media and culture conditions

Media inducing somatic embryogenesis and organogenesis

Seeds harvested in 2019 and 2020 in Powsin BG were steri-
lized in 70% ethanol for 30 s and then in 50% commercial 
bleach Ace with sodium hypochlorite for 15 min, washed 
thrice with autoclaved distilled water. After 5 weeks of cul-
ture on ½ MS medium (Murashige and Skoog 1962) with 
2% sucrose (w/v), solidified with 0.8% agar (w/v), medium 
pH 5.7–5.8, cotyledons, hypocotyls with roots and shoot tips 
were excised from the seedlings and used as explants. All 
explants were placed on inducing media solidified with 0.8% 
agar (w/v): MS + 0.25 or 0.5 mg  L−1 BAP (according to the 
protocol of organogenesis in P. patens, Priede and Kļaviņa 
2011) in Petri dishes. The first passage on the same fresh 
media was after 3 weeks from the culture establishment, 
next after 6 weeks.

In the experiment II (2020) for SE and organogenesis the 
same conditions and media were used based on the results 
of experiment I.

Rooting media

In the experiment I adventitious shoots or clusters of 
adventitious shoots (shoots’ separation from callus and 
their split into separate shoot was difficult and causing 
their damage) developing on morphogenic callus were 
transferred on 7 rooting media after next 4–6 weeks: (1) 
½ MS (2% sucrose) + 0.45 mg  L−1 B1; (2) MS + 5 mg  L−1 
NAA + 3.76 mg  L−1 B2 (5 or 7 days in darkness according 
to Priede and Kļaviņa 2011); (3) ½ MS (2% sucrose) + 2 mg 
 L−1 IBA + 0.45 mg  L−1 B1; (4) MS (2% sucrose) + 2.5 mg 
 L−1 NAA + 0.45 mg  L−1 B1; (5) ½ MS + 2 mg  L−1 IBA; 
(6) ½ MS + 0.5 mg  L−1 IBA; 7) MS + 10 mg  L−1 NAA. 
Half of shoots on media with NAA (nos. 4, 7) after 5 or 
7 days was transferred on hormone free medium, the rest 
of explants were maintained on medium with NAA. All 
cultures were maintained in a growth chamber at 25 ± 3 °C 
under a 16 h photoperiod (cool-white fluorescent lamps, 
60–90 μmol  m−2  s−1).

In the experiment II for shoot rooting ½ MS (2% 
sucrose) + 0.45 mg  L−1 B1 was used based on the results 
of experiment I.

Acclimatization to ex vitro conditions

Plants developed from somatic embryos in experiment I and 
rooted adventitious shoots obtained in the experiment I and 
II were transferred into sterile plastic containers filled with 
sterile perlite, perlite or sand mixed with garden soil (1:1) 
and maintained in a growth chamber for several days. Then 

the containers were opened in non-sterile conditions for ex 
vitro acclimatization.

Histological analysis for the confirmation of somatic 
embryogenesis and organogenesis

Paraffin method was used for histological analysis. Mor-
phogenic/embryogenic callus produced on explants in the 
experiment I was fixed in the mixture of glacial acetic acid 
and 96% ethanol (1/3, v/v) dehydrated in an ethanol series, 
embedded in paraffin, and sectioned in 10–12 μm slices on 
a rotary microtome (Adamas Instrumenten BV, HM 340E). 
Sections were stained with Ehrlich’s hematoxylin (FLUKA, 
Switzerland) and alcian blue (FLUKA, Switzerland) and 
mounted in Entellan (Sigma-Aldrich, USA).

Genome size estimation

Leaves of seedlings of P. vulgaris obtained from seeds col-
lected in 2019 in Powsin BG, adventitious shoots obtained 
in experiments I and II, leaves of plants of P. vulgaris culti-
var, and of P. pratensis were used to establish genome size 
by flow cytometry (FCM), using buffer for nuclei isolation 
developed by Marie and Brown (1993); propidium iodide 
(50 μg/mL) was applied for DNA staining, and Secale cere-
ale (2C = 16.19 pg; Doležel et al. 1992) served as an internal 
standard (for details of sample preparation and analysis see 
Żabicki et al. 2019). CV of the  G0/G1 peak of Pulsatilla 
ranged between 2.51 and 4.58%. Nuclear DNA content was 
calculated using the linear relationship between the ratio of 
the 2C peak positions of Pulsatilla/internal standard on a 
histogram of fluorescence intensities.

Genetic diversity estimation by ISSR markers

DNA isolation

Leaves of three P. vulgaris plants from Powsin BG, six of 
cultivar, 12 seedlings of both experiments, 10 adventitious 
shoots obtained in experiment I and four in experiment II, 
three of P. pratensis collected for molecular analysis were 
dried in silica gel (silicon dioxide; F.H.U. “DOR-CHEM”, 
Poland). DNA was isolated using CTAB extraction method 
(Gavel and Jarret 1991). Quality of DNA was tested on 1% 
agarose gel.

ISSR markers

Six primers of ISSR markers were selected (Gupta et al. 
1994; Stepansky et al. 1999) (Table 1). The analysis with 
ISSR markers was based on protocols developed by Żabicka 
et al. (2020); the same reagents and laboratory equipment 
were used. The PCR products were separated in 1% agarose 
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gel with 1X TBE and SimplySafe (EURx Sp. z o.o. Gdansk, 
Poland) for about 90 min at 120 V. Band patterns of 38 sam-
ples were captured with a MultiDoc-It™ Imaging System 
with VisionWorks® LS Analysis Software (UVP, Upland, 
CA, USA). PCR reaction cycle were repeated on selected 
samples to test reproducibility of obtained results.

Split phylogenetic network (NeighborNet) was con-
structed in SplitsTree v. 4.6 (Huson and Bryant 2006) based 
on Dice coefficient to evaluate the relationships between 
examined individuals, bootstrap was calculated on 1000 
replicates.

Statistics

To evaluate the significance of media composition influence 
on the culture results of the experiment II, ANOVA followed 
by Tukey HSD test post hoc (P = 0.05) was used. All calcu-
lations were performed in Statistica 13.3 software (TIBCO 
Software Inc., Palo Alto, California, USA).

Statistical analysis of genome size was performed using 
ANOVA followed by Tukey HSD test post hoc for different 
N (P = 0.05) in Statistica 13.3 software (TIBCO Software 
Inc., Palo Alto, California, USA).

Results

Somatic embryogenesis and organogenesis 
induction, regenerants acclimatization

In the experiment I, due to poor seed germination, only sev-
eral seedlings were used as explants. Dissected shoot tips of 
seedlings were the best explants and MS + 0.25 mg  L−1 BAP 
the most suitable inducing medium. Cotyledons, hypocot-
yls + roots poorly responded to in vitro conditions, becoming 
brownish and finally degenerated (Fig. 1b–d). Mass indirect 
(via callus) and direct somatic embryos (SE) development 
was obtained from shoot tips after callus or explants transfer 
from inducing medium (MS + 0.25 mg  L−1 BAP) onto ½ MS 
(2% sucrose) + 0.45 mg  L−1 B1 and extending the culture 
to 2–3 months without passage. In indirect pathway, callus 
induction and proliferation on shoot tips started after two 
weeks of culture (Fig. 1e). On one explant dozens, uncount-
able SE developed that converted into seedlings (Fig. 1e, 
g–j). Simultaneously with SE induction on the inducing 
medium, adventitious shoots were formed on the same 
explants (Fig. 1g). Both SE (Fig. 2a–c) and organogenesis 
(Fig. 2d–f) were confirmed on histological sections.

From the mass of seedlings converted from SE, 121 
differing in size and organ development stage were sepa-
rated, and 55 of the largest were moved to ex vitro condi-
tions (Fig. 1k). The smallest seedlings were transferred to 

hormone-free MS supplemented with 2% sucrose to grow 
before being moved to ex vitro conditions, but their surviv-
ability was close to zero.

The rate of individual shoots and clusters of adven-
titious shoots rooting on ½ MS hormone free, 2% 
sucrose + 0.45 mg  L−1 B1 (40 of 108) or MS + 5 mg  L−1 
NAA + 3.76 mg  L−1 B2 (3 of 10) reached altogether 36.4% 
(43 of 118). Finally, 35 the most vital rooted shoots were 
transferred to non-sterile conditions for gradual acclima-
tization. On the remaining five media, none adventitious 
shoots had formed roots.

Based on the results of the experiment I, the experiment 
II was performed using more initial explants in several 
repetitions (Suppl. Table 1). Although for adventitious 
shoots and SE induction the same, most efficient media, 
as in the experiment I (MS + 0.25 or 0.5 mg  L−1 BAP), 
the same type of explants (shoot tips, cotyledons, hypoco-
tyls + roots) were applied under the same culture condi-
tions as in experiment I, the results were different. Among 
explants used, shoot tips produced the highest frequency of 
adventitious shoots (97.2%), hypocotyls + roots and coty-
ledons responded with lower frequency (21.8% and 8.8%, 
respectively). There were no differences between media, 
the differences were evident between type of explants. 
The shoot tips responded with the highest frequency to 
the in vitro culture. Somatic embryos were not induced on 
any of the explant and medium (Suppl. Table 1). Out of 
146 individual shoots and clusters of uncountable adven-
titious shoots transferred to rooting medium (½ MS hor-
mone free, 2% sucrose + 0.45 mg  L−1 B1), only five shoots 
(3.42%) formed roots. Their acclimatization to ex vitro 
conditions filed.

Genome size‑based uniformity of regenerants 
and initial seedlings

Flow cytometry revealed a difference in genome size 
between P. vulgaris cultivar (2C = 25.94 pg) and P. praten-
sis (2C = 12.80 pg) that corresponds well with their ploidy 
level (2n = 4x = 32 and 2n = 2x = 16, respectively) (Table 2). 
Genome size of regenerants obtained in the experiment I 
(2C = 25.72 pg) did not differ statistically from 2C-value 
established for P. vulgaris seedlings obtained from seeds 
collected in Powsin BG and for the commercial cultivar but 
differed from the value established for regenerants obtained 
in the experiment II (2C = 25.14  pg). All adventitious 
shoots regenerated in the experiment II differed also in their 
genome size from the cultivar but not from initial seedlings 
from Powsin BG.
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ISSR markers‑based differences 
between the regenerants of experiments I and II

NeighborNet of 21 Pulsatilla vulgaris sensu lato (three 
plants from Powsin BG—P; 12 seedlings from seeds of 
experiments I and II—NP and 2NP, respectively; six plants 
of cultivar from Łobzów Garden—L), 14 regenerants (10 
from the experiment I—REG; four from the experiment 
II—2Reg) and three P. pratensis (Pr) had shown significant 
divergence of P. pratensis specimens, with 94.2 branch sup-
port (Fig. 3). All regenerants from the experiment I (REG) 
clustered together with P. vulgaris specimens, including live 
collected plants (L, P) and seedlings (NP). Specimens regen-
erated during the experiment II (2Reg) formed a third sig-
nificantly distinct group with 88.4 branch support (Fig. 3).

Discussion

The main conclusion from the studies is that it was pos-
sible to achieve mass somatic embryogenesis in P. vulgaris 
but the developed protocol was not reproducible. Although 
the initial material for in vitro culture (seedlings) in experi-
ment I and II originated from seeds produced by plants of 
the same clump of P. vulgaris growing in the Powsin BG, 
mass somatic embryogenesis was obtained exclusively in 
experiment I.

Is somatic embryogenesis in P. vulgaris 
genotype‑dependent?

Somatic embryogenesis is a multi-step, molecular and bio-
chemical process of embryo formation based on cell toti-
potency in which the vegetative cells acquire embryogenic 
competence under stress conditions (Pérez-Núñez et al. 
2009; Thorpe 2012; Gulzar et al. 2020). This process is 
regulated by a set of genes of which only a few have been 
extensively studied, and chromatin remodeling by different 
mechanisms regulates these genes activity (reviewed by 
Gulzar et al. 2020).

As the stress induced by plant growth regulators, nutrient, 
oxygenic, desiccation and other signalling elements during 
in vitro culture lead to vegetative cells transformation into 
embryos via activation/deactivation of genes and transcrip-
tional networks (Feher 2015), different species/genotype/
explant reaction is easy to explain. Genotype-dependent 
somatic embryogenesis was described in several ornamen-
tal and economically important species (e.g., Chengalrayan 
et al. 1998; Mishra and Khurana 2003; Fiuk and Rybczyński 
2008; Santos et al. 2018; Sánchez-Romero 2021). In olive 
several different protocols for somatic embryogenesis 
were developed with varied efficiency, depending on the 
genotype, limiting standardization and the applicability 
(Sánchez-Romero 2021).

The question arises whether different respond of P. vul-
garis explants in experiment I and II could be the case of 
genotype-dependent? Could individuals representing genetic 
variation resulting from intraspecific crossing be considered 
as distinct genotypes? In living collection of Powsin BG P. 
vulgaris clumps (clones) grew close to P. pratensis, but the 
occurrence of other Pulsatilla species in garden collection 
is also possible. Hence the seeds could have originated from 
cross-pollination within P. vulgaris but their hybrid origin 
cannot be also excluded. Based on ISSR molecular mark-
ers, initial material (seedlings) used for in vitro culture in 
experiment I and II originating from seeds collected in two 
seasons, was genetically close to P. vulgaris living collection 
in Powsin BG and cultivar from Łobzów Garden and distinct 
from P. pratensis (Fig. 3). This eliminates hybrid origin of 
seeds and  P. pratensis as one putative parent.

Pulsatilla vulgaris is predominately self-incompatible 
species, cross-pollination increases genetic diversity. In Ger-
man populations high within-population variability (84.4%) 
and a weak, but significant, differentiation among popula-
tions were detected (Hensen et al. 2005). Genetic diversity of 
pasqueflower seems to be strongly affected by demographic 
changes i.e., decline, expansion and fragmentation (Walker 
and Pinches 2011). We could thus conclude that seedlings of 
P. vulgaris used in two experiments were different genotypes 
resulted from cross-pollination.

Genome size as an indication of somaclonal 
variation leading to genome multiplication/
reduction under in vitro culture

Somaclonal variation is an important drawback of organo-
genesis/somatic embryogenesis, providing genetic variation 
in regenerated plantlets as a consequence of the change of 
chromosome number, chromosomal aberrations, genetic 
alterations, or epigenetic modification (Larkin and Scowcroft 
1981). Regenerants converted from SE and adventitious 
shoots of P. vulgaris obtained in experiments I possessed 
the same genome size as initial seedlings and cultivar from 

Table 1  ISSR primers used for genetic profiling of Pulsatilla vulgaris 
and P. pratensis 

Primer Primer sequence (5′–3′) Annealing 
temperature 
(°C)

ISSR1 5′-TCT CTC TCT CTC TCTCC-3′ 50.2
ISSR2 5′-AGA GAG AGA GAG AGAGT-3′ 49.9
ISSR3 5′-ACA CAC ACA CAC ACACG-3′ 48.6
ISSR4 5′-ACA CAC ACA CAC ACA CYC -3′ 50.3
ISSR5 5′-GAC AGA CAG ACA GACA-3′ 44
ISSR6 5′-ACT GAC TGA CTG ACTG-3′ 44
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Fig. 2  Somatic embryogenesis (SE) and adventitious shoot formation 
on histological sections of Pulsatilla vulgaris callus in experiment I. 
a Globular SE (arrowhead) and meristematic center (arrow), visible 
callus cells differing in shape and size; b Heart-stage SE; c Torpedo 
SE with embryonic root (arrow) and cotyledon (asterisk); d Multiple 

meristematic centers (arrows) in callus located along the cells differ-
entiating into vascular tissue (arrowhead); e, f – Different stages of 
adventitious shoots development (arrows). Bar = 100  µm (a–c, e, f); 
200 µm (d)

Table 2  Genome size (2C DNA) of Pulsatilla species

A Many authors (cited from Bolkovskikh et al. 1969)
B From Marhold et al. (2005)
C From Böcher 1954 (cited from Bolkovskikh et al. 1969)
Mean values followed by different letters differ significantly at P < 0.05 in one-way ANOVA followed by Tukey HSD test post hoc for different 
N (number of replications). P. pratensis samples were excluded from statistical analysis

Species/regenerants Chromosome 
number
2n

Material origin 2C DNA (pg)

Mean SD  ± 

P. vulgaris Mill 16,  32A Cultivar from Łobzów Garden (L); N = 9 25.94ab 0.31
Seedlings from seeds collected in Powsin BG in 2019 (NP); N = 2 25.83ac 0.16

Regenerants Plants regenerated from shoot tips of seedlings obtained from seeds collected 
in Powsin BG in experiment I (REG); N = 21

25.72ab 0.21

Pl ants regenerated from shoot tips of seedlings obtained from seeds collected in 
Powsin BG in experiment II (2Reg); N = 9

25.14c 0.36

P. pratensis L 16B,  32C Plants collected close to Skołczanka Nature Reserve; S Poland (Pr); N = 10 12.80 0.07
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Łobzów Garden. They possesed genome size of tetraploid 
cytotype of P. vulgaris (2C = 25.72 pg; 2n = 4x = 32), which 
was twice as large as in diploid P. pratensis (2C = 12.80 pg; 
2n = 2x = 16). Genome size of adventitious shoots produced 
in experiment II (2C = 25.14 pg), although significantly dif-
fered from regenerated shoots of experiment I, possessed 
mean 2C DNA content similar to tetraploid P. vulgaris and 
not to diploid P. pratensis. Based on this characteristic they 
could be considered as regenerants of P. vulgaris and thus 
could be reintroduced to the nature.

ISSR molecular markers separated regenerants 
of experiment II from P. vulgaris

Combined results of genome size value and ISSR markers 
clearly indicated that regeneration via organogenesis and SE 
successfully achieved in experiment I is suitable procedure 
for obtaining plants for reintroduction. Surprisingly, regener-
ated shoots of experiment II although representing genome 
size similar to P. vulgaris, genetically formed a separate, 
strongly (88.4) supported branch (Fig. 3). Their origin is 
difficult to reconstruct—genetic variation is too high to 
explain it as genome alteration influenced by culture condi-
tions (somaclonal variation). The genetic distance from P. 
vulgaris and P. pratensis is very long what eliminates these 
two species as putative parents of the seeds. It could be 
hypothesized that the initial seedlings for the experiment II 
(not used for ISSR analysis) originated from hybrid seeds of 
P. vulgaris with other tetraploid Pulsatilla species growing 
in Powsin BG. In Pulsatilla hybridization and introgression 
played a crucial role in the evolutionary history of the genus, 
and interspecific hybrids or species of hybrid origin occur 
in nature. Hybrids are fertile due to weak genetic isolation 

mechanisms (Szczecińska et al. 2017; Torzewski 2018; Li 
et al. 2019).

Ex situ conservation of P. vulgaris using seed 
collections is highly disputable

In natural populations and in ex situ collections seed set 
may be pollen-limited (Jonsson et al. 1991). P. vulgaris 
as an early flowering plant may face disadvantages of low 
pollinator abundances and unfavorable weather conditions 
influencing seed set. Pollinator exclusion, self-pollination 
and wind pollination only resulted in a very low percentage 
of seed set (Kehrberger and Holzschuh 2019). The limitation 
is also low seed germination frequency of P. vulgaris from 
Powsin BG on sterile media (MS, filter paper, lignin) which 
did not exceed 20% and was slightly higher (~ 30%) in non-
sterile garden soil (present studies; data not shown). Field 
experiments have indicated that increasing the sizes of local 
populations of P. vulgaris by transplanting ex situ grown 
seedlings or just by sowing seeds was hardly ever successful 
in Switzerland (Pfeifer et al. 2002) but successful in three 
English populations (Gargiulo et al. 2019).

Rare and endangered with extinction species are effec-
tively propagated via SE and could be protected as artificial 
seeds or cryopreserved (e.g., Rybczyński and Mikuła 2006; 
Moon et al. 2013; Kang et al. 2014; Streczynski et al. 2019). 
Among Pulsatilla species, only one species, specifically Pul-
satilla koreana has been propagated via SE so far (Lin et al. 
2011). In the recent paper we have revealed that SE is also 
possible for P. vulgaris however usage of seeds from living 
collections should be done with cautious.

Fig. 3  NeigborNet of Pulsatilla 
vulgaris sensu lato (Powsin 
BG—P; seedlings from seeds 
of I and II experiments—NP 
and 2NP, respectively; plants 
of cultivar from Łobzów 
Garden—L), regenerants (from 
the experiment I—REG and 
experiment II—2Reg) and P. 
pratensis (Pr) constructed on 93 
ISSR loci using Dice distance. 
Branch support values are based 
on bootstrap analysis with 1000 
replicates
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Conclusion

(1) Mass somatic embryogenesis, rooting of adventitious 
shoots and regenerants acclimatization of P. vulgaris 
was strongly genotype-dependent; the developed pro-
tocol was not reproducible, although the same culture 
conditions, explants, plant growth regulators, media 
were used. The critical points demonstrated here will 
be helpful in further studies on the micropropagation 
of P. vulgaris aiming to save germplasm of this endan-
gered in Europe species.

(2) For restoration of extinct P. vulgaris populations it 
is important to confirm genetic compatibility of regen-
erated plantlets with the initial material by molecular 
markers to avoid introducing new variability to natural 
populations.

(3) Genome size alone cannot be used for identification of 
genome qualitative alteration; regenerants with similar 
genome size might be genetically highly different as 
was shown in P. vulgaris regenerants in experiment II.

(4) The study highlights the necessity to be cautious when 
using material from botanical gardens. In the case of P. 
vulgaris it was not possible to obtain different material 
from natural, local genetic resources as this species is 
extinct in Poland.

Supplementary Information The online version contains supplemen-
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