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Abstract: Quantum ring accommodating interacting spin-less fermions threaded by magnetic flux
with a non-classical component added to a static, inducing persistent current, is considered. It
is investigated how current flowing in the ring becomes affected by a state of non-classical flux
and how Coulomb interaction between fermions influences entanglement of quantum ring and the
driving field. In particular it is shown that in an absence of decoherence and under certain conditions
fermion–fermion interaction is necessary for a ring–field entanglement to occur.

Keywords: quantum ring; entanglement; non-classical electromagnetic field; persistent current

1. Introduction

Quantum information processing [1] meets nanoscience in applications related both
to quantum computing and communication. Superconducting devices [2,3] utilizing
Josephson behaviour as a cornerstone [4–6] are very often building blocks of many of these
applications. Furthermore, non-superconducting, metallic or semiconducting quantum
rings [7,8] can [9], at least in principle, serve as a physical realization of qubits [9]. Effective
controllability [10–12] and robustness against decoherence is a common feature shared by
all groups of devices desired for realistic implementations. Quantum devices operating at
a nano- and meso-scale working at a border of material science and quantum optics [13]
can also serve as highly sensitive tools detecting subtle and non-classical features of
quantum systems—with an entanglement [14,15] as the most often invoked example—
utilized in quantum communication and quantum measurement process [16]. Among most
peculiar features present at a nano-scale are (persistent) currents flowing in quantum rings
(both superconducting and metallic [8]) which, due to non-trivial topology of multiply
connected samples, are known to be highly sensitive and controllable via an external
magnetic fields, both static [17–19] and time-dependent [20–23]. Properties of currents
flowing in nanorings result from details of a material used for their construction and a
concomitance of various noise sources [24] making their realistic and credible description
highly non-trivial [25]. There are numerous studies relating microscopic description [26]
of multi-particle low dimensional nanosystems to transport properties of conducting
electrons encoded in Hamiltonian description including inter-particle interaction [27–30]
and a highly non-trivial relation between transport properties in nanorings and various
noise sources unavoidable affecting small samples [24].

Properties of persistent currents in a presence of a non-classical magnetic flux flowing
both in superconducting and non-superconducting rings reflect many non-classical proper-
ties of magnetic flux treading the sample and modifying a phase of electrons. Carefully
prepared non-classical electromagnetic fields applicable in quantum information process-
ing [31–35] are shown to modify properties of currents flowing in nanosystems [20,36–40]
(and Ref. [41] for detailed review) under external field approximation [36] assumed. External
field approximation introduced in Ref. [36] is an extremely useful and comfortable kind
of mean field approach neglecting, however, back-influence of nanodevice on properties
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of non-classical control. In this approximation the control field is assumed strong enough
to maintain its state yet continuously affecting the nanosystem. Despite its usefulness,
the external field approximation suffers from natural limitations: under this approximation
a driving field affects the nanosystem being itself not modified. In other words: in the
external field approximation a non-classical control is a truly open-loop control as it neglects
interaction-induced feedback of a nanosystem coupled to the non-classical driving field.
As a figure of merit one calculates the expectation values of local observables (e.g., currents
flowing in a nanoring) by tracing (averaging) with respect to a state of a driving field not
affected by a presence of the nanosystem. Let us emphasise that—contrary to a microscopic
modelling which is going to be proposed here—such an approximate approach does not
allow to investigate entanglement of the nanosystem and the driving non-classical field.

Our objective is to extend and supplement the previous studies [20,36–41] and go
beyond the external field approximation. In analogy to phenomenological model for
SQUIDs [42] or metallic ring [40] simplifying essentially many-body problem to a pseudo-
spin (qubit) approximation, we propose fully microscopic many-body model of a nanoring
carrying current of spin-less electrons. Neglecting spin degree of freedom we avoid the
corresponding spin-boson interaction of the Jaynes–Cummings or Rabi type [16] between
electrons in the nanoring and a non-classical driving fields. Consequently, the considered
fermion–boson interaction is of the type studied previously in the external field approx-
imation. However, contrary to the previous studies, we can—and we do—investigate
entanglement of a nanoring and a driving non-classical field and, in particular, its relation
to a previously neglected fermion–fermion interaction in the nanoring. Using the micro-
scopic model we complement previous studies of nanorings undergoing a non-classical
control and utilizing the external field approximation [38,39], pseudo-spin [9,40] or a
semi-classical description [20].

Currents flowing in nanorings can exhibit non-trivial properties [24,43] under an
external control. We consider a non-classical control of particles accommodating the ring
by a single mode one-dimensional bosonic field (non-classical magnetic flux) coupled
via a hopping part (Peierls phase) of the system Hamiltonian. We analyse a role played
by non-local fermion–fermion interaction of a Coulomb type. Working beyond external
field approximation we analyse interaction-induced creation of entanglement between
fermions in the nanoring and the bosonic mode of electromagnetic field. We show that in
an absence of inter-particle interaction (i.e., for a free electron model) particles in the ring
the non-classical field and the ring remain unentangled despite non-trivial field-induced
modification of current flowing in the nanoring. It holds true, however, provided that there
is no source of dissipation in the system. This result confirms credibility of the external
field approximation for currents in ring-shaped devices accommodating non-interacting
and decoherence-free particles.

Our work is organized as follows: In Section 2 (Materials and Methods) a model of
a nanoring controlled by a non-classical electromagnetic field is formulated. In Section 3
(Results) results of numerical analysis of the previously formulated model are presented
both for unitary, decoherence-free, system and in a presence of Markovian dissipation
affecting fermions in the nanoring. Finally, in Section 4 (Discussion) we discuss and
summarize results of the work.

2. Materials and Methods

We propose a simple model of a quantum L–site fermionic system in a ring threaded by
a line of magnetic flux Φ. We apply theoretical units kB = h̄ = c = 1 to simplify subsequent
formulas, cf. Appendix B of Ref. [36] for a useful ’dictionary’ expressing standard units
in terms of the theoretical units. In particular, for the theoretical units the electric charge
used below is a dimensionless quantity reading e =

√
4π/137 and all the standard units

can be expressed in terms of powers of electronvolts eV [36]. Let us note, however, that
none of the (numerical) results of this work presented in next Sections depends on the
applied system of units since they are presented as ratios of dimensional quantities (e.g.,
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currents) or the quantities which are dimensionless by definition such as linear entropy.
In particular, time units are scaled with respect to frequency of non-classical control field
which is specified below.

The system is described by a Hamiltonian

Ĥ0 = ĤJ + ĤU (1)

consisting of a kinetic (‘hopping’) part ĤJ [26] and a part ĤU describing a fermion–fermion
interaction. For a purely classical magnetic flux Φ and spin-less fermions the hopping term
of a strength J reads as follows [26]

ĤJ(φ) = −J
L

∑
i

(
eiφ ĉ†

i+1 ĉi + h.c.
)

(2)

where ĉi, ĉ†
i are fermionic annihilation and creation operators at a site i ∈ [1, . . . , L] and h.c.

denotes hermitian conjugate. The interaction part ĤU is assumed to be of a Coulomb type,
i.e., it describes interaction of charged particles with an amplitude U:

ĤU = U
L

∑
i 6=j

n̂in̂j

d(i, j)
(3)

where n̂i = ĉ†
i ĉi and d(·) is a distance (a number of sites) separating i–th and j–th site in

the nanoring. Note the phase φ = 2πΦ/(Lφ0) which is related to magnetic flux Φ and the
(dimensionless for the applied theoretical units) flux quantum φ0 = h/e =

√
137π. As the

fermions which we consider are spin-less, the magnetic field modifies the hopping part of
the Hamiltonian Equation (1) only. The Peierls factor eiφ affects also transport properties of
fermions described by a current operator [26]

Î(φ) = iI0 ∑
i

(
eiφ ĉ†

i+1 ĉi − h.c.
)

(4)

with an amplitude I0 = 2π J/(Lφ0). Let us recall that a static magnetic flux Φ threading
the ring results in persistent current [7,8], i.e., a non-dissipative direct component of current
flowing in a long time limit in non-superconducting rings [21,23].

For a monochromatic non-classical field of frequency ω operating at low temperature
T � ω [41,44] a vector potential Â and an electric field Ê are dual quantum variables [44].
The corresponding operators of a magnetic flux ϕ̂ and an electromotive force V̂EMF are
given [41] by integrals ϕ̂ =

∮
C Âdx and, respectively, V̂EMF =

∮
C Êdx where the integration

contour C is small with respect to a size of of the ring. A non-classical electromagnetic field,
as an essentially bosonic system, allows for the Heisenberg–Weyl representation of the field
operators Â, Ê or ϕ̂, V̂EMF in terms of bosonic annihilation â = (ϕ̂ + iω−1V̂EMF)/(2

√
ξ)

and creation â† = (ϕ̂− iω−1V̂EMF)/(2
√

ξ) operators satisfying [â, â†] = 1̂ with ξ related to
the area of C [44].

We consider a composite system consisting of a nanoring accommodating charged but
spin-less fermions threaded by a magnetic flux having—in addition to a static and classical
φc = 2πΦ/(Lφ0) part—a non-classical component

φ̂ = φc + φ1

(
â + â†

)
(5)

of an amplitude φ1 = 2πξ/(
√

2Lφ0). A Hamiltonian of the composite ring plus field
system and a corresponding current operator are then given by:

Ĥ = ĤJ(φ̂) + ĤU + ωâ† â (6)



Entropy 2021, 23, 652 4 of 15

and

Î = Î(φ̂) (7)

with φ̂ given in Equation (5) and Î(·) given in Equation (4). Let us emphasise that for
the spin-less fermions considered here typical spin–boson terms (such as, e.g., Jaynes–
Cummings or Rabi) in the Equation (6) do not occur.

The Hamiltonian of the ring–field composite system Equation (6) is of the Caldeira–
Leggett form [45], i.e., it contains distinguishable parts corresponding to subsystems and de-
scribing inter-subsystem interaction, however, it is necessary to emphasise non-perturbative
character of coupling given by phase factor present in ĤJ . Hence, a time evolution of
the system generated by Equation (6) both in a presence and absence of decoherence is
further analyzed numerically using QuTip [46,47], a Python-based toolbox designed for
quantum control and evolution with an essentially infinite bosonic space span{|0〉, |1〉, . . . }
accommodating non-classical field mode truncated to span{|0〉, |1〉, . . . , |NB〉}with NB = 10
sufficient for credible modelling. We assume the composite system initially prepared in a
separable state

ρ̂(0) = |E0〉〈E0| ⊗ ρ̂B(0) (8)

where |E0〉 is the lowest energy eigenstate of Ĥ0(φc) Equation (1) of two fermions in a
L = 6—site ring threaded by classical flux only and ρ̂B(0) is an initial state of the non-
classical flux threading the ring. In other words, the fermionic system (ring) being in its
ground state becomes initially tensorized with an electromagnetic quantum control field.
Further we consider non-classical electromagnetic field affecting nanoring in one of two
classes of initial states. The first, consisting of number eigenstates

ρ̂
(1)
B (0) = |N〉〈N| (9)

is chosen due to the known non-classical properties [44] of its constituents. The second
class of states consists of coherent states forming pairs of the celebrated Schrödinger cats:

ρ̂
(2)
B (0) = |±〉〈±|, |±〉 = N (|z〉 ± | − z〉) (10)

where |z〉 denotes a coherent state and N is a normalization factor. It is hard to overes-
timate a role played by coherent states in quantum information processing [31–35] and,
in particular, the states in Equation (10), as orthogonal and well distinguishable, are natural
candidates for logical qubits. Further we show that currents in nanorings can serve as an
auxiliary quantifier for their detection.

Fragile nanosytems are subjected to decoherence and noise which often significantly
affect their transport properties Ref. [24]. Decoherence effects originate from an interaction
with the environment and result in a non-unitary corrections to a time-evolution. The sys-
tem, treated as a whole with its its environment, is assumed to be closed and evolves
unitarily, while its reduced evolution determines an (open) subsystem evolving according to
a non-unitary operator ρ̂(tj) = Γ(tj, ti)ρ̂(ti) where ρ̂(ti) is the reduced (with respect to the
environment) density matrix of the time-evolving system [48]. The operator Γ must not be
arbitrary–the transformation should be (at least) completely positive [48–50] and satisfying
the semi-group property: Γ(t2, t0) = Γ(t2, t1)Γ(t1, t0). In particular, for Γ(tj, ti) = Γ(tj − ti)
the time evolution is Markovian. Such conditions are fulfilled by the density matrix ρ̂(t)
obeying a Markovian master Equation [48]:

d
dt

ρ̂ = −i[Ĥ, ρ̂] + L[ρ̂] (11)

where initially we assume ρ̂(0) given by Equation (8). The Hamiltonian part of Equation (11)
is generated by Ĥ defined in Equation (6). The (non-Hamiltonian) Lindbladian part of
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the master equation Equation (11) is responsible for effects connected with dissipation
and decoherence. The minimal requirement imposed to its form is to satisfy the Gorini–
Kossakowski–Lindblad–Sudarshan conditions [45,48] granting complete positivity of time-
evolution Equation (11). There are many, usually problem-dependent, forms of the L[·]
superoperator credibly modelling dissipative quantum dynamics [51]. Here we apply
phenomenological modelling an we assume that the particle-field composite Equation (6)
undergoes completely positive [45] time evolution governed by a master equation

d
dt

ρ̂(t) = −i[Ĥ, ρ̂(t)] +
γ

2

L

∑
n=1

[
2ĉnρ̂(t)ĉ†

n − ρ̂(t)ĉ†
n ĉn − ĉ†

n ĉnρ̂(t)
]

(12)

where the dissipative part, having a phenomenological amplitude γ, represents decoher-
ence affecting particles in the nanoring. In a low temperature limit T � ω—suitable for
non-classical properties of electromagnetic fields [41] considered here—dissipators contain-
ing bosonic operators â, â† are omitted. From a physical perspective the master equation
Equation (12) describes completely positive dynamics of the nanoring–field system with a
decoherence of the same strength locally affecting each of L lattice sites in the nanoring.
Let us emphasise that Markovian modelling applied in Equation (12) despite its simplicity
finds broad and fruitful applications in studies of many-body models [52,53].

Interaction between subsystems of the nanoring–field composite Equation (6) gener-
ically results in an entanglement [14,50] of fermionic and bosonic degrees of freedom.
Both its qualification and quantification, due to system’s dimensions and decoherence in
Equation (12), remain non-trivial [14,15]. However, for γ→ 0 one arrives at a unitary limit
considerably simplifying the task. We use two quantifiers to evaluate (bipartite) entangle-
ment of the (fermionic) nanoring and (bosonic) non-classical field. The first, suitable for
pure states [14,15] ρ̂(t), is a linear entropy:

SL =
NB

NB − 1

(
1− Tr(ρ̂2

B)
)

(13)

of state ρ̂B = TrF ρ̂ reduced with respect to one of two subsystems, here chosen to be
fermionic denoted by F. Linear entropy SL in Equation (13) is chosen to be normalized
with respect to the (truncated) dimension NB of the bosonic space of non-classical field.
A positive value of SL indicates mixedness of the reduced state ρ̂(B) and hence it is a
hallmark of an entanglement of a pure state ρ̂. Let us note that the entropic criterion
SL > 0 cannot be effectively applied [14,15] to detect entanglement of generic mixed states
appearing, e.g., in a system subjected to decoherence [45]. As a generic problem of detecting
bipartite entanglement of mixed states so far remains unsolved [14] we limit our attention
to entangled states which satisfy the Peres criterion [14] and are negative with respect to
partial transposition (NPT entangled states). The NPT entanglement can be quantified by
the negativity [15]

N =
1
2 ∑

λ

(|λ| − λ) (14)

where λs are eigenvalues of a partially transposed ring–field state.

3. Results

Persistent currents driven by a classical flux only depend on an amplitude of fermion–
fermion interaction U Equation (3). In Figure 1, we present steady-state currents flowing in
a ring of L = 6 sites accommodating two particles initially prepared in a ground state (the
lowest energy eigenstate) of Equation (1).
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Figure 1. Persistent current flowing in a ring of L = 6 sites accommodating two (spin-less) fermions
interacting via Hamiltonian in Equation (1) for different values of fermion–fermion interaction U
initially prepared in its ground state.

Results presented in Figure 1 re-confirm well known [8] role of the inter-carrier
interaction modifying an amplitude of persistent current what is best visible for magnetic
flux φc < π/2 indicating a range of external control parameter Φ adequate for an effective
enhancement of a role of Coulomb interaction in a system. As an effect of U is going to be
further investigated, to enhance its visibility, we fix the steady classical flux in Equation (6)
φc = π/4.

3.1. Unitary Evolution

There are two mechanisms, except non-classical electromagnetic control, present in the
model Equation (6) and considered in this work competitively affecting an amplitude of a
current flowing in the nanoring. The first and most obvious is decoherence in Equation (12)
which discussion is postponed to the next subsection. The second is a Coulomb-like inter-
particle interaction Equation (3) which is going to be studied here in a formal unitary limit
of Equation (12) for γ = 0 for the nanoring controlled by a non-classical flux.

In Figure 2, we present expectation values the current operator Equation (7) for the
electromagnetic field initially in a number state Equation (9) for different values of U.
An upper panel of Figure 2 where the current of non-interacting particles U = 0 is plotted,
indicates that non-classical driving results in a lowering of the current amplitude which,
in particular, occurs also for non-classical fields in the vacuum state |N = 0〉. Moreover,
non-classical control of nanorings results in periodic current characteristics in contrast to
stationary and steady persistent current flowing in a presence of a classical flux φc only.
In an absence of particle–particle interaction (U = 0) current characteristics depends on the
initial number state of the flux in nothing but an amplitude of the oscillations. It is not the
case any more for interacting particles carrying current in the nanoring as can be inferred
from central and bottom panels of Figure 2. For U/J = 0.5 (bottom panel of Figure 2) both
an amplitude and periodicity of the current characteristics becomes a hallmark of larger
values of N in an initial state Equation (9) |N〉 of the driving flux. Let us note that potential
usefulness of currents flowing in nanorings in discrimination of a state of non-classical
radiation becomes limited for large values of a fermion–fermion interaction U as it can
be inferred from a bottom panel of Figure 2 exhibiting intersection of graphs for different
states |N〉 of the controlling field. To overcome this drawback it is necessary to investigate
currents in a tailored, relatively short, time regime.
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Figure 2. Current flowing in a quantum ring of L = 6 sites accommodating two spin-less fermions in
a presence of non-classical flux in a number state |N〉 with (i) U/J = 0 (upper panel), (ii) U/J = 0.5
(central panel) and (iii) U/J = 1 (lower panel). Solid lines denoted by ‘class’ indicate (steady) value
of persistent current in an absence of non-classical control.

Linear entropy Equation (13) quantifying entanglement of fermionic and bosonic
degrees of freedom of a composite system consisting of a nanoring and controlling non-
classical field is presented in Figure 3 for U/J = 0.1 (upper panel), U/J = 0.5 (central panel)
and U/J = 1 (bottom panel). A feature which is peculiar and needs to be emphasised
is that in an absence of interaction of particles the nanoring and the non-classical field,
initially separated Equation (8) stay unentangled, i.e., for U = 0 linear entropy vanishes
SL = 0 as time flows confirming validity external field approximation applied in a series of
papers [20,36–41,54] for a free electron model of conduction. Let us also note the intersection
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of graphs in the bottom panel of Figure 3 analogous to previously presented intersection of
current characteristics.
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Figure 3. Linear entropy Equation (13) of a reduced (with respect to fermionic degrees of freedom)
state of a system of quantum ring of L = 6 sites accommodating two spin-less fermions interacting
with a single-mode non-classical flux in a number state |N〉 with (i) U/J = 0.1 (upper panel),
(ii) U/J = 0.5 (central panel) and (iii) U/J = 1 (lower panel).

There is a potential ability of currents flowing in nanoring to serve as an auxiliary
tool for distinguishing logical qubits Equation (10) in quantum communication. Using a
hypothetical device utilizing identical rings of possibly unknown parameters to classify
incoming logical qubits into one of the two types Equation (10) it is sufficient to know that
one among two logical qubits induces larger current flowing in the nanonrings. To achieve
this goal—i.e., to discriminate the logical qubits exiting communication channel—it is not
necessary to know a particular and precise value of a current in the nanoring corresponding
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to a given logical qubit. It is sufficient to know that different logical qubits cause different
reaction of the currents used as ’detectors’. Such a two-valued reaction (corresponding to
a larger or smaller current) could be (at least in principle) translated into classical bits of
information. In other words, it is enough to analyse a difference of currents ∆I rather than
their particular values provided that the difference, quantifying different response of the
nanorings to a particular logical qubit, is of a significant magnitude. Such an approach
could be beneficial for nanorings made of materials requiring sophisticated modelling [24]
leading to an often associated doubtful credibility of theoretical predictions of concrete
values of currents. There is a difference ∆I of currents in a presence of non-classical
flux prepared in the state ρ2

f (0) = |+〉〈+| and ρ2
f (0) = |−〉〈−| presented in Figure 4. It

is plotted for different values of U/J = 0, 0.5, 1 for upper, central and bottom panels,
respectively. Let us note that for sufficiently large values of z in Equation (10) the difference
between currents corresponding to different logical qubits become also significant. Let us
emphasise that a sign of ∆I changes in time as presented in the bottom panel of Figure 4.
The reversal of the sign of the current difference is an obstruction for using nanorings as
detectors as it prevents to uniquely assign signals (corresponding either to larger or to
smaller currents in the ring) to a particular quantum-logical value of a controlling field.
For a potentially credible discrimination of the two logical qubits Equation (10) with help
of nanorings time of interaction between nanorings and the field needs to be balanced
(neither to short nor to long) to reach satisfactory amplitude of ∆I without approaching the
sign reversal.

The corresponding difference in linear entropy Equation (13) given in Figure 5 indi-
cates growing entanglement difference with increasing U. This feature indicates that a
detection of different logical qubits corresponding to the Schrödinger cats Equation (10)
with help of nanorings is associated with a different degree of entanglement between
message carrying qubits and the detector.
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Figure 4. Cont.
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Figure 4. Difference of currents flowing in a quantum ring of L = 6 sites accommodating two
spin-less fermions in a presence of non-classical flux initially in cat states Equation (10) for different
values of coherent state ||z|〉: (i) U/J = 0 (upper panel), (ii) U/J = 0.5 (central panel) and (iii)
U/J = 1 (lower panel).
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Figure 5. Difference of linear entropy Equation (13) of a reduced (with respect to fermionic degrees
of freedom) state of a system of quantum ring of L = 6 sites accommodating two spin-less fermions
interacting with a single-mode non-classical flux initially in Cat States Equation (10) for different
values of coherent state ||z|〉: with (i) U/J = 0.1 (upper panel), (ii) U/J = 0.5 (central panel) and
(iii) U/J = 1 (lower panel).

3.2. Markovian Dissipation

In this subsection an effect of weak Markovian dissipation affecting particles in the
nanoring Equation (12) is presented. The aim is to verify to what extent U–dependence
of SL and in particular unusual perpetual separation of free (U = 0) electrons and the
non-classical driving remains valid in a system described by a dissipative model mimicking
realistic conditions in which nanorings do operate. In an absence of non-classical control
the dissipation results in lowering of a current amplitude both in a presence and in an
absence of inter-particle interaction as it can be inferred from an upper panel of Figure 6.
Qualitatively similar behaviour but supplemented with periodic oscillations occurs for
nanorings threaded by a non-classical flux initially in its vacuum state |N = 0〉 as presented
in Figure 6 (lower panel).

As a time evolution generated by Equation (12) is dissipative and in general entropy-
increasing [45], linear entropy SL, although not a proper entanglement quantifier, still
serves as a natural measure of mixedness [1]. Let us note that in a presence of non-classical
driving the linear entropy SL grows faster in an absence of fermion–fermion interaction
U = 0 as it is presented in an upper panel of Figure 7. Similar behaviour is present
also for an NPT entanglement of fermionic and bosonic degrees of freedom quantified by
negativity and plotted in a lower panel of Figure 7. Let us notice that the non-classical
driving induces NPT entanglement also in an absence of inter-particle interaction in the
dissipative nanoring.
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Figure 6. Current flowing in a quantum ring of L = 6 sites accommodating two spin-less fermions in
a presence of classical flux φc = π/4 only (upper panel) and in a presence of non-classical flux in a
vacuum state |N = 0〉 (lower panel) for unitary γ = 0 or dissipative γ = 0.1 evolution generated by
in Equation (12) without (U = 0) and with (U = 0.5) inter-particle interaction Equation (3).
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Figure 7. Linear entropy Equation (13) (upper panel) and negativity Equation (14) (lower panel) of
a state of a system of quantum ring of L = 6 sites accommodating two spin-less fermions interacting
with a single-mode non-classical initially prepared in a vacuum state |N = 0〉 with and without
inter-particle interaction Equation (3) for unitary γ = 0 or dissipative γ = 0.1 evolution generated by
in Equation (12) for unitary γ = 0 or dissipative γ = 0.1 evolution generated by in Equation (12).

4. Discussion

Our research on the model proposed in Equation (6) of a quantum nanoring controlled
by non-classical electromagnetic fields was focused on two aspects of time evolution
governed by a Markovian master equation Equation (12): the first is a fermionic current
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flowing in the ring and the second is the fermion–boson entanglement originating from the
ring–field coupling Equation (6). We investigated properties of currents flowing in the ring
for selected states of controlling flux threading the ring. We limited our attention to number
states of radiation of a well known non-classical properties [41]. We showed that the
non-classical driving modifies current characteristics from stationary, typical for persistent
currents [8] (cf. Figure 1), to oscillatory in time with a period depending on a frequency
ω Equation (6) of the non-classical field as presented in Figure 2. Due to an essentially
non-perturbative character of the ring–field coupling Equation (2) we performed numerical
calculations to find time evolving state of the composite system Equation (12) taking
into account possible Coulomb-like interaction between particles accommodating the
nanoring Equation (3). We showed that, except expected lowering of a current amplitude
(cf. Figure 2), inter-particle interaction strongly influences fermion–boson entanglement (cf.
Figure 3) quantified (for pure states) by linear entropy Equation (13). In an absence of the
interactions current carrying particles and non-classical control field, initially in a separable
state, remain unentangled as time flows. At the same time, however, an effect of interaction
is manifested in current time characteristics. This observation which is the main result of
our present studies additionally justifies applicability of an external field approximation
utilized in previous studies [20,36–41,54] for a free-electron model of conduction.

Sensitivity of currents flowing in nanorings can be utilized as an auxiliary tool for
detecting properties of non-classical flux. We compare currents controlled by a pair of
Schrödinger cat states Equation (10) which are natural candidates for logical qubits in
applications of quantum information processing based upon coherent states [31,35]. We
showed a different response of currents in nanorings driven by such states cf. Figure 4.
This observation can, at least in principle, be useful in quantum communication protocols
utilizing Schrödinger cats as ’letters’ of a transmitted message. Observing a value of
a difference of currents flowing in nanorings to discriminate one of two letters of an
alphabet formed by the two Schrödinger cats. Potential effectiveness of such a procedure
depends, as it is presented in the previous Section, not only on the state |z〉 constructing
the Schrödinger cats but also on a duration of a nanoring–field interaction. It is also shown
cf. Figure 5 that an entanglement induced by the interaction can be enhanced by a proper
choice of parameters of initial states of non-classical control Equation (10).

The ring–field entanglement is generated for U 6= 0 in Equation (3) or—it is the second
main conclusion of our work—by a presence of decoherence affecting (as it is assumed
in our work) particles accommodating nanoring. An amplitude of currents flowing in a
dissipative nanoring becomes damped in comparison to a unitary evolving systems cf.
Figure 6. To quantify ring–field entanglement for dissipative ring–field system we utilize
negativity Equation (14) allowing to detect NPT entanglement as presented Figure 7. We
thus infer an additional requirement for a credibility of an external field approximation: de-
coherence, if present in a system, should be weak. A simultaneous presence of decoherence
and an inter-particle many-body interaction does not act ’additively’ in enhancing NPT
entanglement: simultaneous presence of both decoherence and an inter-particle interaction
does not result in entanglement (quantified by the negativity) being larger than it is in a
presence decoherence only. It is also the case for ’mixedness’ of reduced state qualified by
linear entropy cf. Figure 7.

Nano-devices form a bridge between classical world of information engineering and
deeply microscopic stage of quantum phenomena [2,3]. Nanorings, due to their non-
standard properties originating from non-trivial doubly-connected topology, are natural
candidates for implementations of quantum information processing: from qubits, via
quantum communication up to a quantum measurement and control. Microscopic descrip-
tion of nanorings threaded by non-classical flux indicates non-trivial dynamic properties
deserving for a multi-perspective investigations. A research direction based upon the
nanoring-field model formulated in this work is one of the proposals.
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