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On Stability of a General Bilinear
Functional Equation

Anna Bahyrycz and Justyna Sikorska

Abstract. We prove the Hyers–Ulam stability of the functional equation

f(a1x1 + a2x2, b1y1 + b2y2) = C1f(x1, y1) (∗)
+ C2f(x1, y2) + C3f(x2, y1) + C4f(x2, y2)

in the class of functions from a real or complex linear space into a Banach
space over the same field. We also study, using the fixed point method,
the generalized stability of (∗) in the same class of functions. Our results
generalize some known outcomes.

Mathematics Subject Classification. 39B52, 39B82, 47J25, 47D03.

Keywords. Hyers–Ulam stability, Generalized stability, Functional equa-
tion, Fixed point, Nonlinear operator, Linear operator.

1. Introduction

Problem of studying the stability of functional equations has begun with a
question posed by S. Ulam (see, e.g., [17]) and an answer given by D.H. Hyers
[13]. Since then a number of papers investigating the so called now Hyers–
Ulam stability have appeared. The results concern also various generalizations
of the problem and these kind of research have their origins in the papers by
T. Aoki [1], D.G. Bourgin [7], Th. Rassias [16], P. Gavruta [11].

Let X and Y be linear spaces over the same field F ∈ {R,C}, a1, a2, b1, b2 ∈
F \ {0}, C1, C2, C3, C4 ∈ F and f : X2 → Y . In [10], K. Ciepliński starting
with a bilinear mapping, i.e., linear in each of its arguments, considered the
following functional equation
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f(a1x1 + a2x2, b1y1 + b2y2) = C1f(x1, y1)
+C2f(x1, y2) + C3f(x2, y1) + C4f(x2, y2) (1)

for all x1, x2, y1, y2 ∈ X, and investigated, among others, its Hyers–Ulam sta-
bility in Banach spaces. In fact, he proved the stability without knowing the
general solution of (1) and under some additional assumptions. In [6], the au-
thors described the form of solutions of (1). They were also studying relations
between (1) and bilinear mappings.

In the present paper, firstly knowing already the form of solutions of (1)
we prove its Hyers–Ulam stability, also in the cases excluded in [10]. Secondly,
applying the fixed point method, we study the generalized stability of (1) for
the same classes of control functions.

Particular cases of (1) are, among others, the following three functional
equations:

f(x1 + x2, y1 + y2) = f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2),

4f
(x1 + x2

2
,
y1 + y2

2

)
= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2),

2f
(
x1 + x2,

y1 + y2
2

)
= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2),

that is, the equations which characterize biadditive, bi-Jensen and Cauchy-
Jensen mappings, respectively. Therefore, our results generalize stability out-
comes for these equations (see, e.g., [2–5,9,14,15]).

Define C := C1 + C2 + C3 + C4.
For the convenience of the reader we recall here a result describing the

solutions of (1) (see [6], and also [12], where Y is an arbitrary field of charac-
teristic different from two).

Theorem 1. If f : X2 → Y satisfies (1), then there exist a biadditive function
g : X2 → Y, additive functions ϕ,ψ : X → Y and a constant δ ∈ Y such that

f(x, y) = g(x, y) + ϕ(x) + ψ(y) + δ, (2)

and
g(a1x, b1y) = C1g(x, y),
g(a1x, b2y) = C2g(x, y),
g(a2x, b1y) = C3g(x, y),
g(a2x, b2y) = C4g(x, y),

(3)

ϕ(a1x) = (C1 + C2)ϕ(x),
ϕ(a2x) = (C3 + C4)ϕ(x), (4)

ψ(b1y) = (C1 + C3)ψ(y),
ψ(b2y) = (C2 + C4)ψ(y), (5)

for all x, y ∈ X, and

δ(C − 1) = 0. (6)
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Conversely, each function f of the form (2) with g biadditive, ϕ,ψ addi-
tive, and such that conditions (3), (4), (5), (6) are satisfied, is a solution of
(1).

Throughout this paper we keep the standard notation: N,R and C stand
for the sets of all positive integers, all real numbers and all complex numbers,
respectively. Moreover, we denote R+ := [0,∞), N0 := N ∪ {0} and we adopt
the convention 00 = 1.

2. Hyers–Ulam Stability of (1)

We start the section with recalling two stability results: for the Cauchy equa-
tion (see [13]) and for the biadditivity equation (see, e.g., [5,9]).

Lemma 1. Let (H,+) be an abelian group and (Y, ‖ · ‖) be a Banach space.
Given ε > 0 assume that f : H → Y satisfies

‖f(x + y) − f(x) − f(y)‖ ≤ ε, x, y ∈ H.

Then there exists an additive function F : H → Y such that

‖f(x) − F (x)‖ ≤ ε, x ∈ H.

Moreover, F is a unique function satisfying the above condition and it is of
the form F (x) = lim

n→∞
1
2n f(2nx) for all x ∈ H.

Lemma 2. Let (H,+) be an abelian group and (Y, ‖ · ‖) be a Banach space.
Given ε > 0 assume that g : H2 → Y satisfies

‖g(x1 + x2, y1 + y2) − g(x1, y1) − g(x1, y2)
−g(x2, y1) − g(x2, y2)‖ ≤ ε, x1, x2, y1, y2 ∈ H.

Then there exists an additive function G : H2 → Y such that

‖g(x, y) − G(x, y)‖ ≤ 1
3
ε, x, y ∈ H.

Moreover, G is a unique function satisfying the above condition and it is of
the form G(x, y) = lim

n→∞
1
4n g(2nx, 2ny) for all x, y ∈ H.

Now we are able to present the main result of this section.

Theorem 2. Let (Y, ‖·‖) be a Banach space and ε > 0. Assume that f : X2 → Y
is a mapping such that

‖f(a1x1 + a2x2, b1y1 + b2y2) −C1f(x1, y1) − C2f(x1, y2)
−C3f(x2, y1) − C4f(x2, y2)‖ ≤ ε (7)

for x1, x2, y1, y2 ∈ X. Then there exists a solution F : X2 → Y of (1) such
that

‖f(x, y) − f(0, 0) − F (x, y)‖ ≤ 14ε, x, y ∈ X. (8)

Moreover, if C 	= 1 then F is a unique solution of (1) such that (8) holds.
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Proof. Immediately from (7) we obtain the following inequalities

‖f(a1x1 + a2x2, 0) − C1f(x1, 0) − C2f(x1, 0) − C3f(x2, 0) − C4f(x2, 0)‖ ≤ ε,

(9)
‖f(0, b1y1 + b2y2) − C1f(0, y1) − C2f(0, y2) − C3f(0, y1) − C4f(0, y2)‖ ≤ ε,

(10)

for all x1, x2, y1, y2 ∈ X, and

‖(1 − C)f(0, 0)‖ ≤ ε. (11)

Therefore, the functions ϕ(x) := f(x, 0) − f(0, 0) for x ∈ X, and ψ(y) :=
f(0, y) − f(0, 0) for y ∈ X, satisfy the conditions

‖ϕ(a1x1 + a2x2) − C1ϕ(x1) − C2ϕ(x1) − C3ϕ(x2) − C4ϕ(x2)‖ ≤ 2ε (12)

and

‖ψ(b1y1 + b2y2) − C1ψ(y1) − C2ψ(y2) − C3ψ(y1) − C4ψ(y2)‖ ≤ 2ε, (13)

respectively.
By (7) we also have

‖f(a1x1, b1y1) − C1f(x1, y1) − C2f(x1, 0) − C3f(0, y1) − C4f(0, 0)‖ ≤ ε,

‖f(a1x1, b2y2) − C1f(x1, 0) − C2f(x1, y2) − C3f(0, 0) − C4f(0, y2)‖ ≤ ε,

‖f(a2x2, b1y1) − C1f(0, y1) − C2f(0, 0) − C3f(x2, y1) − C4f(x2, 0)‖ ≤ ε,

‖f(a2x2, b2y2) − C1f(0, 0) − C2f(0, y2) − C3f(x2, 0) − C4f(x2, y2)‖ ≤ ε

(14)

and, moreover,

‖f(a1x1, 0) − (C1 + C2)f(x1, 0) − (C3 + C4)f(0, 0)‖ ≤ ε,

‖f(a2x2, 0) − (C3 + C4)f(x2, 0) − (C1 + C2)f(0, 0)‖ ≤ ε,

‖f(0, b1y1) − (C1 + C3)f(0, y1) − (C2 + C4)f(0, 0)‖ ≤ ε,

‖f(0, b2y2) − (C2 + C4)f(0, y2) − (C1 + C3)f(0, 0)‖ ≤ ε.

(15)

From (7), (11), (14) and (15) it follows that

‖f(a1x1 + a2x2, b1y1 + b2y2) − f(a1x1, b1y1) − f(a1x1, b2y2)

− f(a2x2, b1y1) − f(a2x2, b2y2) + f(a1x1, 0) + f(a2x2, 0)

+ f(0, b1y1) + f(0, b2y2) − f(0, 0)‖ ≤ 10ε,

and, since a1a2b1b2 	= 0,

‖f(x1 + x2, y1 + y2) − f(x1, y1) − f(x1, y2) − f(x2, y1) − f(x2, y2)
+ f(x1, 0) + f(x2, 0) + f(0, y1) + f(0, y2) − f(0, 0)‖ ≤ 10ε.

(16)
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From (9), (11) and (15) we obtain

‖f(x1 + x2, 0) − f(x1, 0) − f(x2, 0) + f(0, 0)‖ ≤ 4ε, (17)

and by (10), (11) and (15) we have

‖f(0, y1 + y2) − f(0, y1) − f(0, y2) + f(0, 0)‖ ≤ 4ε, (18)

so, for all x1, x2, y1, y2 ∈ X,

‖ϕ(x1 + x2) − ϕ(x1) − ϕ(x2)‖ ≤ 4ε and ‖ψ(y1 + y2) − ψ(y1) − ψ(y2)‖ ≤ 4ε.

On account of Lemma 1, there exist a unique additive function Φ and a unique
additive function Ψ such that

‖ϕ(x) − Φ(x)‖ ≤ 4ε, ‖ψ(x) − Ψ(x)‖ ≤ 4ε, x ∈ X, (19)

with

Φ(x) = lim
n→∞

1
2n

ϕ (2nx) , Ψ(x) = lim
n→∞

1
2n

ψ (2nx) , x ∈ X.

Therefore using (12) and (13), we derive that the functions F1(x, y) := Φ(x)
and F2(x, y) := Ψ(y), for x, y ∈ X, satisfy (1).

Let us define g : X2 → Y by

g(x, y) := f(x, y) − f(x, 0) − f(0, y) + f(0, 0), x, y ∈ X. (20)

Then

f(x, y) = g(x, y) + f(x, 0) + f(0, y) − f(0, 0) = g(x, y) + ϕ(x) + ψ(y) + f(0, 0)

and by (7), (9), (10) and (11), we get

‖g(a1x1 + a2x2, b1y1 + b2y2)− C1g(x1, y1) − C2g(x1, y2)

− C3g(x2, y1) − C4g(x2, y2)‖ ≤ 4ε.
(21)

On account of (16), (17), (18) and (20), we obtain

‖g(x1 + x2, y1 + y2) − g(x1, y1) − g(x1, y2) − g(x2, y1) − g(x2, y2)‖ ≤ 18ε.

By Lemma 2, there exists a unique biadditive function G such that

‖g(x, y) − G(x, y)‖ ≤ 6ε, (22)

and, moreover, G(x, y) = lim
n→∞

1
4n g(2nx, 2ny). Using (21), we obtain that G

satisfies (1).
Let us define

F (x, y) := G(x, y) + Φ(x) + Ψ(y), x, y ∈ X. (23)

Function F satisfies (1) and from (19) and (22) we get

‖f(x, y) − f(0, 0) − F (x, y)‖ ≤ ‖g(x, y) − G(x, y)‖ + ‖ϕ(x) − Φ(x)‖
+‖ψ(y) − Ψ(y)‖ ≤ 14ε.
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For the proof of the uniqueness, assume that C 	= 1 and let F ′ be another
function satisfying (1) and inequality (8). Therefore, F ′ is of the form (cf.,
Theorem 1)

F ′(x, y) = G′(x, y) + Φ′(x) + Ψ′(y) + δ′, x, y ∈ X,

with biadditive G′, additive Φ′ and Ψ′, satisfying (3), (4) and (5), respectively,
and with δ′ = 0 in the case C 	= 1.

We have for all x, y ∈ X, n ∈ N,

‖F (nx, ny) − F ′(nx, ny)‖ ≤ 28ε,

‖G(nx, ny) + Φ(nx) + Ψ(ny) − G′(nx, ny) − Φ′(nx) − Ψ′(ny)‖ ≤ 28ε,

‖n2
(
G(x, y) − G′(x, y)

)
+ n

(
Φ(x) + Ψ(y) − Φ′(x) − Ψ′(y)

)
‖ ≤ 28ε.

Dividing the above inequality by n2 side by side and letting n tend to infinity
we obtain G = G′, and consequently,

Φ(x) + Ψ(y) = Φ′(x) + Ψ′(y) x, y ∈ X.

It is now enough to set y = 0 and then x = 0 in order to obtain Φ = Φ′ and
Ψ = Ψ′, respectively. �

Remark 1. A thorough inspection of the proof of Theorem 2 shows that in
the case C = 1 we are able to obtain a better approximation. Namely, if
f : X2 → Y is a mapping satisfying (7) for x1, x2, y1, y2 ∈ X and C = 1, then
there exists a solution F : X2 → Y of (1) such that

‖f(x, y) − f(0, 0) − F (x, y)‖ ≤ 11ε, x, y ∈ X. (24)

Remark 2. It is also easy to observe that in the case C = 1 we do not have
the uniqueness of function F in (8). Indeed, each function F : X2 → Y ,

F := G + Φ + Ψ + δ′

with G,Φ,Ψ defined as in the proof of Theorem 2, and with δ′ ∈ Y such that

‖δ′‖ ≤ 3ε

satisfies, on account of Remark 1, conditions (1) and (8).

3. Generalized Stability of (1)

In this section we provide some results concerning generalized stability with
various approximation functions. In what follows we will use a notation

(Φf)(x1, y1, x2, y2) := f(a1x1 + a2x2, b1y1 + b2y2)

− C1f(x1, y1) − C2f(x1, y2) − C3f(x2, y1) − C4f(x2, y2)

for x1, x2, y1, y2 ∈ X. Let us also denote a := a1 + a2 and b := b1 + b2.
Our first result reads as follows.
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Theorem 3. Suppose that (Y, ‖ · ‖) is a Banach space, C 	= 0, a 	= 0, b 	= 0. Let
f : X2 → Y and θ : X4 → R+ be mappings satisfying the inequality

‖(Φf)(x1, y1, x2, y2)‖ ≤ θ(x1, y1, x2, y2), x1, x2, y1, y2 ∈ X. (25)

Assume, further, that for an s ∈ {−1, 1} (depending on a, b, C) we have

ε∗(x, y) :=
∞∑

n=0

θ
(
asn+ s−1

2 x, bsn+
s−1
2 y, asn+ s−1

2 x, bsn+
s−1
2 y

)

|C|sn+ s+1
2

<∞, x, y∈X,

(26)

and

lim
n→∞

θ
(
asnx1, b

sny1, a
snx2, b

sny2
)

|C|sn = 0, x1, x2, y1, y2 ∈ X. (27)

Then there exists a unique solution F : X2 → Y of (1) such that

‖f(x, y) − F (x, y)‖ ≤ ε∗(x, y), x, y ∈ X. (28)

Proof. Putting x1 = x2 = x and y1 = y2 = y in (25) we get

‖f
(
ax, by

)
− Cf(x, y)‖ ≤ θ(x, y, x, y), x, y ∈ X,

whence, ∥∥∥∥
f
(
ax, by

)
C

− f(x, y)
∥∥∥∥ ≤ 1

|C|θ(x, y, x, y), x, y ∈ X. (29)

Similarly, putting x1 = x2 = x
a and y1 = y2 = y

b in (25) we obtain∥∥∥f(x, y) − Cf
(x

a
,
y

b

)∥∥∥ ≤ θ
(x

a
,
y

b
,
x

a
,
y

b

)
, x, y ∈ X. (30)

Define

(T ξ)(x, y) :=
1

Cs
ξ(asx, bsy), ξ ∈ Y X2

, x, y ∈ X, (31)

and

ε(x, y) :=

⎧
⎪⎪⎨
⎪⎪⎩

1
|C|θ(x, y, x, y), for s = 1,

θ
(x

a
,
y

b
,
x

a
,
y

b

)
, for s = −1,

for all x, y ∈ X. Then, for any ξ, μ : X2 → Y, x, y ∈ X we have

‖(T ξ)(x, y) − (T μ)(x, y)‖ =
1

|C|s
∥∥ξ

(
asx, bsy

)
− μ

(
asx, bsy

)∥∥

and by (29) and (30),

‖(T f)(x, y) − f(x, y)‖ ≤ ε(x, y), x, y ∈ X.

Next, put

(Λη)(x, y) :=
1

|C|s η
(
asx, bsy

)
, η ∈ R

X2

+ , x, y ∈ X.
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As one can check,

(Λnε)(x, y)=
ε
(
asnx, bsny

)
|C|sn =

⎧
⎪⎨
⎪⎩

θ(anx, bny, anx, bny)
|C|n+1

, for s = 1,

|C|nθ
( x

an+1
,

y

bn+1
,

x

an+1
,

y

bn+1

)
, for s = −1,

for all x, y ∈ X, n ∈ N0.
The operators T : Y X2 → Y X2

and Λ: RX2

+ → R
X2

+ satisfy the as-
sumptions of Theorem 1 in [8], therefore, there exists a unique fixed point
F : X2 → Y of T such that (28) holds. Moreover,

F (x, y) = lim
n→∞(T nf)(x, y), x, y ∈ X. (32)

Now, we prove that for any x1, x2, y1, y2 ∈ X and n ∈ N0 we have
∥∥(

Φ(T nf)
)
(x1, y1, x2, y2)

∥∥ ≤
θ
(
asnx1, b

sny1, a
snx2, b

sny2
)

|C|sn . (33)

Since the case n = 0 is just (25), fix an n ∈ N0 and assume that (33) holds for
any x1, x2, y1, y2 ∈ X. Then for any x1, x2, y1, y2 ∈ X we get∥∥(

Φ(T n+1f)
)
(x1, y1, x2, y2)

∥∥
=

∥∥(
T (T nf)

)
(a1x1 + a2x2, b1y1 + b2y2)

−C1

(
T (T nf)

)
(x1, y1) − C2

(
T (T nf)

)
(x1, y2)

−C3

(
T (T nf)

)
(x2, y1) − C4

(
T (T nf)

)
(x2, y2)

∥∥

=
∥∥∥ 1

Cs
(T nf)

(
as(a1x1 + a2x2), bs(b1y1 + b2y2)

)

−C1
1

Cs
(T nf)(asx1, b

sy1) − C2
1

Cs
(T nf)(asx1, b

sy2)

−C3
1

Cs
(T nf)(asx2, b

sy1) − C4
1

Cs
(T nf)(asx2, b

sy2)
∥∥∥

=
1

|C|s
∥∥(

Φ(T nf)
)
(asx1, b

sy1, a
sx2, b

sy2)
∥∥

≤
θ
(
as(n+1)x1, b

s(n+1)y1, a
s(n+1)x2, b

s(n+1)y2
)

|C|s(n+1)
,

and thus, (33) holds for any x1, x2, y1, y2 ∈ X and n ∈ N0.
Letting n → ∞ in (33) and using (27) we finally obtain

(ΦF )(x1, y1, x2, y2) = 0, x1, x2, y1, y2 ∈ X,

which means that function F satisfies (1).
For the proof of uniqueness, assume that F ′ is another function satisfying

(1) and (28). We have for all x, y ∈ X, l ∈ N0

‖F (x, y) − F ′(x, y)‖

=
∥∥∥ 1

Csl
F (aslx, bsly) − 1

Csl
F ′(aslx, bsly)

∥∥∥
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≤ 1
|C|sl

(
‖F (aslx, bsly) − f(aslx, bsly)‖

+ ‖F ′(aslx, bsly) − f(aslx, bsly)‖
)

≤ 2
∞∑

n=0

θ
(
as(l+n)+ s−1

2 x, bs(l+n)+ s−1
2 y, as(l+n)+ s−1

2 x, bs(l+n)+ s−1
2 y

)

|C|s(n+l)+ s+1
2

= 2
∞∑
n=l

θ
(
asn+ s−1

2 x, bsn+
s−1
2 y, asn+ s−1

2 x, bsn+
s−1
2 y

)

|C|sn+ s+1
2

,

whence letting l → ∞ and using (26) we obtain F (x, y) = F ′(x, y) for all
x, y ∈ X, which finishes the proof. �

Theorem 3 with θ(x1, y1, x2, y2) := ε > 0 gives immediately the classical
Hyers–Ulam stability result for (1). Namely, we have the following corollary.

Corollary 1. Let (Y, ‖ · ‖) be a Banach space, ε > 0, C 	= 0, |C| 	= 1, a 	= 0
and b 	= 0. If f : X2 → Y satisfies the inequality

‖(Φf)(x1, y1, x2, y2)‖ ≤ ε, x1, x2, y1, y2 ∈ X,

then there exists a unique solution F : X2 → Y of (1) such that

‖f(x, y) − F (x, y)‖ ≤ ε

|1 − |C|| , x, y ∈ X.

Proof. From (26) we have

ε∗(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
n=0

ε

|C|n+1
, for |C| > 1

∞∑
n=0

|C|nε, for 0 < |C| < 1
=

⎧
⎪⎨
⎪⎩

ε

|C| − 1
, for |C| > 1

ε

1 − |C| , for 0 < |C| < 1

=
ε

|1 − |C|| , for C ∈ R \ {−1, 0, 1}.

�

Remark 3. Studying the proof of Theorem 3 one can make several observa-
tions:

• We do not demand that the coefficients a1, a2, b1, b2 are non-zero.
• If C = 0 then for ε∗ in (26) to be well defined we take s = −1. If also

a 	= 0, b 	= 0, then in Theorem 3, f satisfies the condition

‖f(x, y)‖ ≤ θ
(x

a
,
y

b
,
x

a
,
y

b

)
, x, y ∈ X,

and in Corollary 1, f is bounded by ε. Both, in the theorem and in the
corollary, we have then

F (x, y) = lim
n→∞(T nf)(x, y) = lim

n→∞ Cnf
( x

an
,

y

bn

)
= 0, x, y ∈ X.
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• If a = 0 = b (and |C| > 1, for (26) to be satisfied), we take s = 1, and we
have ∥∥∥f(x, y) − f(0, 0)

C

∥∥∥ ≤ 1
|C|θ(x, y, x, y), x, y ∈ X, (34)

in Theorem 3, and with θ(x, y, x, y) = ε, in Corollary 1.
Then

F (x, y) = lim
n→∞(T nf)(x, y) = lim

n→∞
1

Cn
f(0, 0) = 0.

From (34), it follows that in Theorem 3, f is majorized by the function

X2 
 (x, y) �→ 1
|C|θ(x, y, x, y) +

θ(0, 0, 0, 0)
|C − 1||C| ,

and in Corollary 1, it is simply bounded.
• If a = 0 and b 	= 0 (and |C| > 1) then s = 1 and the approximating

function F depends only on one variable

F (x, y) = lim
n→∞(T nf)(x, y) = lim

n→∞
1

Cn
f(0, bny), x, y ∈ X.

Analogous approach we have for a 	= 0 and b = 0.
• If |C| > 1 then s = 1, and Corollary 1 coincides with the result of

Ciepliñski from [10].

Theorem 4. Let (Y, ‖ · ‖) be a Banach space. Assume that f : X2 → Y and
θ : X4 → R+ are mappings satisfying inequality (25) and the conditions

ε∗(x, y) :=

∞∑
n=0

∑
i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|lδ(i,j,k,l)1 (x, y, x, y) < ∞, (35)

for x, y ∈ X and

lim
n→∞

∑
i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|lδ(i,j,k,l)0 (x1, y1, x2, y2) = 0, (36)

for x1, x2, y1, y2 ∈ X, where

δ
(i,j,k,l)
m (x1, y1, x2, y2) :=

θ
( x1

(2a1)i+j+m(2a2)k+l
,

y1
(2b1)i+k+m(2b2)j+l

,

x2

(2a1)i+j(2a2)k+l+m
,

y2
(2b1)i+k(2b2)j+l+m

)
.

Then there exists a unique solution F : X2 → Y of (1) such that condition
(28) holds.

Proof. Putting x1 = x
2a1

, x2 = x
2a2

, y1 = y
2b1

and y2 = y
2b2

in (25) (with
x, y ∈ X) we get ∥∥∥f(x, y) − C1f

( x

2a1
,

y

2b1

)
− C2f

( x

2a1
,

y

2b2

)
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−C3f
( x

2a2
,

y

2b1

)
− C4f

( x

2a2
,

y

2b2

)∥∥∥

≤ θ
( x

2a1
,

y

2b1
,

x

2a2
,

y

2b2

)
, x, y ∈ X. (37)

Define

(T ξ)(x, y) := C1ξ
( x

2a1
,

y

2b1

)
+ C2ξ

( x

2a1
,

y

2b2

)
+ C3ξ

( x

2a2
,

y

2b1

)

+C4ξ
( x

2a2
,

y

2b2

)
, ξ ∈ Y X2

, x, y ∈ X,

and

ε(x, y) := θ
( x

2a1
,

y

2b1
,

x

2a2
,

y

2b2

)
, x, y ∈ X.

Then, by (37), we obtain

‖(T f)(x, y) − f(x, y)‖ ≤ ε(x, y), x, y ∈ X.

Put also

(Λη)(x, y) := |C1|η
( x

2a1
,

y

2b1

)
+ |C2|η

( x

2a1
,

y

2b2

)
+ |C3|η

( x

2a2
,

y

2b1

)

+|C4|η
( x

2a2
,

y

2b2

)
, η ∈ R

X2

+ , x, y ∈ X.

Now, using induction, we show that for any n ∈ N0 and x, y ∈ X we
have

(Λnε)(x, y) =
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

× ε
(( 1

2a1

)i+j( 1
2a2

)k+l

x,
( 1

2b1

)i+k( 1
2b2

)j+l

y
)
.

(38)

Fix x, y ∈ X. Clearly, (38) is true for n = 0. Next, fix an n ∈ N0 and assume
that (38) holds. Then

(Λn+1ε)(x, y) =
(
Λ(Λnε)

)
(x, y)

= |C1|(Λnε)
( x

2a1
,

y

2b1

)
+ |C2|(Λnε)

( x

2a1
,

y

2b2

)

+ |C3|(Λnε)
( x

2a2
,

y

2b1

)
+ |C4|(Λnε)

( x

2a2
,

y

2b2

)

=
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i+1|C2|j |C3|k|C4|l

× ε

(
x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k+1(2b2)j+l

)

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j+1|C3|k|C4|l
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× ε

(
x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k(2b2)j+l+1

)

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k+1|C4|l

× ε

(
x

(2a1)i+j(2a2)k+l+1
,

y

(2b1)i+k+1(2b2)j+l

)

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l+1

× ε

(
x

(2a1)i+j(2a2)k+l+1
,

y

(2b1)i+k(2b2)j+l+1

)

=
∑

i+j+k+l=n+1

(
n + 1
i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

× ε

(
x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)
,

and thus (38) is true for any n ∈ N0 and x, y ∈ X.
One can now show that the operators T : Y X2 → Y X2

and Λ: R+
X2

→
R+

X2
satisfy the assumptions of Theorem 1 in [8] and therefore there exists

a unique fixed point F : X2 → Y of T such that (28) holds. Moreover, F is
given by (32).

We prove that for any x1, x2, y1, y2 ∈ X and n ∈ N0 we have
∥∥(

Φ(T nf)
)
(x1, y1, x2, y2)

∥∥

≤
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|lδ(i,j,k,l)0 (x1, y1, x2, y2). (39)

Since the case n = 0 is just (25), fix an n ∈ N0 and assume that (39) holds for
any x1, x2, y1, y2 ∈ X. Then for any x1, x2, y1, y2 ∈ X we get

∥∥(
Φ(T n+1f)

)
(x1, y1, x2, y2)

∥∥ =
∥∥(

T (T nf)
)
(a1x1 + a2x2, b1y1 + b2y2)

−C1

(
T (T nf)

)
(x1, y1) − C2

(
T (T nf)

)
(x1, y2)

−C3

(
T (T nf)

)
(x2, y1) − C4

(
T (T nf)

)
(x2, y2)

∥∥

=
∥∥∥C1(T nf)

(a1x1 + a2x2

2a1
,
b1y1 + b2y2

2b1

)

+C2(T nf)
(a1x1 + a2x2

2a1
,
b1y1 + b2y2

2b2

)

+C3(T nf)
(a1x1 + a2x2

2a2
,
b1y1 + b2y2

2b1

)

+C4(T nf)
(a1x1 + a2x2

2a2
,
b1y1 + b2y2

2b2

)
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−C1

(
C1(T nf)

( x1

2a1
,

y1
2b1

)
+ C2(T nf)

( x1

2a1
,

y1
2b2

)

+C3(T nf)
( x1

2a2
,

y1
2b1

)
+ C4(T nf)

( x1

2a2
,

y1
2b2

))

−C2

(
C1(T nf)

( x1

2a1
,

y2
2b1

)
+ C2(T nf)

( x1

2a1
,

y2
2b2

)

+C3(T nf)
( x1

2a2
,

y2
2b1

)
+ C4(T nf)

( x1

2a2
,

y2
2b2

))

−C3

(
C1(T nf)

( x2

2a1
,

y1
2b1

)
+ C2(T nf)

( x2

2a1
,

y1
2b2

)

+C3(T nf)
( x2

2a2
,

y1
2b1

)
+ C4(T nf)

( x2

2a2
,

y1
2b2

))

−C4

(
C1(T nf)

( x2

2a1
,

y2
2b1

)
+ C2(T nf)

( x2

2a1
,

y2
2b2

)

+C3(T nf)
( x2

2a2
,

y2
2b1

)
+ C4(T nf)

( x2

2a2
,

y2
2b2

))∥∥∥

≤ |C1|
∥∥∥(

Φ(T nf)
)( x1

2a1
,

y1
2b1

,
x2

2a1
,

y2
2b1

)∥∥∥

+ |C2|
∥∥∥(

Φ(T nf)
)( x1

2a1
,

y1
2b2

,
x2

2a1
,

y2
2b2

)∥∥∥

+ |C3|
∥∥∥(

Φ(T nf)
)( x1

2a2
,

y1
2b1

,
x2

2a2
,

y2
2b1

)∥∥∥

+ |C4|
∥∥∥(

Φ(T nf)
)( x1

2a2
,

y1
2b2

,
x2

2a2
,

y2
2b2

)∥∥∥

≤
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i+1|C2|j |C3|k|C4|l

×δ
(i,j,k,l)
0

( x1

2a1
,

y1
2b1

,
x2

2a1
,

y2
2b1

)

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j+1|C3|k|C4|l

×δ
(i,j,k,l)
0

( x1

2a1
,

y1
2b2

,
x2

2a1
,

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k+1|C4|l δ(i,j,k,l)0

×δ
(i,j,k,l)
0

( x1

2a2
,

y1
2b1

,
x2

2a2
,

y2
2b1

)

+
∑

i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l+1

×δ
(i,j,k,l)
0

( x1

2a2
,

y1
2b2

,
x2

2a2
,

y2
2b2

)
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=
∑

i+j+k+l=n+1

(
n + 1
i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l δ(i,j,k,l)0 (x1, y1, x2, y2).

We have thus shown that (39) holds for x1, x2, y1, y2 ∈ X and n ∈ N0. Letting
n → ∞ in (39) and using (36) we see that

(ΦF )(x1, y1, x2, y2) = 0, x1, x2, y1, y2 ∈ X,

which means that function F satisfies (1).
For the proof of uniqueness, assume that F ′ is another function satisfying

(1) and (28). Then, for any m ∈ N we have

‖F (x, y) − F ′(x, y)‖

=
∥∥∥

∑
i+j+k+l=m

(
m

i, j, k, l

)
Ci

1C
j
2C

k
3Cl

4

×
[
F

( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)

− F ′
( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)]∥∥∥

≤
∑

i+j+k+l=m

(
m

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

×
∥∥∥F

( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)

− F ′
( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)∥∥∥

≤
∑

i+j+k+l=m

(
m

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

×
(∥∥∥F

( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)

− f
( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)∥∥∥

+
∥∥∥f

( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)

− F ′
( x

(2a1)i+j(2a2)k+l
,

y

(2b1)i+k(2b2)j+l

)∥∥∥
)

= 2
∞∑

n=0

∑
i+j+k+l=m

∑

i+j+k+l=n

(
m

i, j, k, l

)(
n

i, j, k, l

)
|C1|i+i|C2|j+j |C3|k+k|C4|l+l

× θ
( x

(2a1)i+i+j+j+1(2a2)k+k+l+l
,

y

(2b1)i+i+k+k+1(2b2)j+j+l+l
,

x

(2a1)i+i+j+j+1(2a2)k+k+l+l
,

y

(2b1)i+i+k+k+1(2b2)j+j+l+l

)



On Stability of a General Bilinear Functional Equation Page 15 of 17   143 

= 2
∞∑

n=0

∑
i+j+k+l=n+m

(
n + m

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

× θ
( x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k+1(2b2)j+l
,

x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k+1(2b2)j+l

)

= 2
∞∑

n=m

∑
i+j+k+l=n

(
n

i, j, k, l

)
|C1|i|C2|j |C3|k|C4|l

× θ
( x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k+1(2b2)j+l
,

x

(2a1)i+j+1(2a2)k+l
,

y

(2b1)i+k+1(2b2)j+l

)
.

Tending now with m to infinity, on the account of the assumption, it follows
that F = F ′, which completes the proof. �

Theorem 4 with θ(x1, y1, x2, y2) := ε > 0 gives immediately the following
corollary on the classical Hyers–Ulam stability of (1).

Corollary 2. Let (Y, ‖·‖) be a Banach space, ε > 0 and |C1|+ |C2|+ |C3|+ |C4|
< 1. If f : X2 → Y satisfies the inequality

‖(Φf)(x1, y1, x2, y2)‖ ≤ ε, x1, x2, y1, y2 ∈ X,

then there exists a solution F : X2 → Y of (1) such that

‖f(x, y) − F (x, y)‖ ≤ ε

1 − (|C1| + |C2| + |C3| + |C4|)
, x, y ∈ X.
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