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Abstract. Let X,Y be linear spaces over a field K. Assume that f : X2 → Y satisfies the
general linear equation with respect to the first and with respect to the second variables,
that is,

{
f(a1x1 + a2x2, y) = A1f(x1, y) +A2f(x2, y)
f(x, b1y1 + b2y2) = B1f(x, y1) +B2f(x, y2),

(∗)

for all x, xi, y, yi ∈ X and with ai, bi ∈ K\{0}, Ai, Bi ∈ K (i ∈ {1, 2}). It is easy to see that
such a function satisfies the functional equation

f(a1x1 + a2x2, b1y1 + b2y2) = C1f(x1, y1) + C2f(x1, y2)
+C3f(x2, y1) + C4f(x2, y2),

(∗∗)

for all xi, yi ∈ X (i ∈ {1, 2}), where C1 := A1B1, C2 := A1B2, C3 := A2B1, C4 := A2B2.
We describe the form of solutions and study relations between (∗) and (∗∗).

Mathematics Subject Classification. 39B52, 39B72, 15A06, 12F05.

Keywords. Linear equation, Additive function, Biadditive function, Hamel basis, Field ex-

tension, Algebraic dependence.

Introduction

General linear functional equations have been studied for years (see, e.g., [1–4,
6,10]). In the paper, we shall study their counterpart for two-variable functions.

Let X,Y be linear spaces over a field K and f : X2 → Y . For some fixed
ai, bi ∈ K\{0} =: K∗, Ai, Bi ∈ K, i ∈ {1, 2}, we consider the following system{

f(a1x1 + a2x2, y) = A1f(x1, y) + A2f(x2, y)
f(x, b1y1 + b2y2) = B1f(x, y1) + B2f(x, y2),

(1)

for all x, xi, y, yi ∈ X, i ∈ {1, 2}.
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It is easy to see that from (1) we immediately get

f(a1x1 + a2x2, b1y1 + b2y2) = A1B1f(x1, y1) + A1B2f(x1, y2)

+ A2B1f(x2, y1) + A2B2f(x2, y2),
(2)

which leads to a more general equation

f(a1x1 + a2x2, b1y1 + b2y2) = C1f(x1, y1) + C2f(x1, y2)

+ C3f(x2, y1) + C4f(x2, y2)
(3)

for all xi, yi ∈ X and with fixed ai, bi ∈ K
∗, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}.

In [5], Ciepliński asked about the general solution of (3). He also formulated
the problem whether equation (3) (or (2)) is equivalent to system (1) (by
’equivalent’ we mean here that they have the same sets of solutions), or under
which assumptions on coefficients they are equivalent.

As already observed, from (1) we immediately get (3) with C1 := A1B1,
C2 := A1B2, C3 := A2B1, C4 := A2B2.

It is interesting to compare the following examples.

Example 1. (a) The function f(x, y) = xy + x + y + 1, x, y ∈ R, satisfies
(3) and (1) with ai = bi = Ai = Bi = 1

2 and Cj = 1
4 for i ∈ {1, 2},

j ∈ {1, 2, 3, 4}.
(b) The function f(x, y) = x + y, x, y ∈ R, satisfies (3) with ai = bi = 2 and

Cj = 1 for i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, but does not satisfy (1) with any
coefficients Ai, Bi.

(c) The function f(x, y) = 2x, x, y ∈ R, satisfies both (3) and (1) with
ai = Ai = 2, b1 = 1, b2 = 3, B1 = 1

3 , B2 = 2
3 and Cj = 1 for i ∈ {1, 2},

j ∈ {1, 2, 3, 4} even though A1B1 �= C1, A1B2 �= C2 and so on.

From Example 1 we see, e.g., that the conditions C1 = A1B1, C2 = A1B2,
C3 = A2B1, C4 = A2B2 do not guarantee the equivalence between (1) and
(3). In the final part of the paper we will describe circumstances under which
(3) implies (1).

Apart from this, we can formulate a problem in the language of alienation:
Given (3), we ask when there exist A1, A2, B1, B2 such that (3) splits into two
equations from (1). For details concerning the description and the general idea
of the alienation phenomenon we refer the interested reader to [7,8].

In the paper we restrict ourselves to the case where K is a field of charac-
teristic zero. Then it is an extension of the field Q of the rationals.

Solutions of (1)

We start with the following
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Theorem 1. If a function f : X2 → Y satisfies (1) then there exist a biadditive
function g : X2 → Y , additive functions ϕ,ψ : X → Y and a constant δ ∈ Y
such that

f(x, y) = g(x, y) + ϕ(x) + ψ(y) + δ, (4)

and

g(aix, y) = Aig(x, y),
g(x, biy) = Big(x, y), (5)

ϕ(aix) = Aiϕ(x), (6)
ψ(biy) = Biψ(y), (7)

for all x, y ∈ X and i ∈ {1, 2}, and, moreover,

ψ = 0 and δ = 0, whenever A1 + A2 �= 1
ϕ = 0 and δ = 0, whenever B1 + B2 �= 1.

(8)

Conversely, for every biadditive function g : X2 → Y , additive functions
ϕ,ψ : X → Y such that conditions (5), (6), (7) hold for all x, y ∈ X and
i ∈ {1, 2} and for every δ ∈ Y such that

δ(A1 + A2 − 1) = δ(B1 + B2 − 1) = 0, (9)

the function f : X2 → Y of the form (4) is a solution to (1).

Proof. Assume f satisfies (1), that is f satisfies the general linear equation with
respect to the first variable and with respect to the second variable. Hence,
(see, e.g., Kuczma [10, p. 383])

f(x1 + x2, y) = f(x1, y) + f(x2, y) − f(0, y),
f(x, y1 + y2) = f(x, y1) + f(x, y2) − f(x, 0), (10)

for all x, x1, x2, y, y1, y2 ∈ X. It follows that the functions

ϕ(x) := f(x, 0) − f(0, 0), x ∈ X, and ψ(y) := f(0, y) − f(0, 0), y ∈ X,

are additive and satisfy (6) and (7), respectively. Furthermore, the function

g(x, y) := f(x, y) − f(x, 0) − f(0, y) + f(0, 0), x, y ∈ X,

is, by (10), biadditive and satisfies (5).
Moreover, from (1) we have

f(0, y) = (A1 + A2)f(0, y),
f(x, 0) = (B1 + B2)f(x, 0), (11)

for all x, y ∈ X. That is, if A1 + A2 �= 1 then f(0, y) = 0 for all y ∈ X
and whence, ψ(y) := f(0, y) − f(0, 0) for all y ∈ Y and δ := f(0, 0) vanishes.
Similarly, if B1 + B2 �= 1 then f(x, 0) = 0 for all x ∈ X and ϕ(x) := f(x, 0) −
f(0, 0) for x ∈ X and δ vanishes. Consequently, we have (8).

The proof of the converse is a direct computation. �



A. Bahyrycz, J. Sikorska AEM

Directly from (1) we have the following.

Remark 1. If A1 + A2 = 1 and B1 + B2 = 1 then every constant function
f : X2 → Y satisfies (1). Otherwise, f = 0 is the only constant function
satisfying (1).

For the next considerations in which we study solutions of (1) in some
special cases we introduce the following conditions:

∀i∈{1,2} ai = Ai ∧ ∀i∈{1,2} bi = Bi, (α)

∀i∈{1,2} ai = Ai ∧ B1 + B2 = 1, (β)

A1 + A2 = 1 ∧ ∀i∈{1,2} bi = Bi, (γ)

A1 + A2 = 1 ∧ B1 + B2 = 1, (δ)

and ∼(ϑ) means that condition (ϑ) fails for ϑ ∈ {α, β, γ, δ}.

Corollary 1. Let f : R2 → R be a solution of (1) and assume that it satisfies
any regularity condition that forces a biadditive function to be continuous. Then
there exist α, β, γ, δ ∈ R such that

f(x, y) = αxy + βx + γy + δ, x, y ∈ R,

and moreover,

α = 0, whenever ∼ (α);
β = 0, whenever ∼ (β);
γ = 0, whenever ∼ (γ);
δ = 0, whenever ∼ (δ).

Proof. On account of the regularity assumption it follows that f is continuous
and so, by Theorem 1 any solution of (1) is of the form f(x, y) = αxy + βx +
γy + δ, x, y ∈ R with some α, β, γ, δ ∈ R. Therefrom we derive the following
conditions

αa1 = αA1

αa2 = αA2

βa1 = βA1

βa2 = βA2

γ = γ(A1 + A2)
δ = δ(A1 + A2)

and

αb1 = αB1

αb2 = αB2

β = β(B1 + B2)
γb1 = γB1

γb2 = γB2

δ = δ(B1 + B2),

which lead to our assertion. �

In the following results we study solutions of (1) with some rational coeffi-
cients.
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Corollary 2. Let f : X2 → Y satisfy (1) and let coefficients ai, bi for i ∈ {1, 2}
be rational. Then there exist a biadditive function g : X2 → Y , additive func-
tions ϕ,ψ : X → Y and a constant δ ∈ Y such that f has the form (4), and
moreover,

g = 0, whenever ∼ (α);
ϕ = 0, whenever ∼ (β);
ψ = 0, whenever ∼ (γ);
δ = 0, whenever ∼ (δ).

Remark 2. By Corollaries 1 and 2 (where in Corollary 1, g(x, y) := αxy,
ϕ(x) := βx, ψ(y) := γy for x, y ∈ X = R, Y = R), in the described spe-
cial cases, it follows immediately that

• there exists a non-zero biadditive g which is a solution of (1) if and only
if (α) holds;

• there exists a non-zero additive function ϕ on X such that f(x, y) := ϕ(x)
for all x, y ∈ X is a solution of (1) if and only if (β) holds;

• there exists a non-zero additive function ψ on X such that f(x, y) := ψ(y)
for all x, y ∈ X is a solution of (1) if and only if (γ) holds;

• there exists a non-zero constant δ ∈ Y such that function f(x, y) ≡ δ is
a solution of (1) if and only if (δ) holds (cf., Remark 1).

Corollary 3. Suppose system (1) has a non-constant solution f : X2 → Y .
Then

(a) if A1+A2 �= 1 and for some i ∈ {1, 2}, ai or Ai is rational, then ai = Ai;
(b) if B1+B2 �= 1 and for some i ∈ {1, 2}, bi or Bi is rational, then bi = Bi;
(c) if for some i ∈ {1, 2}, ai or Ai is rational, and for some j ∈ {1, 2}, bj

or Bj is rational, then ai = Ai or bj = Bj.

Proof. Assume a1 ∈ Q. Then by (5) we obtain

(a1 − A1)g(x, y) = 0, x, y ∈ X,

and by (6),

(a1 − A1)ϕ(x) = 0, x ∈ X.

Consequently, a1 = A1 or g(x, y) = ϕ(x) = 0 for all x, y ∈ X, and f depends
only on the second variable. The analogous result we obtain if we assume that
a2 ∈ Q.

Assume now that A1 ∈ Q. Then

g
(
(a1 − A1)x, y

)
= 0, x, y ∈ X, and ϕ

(
(a1 − A1)x

)
= 0, x ∈ X,

and we obtain the same result as above. That is, for any i ∈ {1, 2},

ai ∈ Q ∨ Ai ∈ Q ⇒ (
ai = Ai ∨ f(x, y) = ψ(y) + δ, x, y ∈ X

)
. (A)

Analogously, we obtain

bi ∈ Q ∨ Bi ∈ Q ⇒ (
bi = Bi ∨ f(x, y) = ϕ(x) + δ, x, y ∈ X

)
. (B)
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Items (a) and (b) follow immediately from (A), (B) and Theorem 1.
For (c), suppose that ai or Ai (for some i ∈ {1, 2}) is rational, ai �= Ai, and

bj or Bj (for some j ∈ {1, 2}) is rational and bj �= Bj , then we would derive
that the solution is constant, contrary to our assumption. �

As an immediate consequence of Corollary 3, (A) and (B) we also obtain

Corollary 4. Suppose that (1) has a non-constant solution f : X2 → Y and
assume that all coefficients ai, bi, Ai, Bi for i ∈ {1, 2} are rational. Then

(a) if A1 + A2 �= 1 then ∀i∈{1,2} ai = Ai;
(b) if B1 + B2 �= 1 then ∀i∈{1,2} bi = Bi;
(c) ∀i∈{1,2} ai = Ai or ∀i∈{1,2} bi = Bi.

In what follows we shall study the general solution of (1), so also these
non-regular solutions of (1) or solutions of (1) with not necessarily rational
coefficients. We start with two results from Kuczma’s book [10], which we
present here (adapted to the settings of the paper) for the convenience of the
reader (cf., Lemmas 13.10.2, 13.10.3 therein).

Lemma 1. Given a, b, A,B ∈ K
∗, let ξ : X → Y be a non-zero additive function

such that

ξ(ax) = Aξ(x) and ξ(bx) = Bξ(x)

for all x ∈ X. Assume that r is a rational function in two variables with
rational coefficients. If one of the expressions r(a, b) and r(A,B) makes sense,
then the other makes sense, and

ξ(r(a, b)x) = r(A,B)ξ(x), x ∈ X.

Lemma 2. Let Φ: Q(a, b) → Q(A,B) be an isomorphism such that

Φ(a) = A, Φ(b) = B.

Then Φ|Q = id and for every rational function r ∈ Q(x, y) such that r(a, b),
r(A,B) make sense

Φ(r(a, b)) = r(A,B).

Now we are ready to introduce our results concerning general solutions of
(1).

Theorem 2. The condition B1 + B2 = 1 is satisfied and

(H1) there exists an isomorphism Φ: Q(a1, a2) → Q(A1, A2) such that
Φ(ai) = Ai, i ∈ {1, 2}

if and only if there exists a non-trivial additive function ϕ : X → Y such that
f(x, y) := ϕ(x), x, y ∈ X, is a solution of (1).
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Proof. In order to prove the sufficiency, let H ⊂ X be a base of X over
Q(a1, a2) and let ϕ0 : H → Y be any function different from zero. For x =∑

i∈I αihi with αi ∈ Q(a1, a2), hi ∈ H (i ∈ I) we define

ϕ(x) :=
∑
i∈I

Φ(αi)ϕ0(hi).

One can check (cf., [10] or the proof of the forthcoming Proposition 1) that such
a function is additive, uniquely determined and that f defined in the theorem
satisfies the first equation in (1). The assumption B1 + B2 = 1 ensures that
also the second equation in (1) is satisfied.

For necessity, assume that ϕ �= 0 and define a function Φ: Q(a1, a2) →
Q(A1, A2) by the formula

Φ
(
r(a1, a2)

)
:= r(A1, A2)

for any rational function r with rational coefficients. The function is well de-
fined. Indeed (cf., proof of [10, Theorem 13.10.4]), suppose that r1(a1, a2) =
r2(a1, a2) for some r1, r2 ∈ Q(x, y). There exists x0 ∈ X such that ϕ(x0) �= 0.
By Lemma 1,

r1(A1, A2)ϕ(x0) = ϕ
(
r1(a1, a2)x0

)
= ϕ

(
r2(a1, a2)x0

)
= r2(A1, A2)ϕ(x0),

whence r1(A1, A2) = r2(A1, A2).
The function Φ is defined on the whole Q(a1, a2) and maps it onto Q(A1, A2)

(see, e.g., [10, Corollary 4.8.1]). Also the rational functions rx(x, y) = x
1 and

ry(x, y) = y
1 belong to Q(x, y), whence Φ(a1) = Φ

(
rx(a1, a2)

)
= rx(A1, A2) =

A1, and Φ(a2) = Φ
(
ry(a1, a2)

)
= ry(A1, A2) = A2. Φ is a homomorphism.

Indeed, let α, β ∈ Q(a1, a2). Then α = r1(a1, a2), β = r2(a1, a2) for some
r1, r2 ∈ Q(x, y) and

Φ(α + β) = Φ
(
(r1 + r2)(a1, a2)

)
= (r1 + r2)(A1, A2) = Φ(α) + Φ(β),

Φ(αβ) = Φ
(
(r1r2)(a1, a2)

)
= (r1r2)(A1, A2) = Φ(α)Φ(β).

We will show that Φ is a monomorphism. Suppose that Φ(α) = 0 for some
α = r(a1, a2) ∈ Q(a1, a2). Let x0 ∈ X be such that ϕ(x0) �= 0. Suppose α �= 0.
Then on account of Lemma 1,

0 = r(A1, A2)ϕ
( x0

r(a1, a2)

)
= ϕ(x0) �= 0.

This contradiction shows that Φ(α) = 0 implies α = 0, that is, Φ is a monomor-
phism. Since it is also an epimorphism (as pointed out above), Φ is an isomor-
phism. �

Analogously, we get the following.

Theorem 3. The condition A1 + A2 = 1 holds and
(H2) there exists an isomorphism Ψ: Q(b1, b2) → Q(B1, B2)such thatΨ(bi) =

Bi, i ∈ {1, 2}
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if and only if there exists an non-trivial additive function ψ : X → Y such that
f(x, y) := ψ(y), x, y ∈ X, is a solution of (1).

In the next results we are interested in the biadditive solutions of (1).

Proposition 1. Suppose that (H1) and (H2) hold. Let H,L ⊂ X be bases of X
over Q(a1, a2) and Q(b1, b2), respectively. For every function g0 : H × L → Y
such that there exists a unique biadditive function g : X2 → Y satisfying (1)
and such that g|H×L = g0.

Proof. Take x, y ∈ X. Then

x =
n∑

i=1

αihi, y =
m∑
j=1

βj lj , (12)

where αi ∈ Q(a1, a2), βj ∈ Q(b1, b2) and hi ∈ H, lj ∈ L for i ∈ {1, . . . , n},
j ∈ {1, . . . , m}. Define g : X2 → Y by the formula

g(x, y) :=
n∑

i=1

m∑
j=1

Φ(αi)Ψ(βj)g0(hi, lj). (13)

We check that g defined by (13) satisfies (1). Take x1 =
∑n

i=1 α′
ihi, x2 =∑n

i=1 α′′
i hi, y =

∑m
j=1 βj lj from X. Then

g(a1x1 + a2x2, y) = g
( n∑

i=1

(α′
ia1 + α′′

i a2)hi,

m∑
j=1

βj lj

)

=
n∑

i=1

m∑
j=1

Φ(α′
ia1 + α′′

i a2)Ψ(βj)g0(hi, lj)

=
n∑

i=1

m∑
j=1

(
A1Φ(α′

i) + A2Φ(α′′
i )

)
Ψ(βj)g0(hi, lj)

= A1

n∑
i=1

m∑
j=1

Φ(α′
i)Ψ(βj)g0(hi, lj)

+ A2

n∑
i=1

m∑
j=1

Φ(α′′
i )Ψ(βj)g0(hi, lj)

= A1g
( n∑

i=1

α′
ihi,

m∑
j=1

βj lj

)
+ A2g

( n∑
i=1

α′′
i hi,

m∑
j=1

βj lj

)

= A1g(x1, y) + A2g(x2, y),

and analogously, we get

g(x, b1y1 + b2y2) = B1g(x, y1) + B2g(x, y2).
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Moreover, (if x = hi then αi = 1 and αk = 0 for all k �= i; if y = lj then βj = 1
and βk = 0 for all k �= j; if x = 0 or y = 0 then αi = 0 for all i or βj = 0 for
all j; cf., Lemma 2)

g(hi, lj) = g0(hi, lj).

In order to prove the uniqueness, assume that g satisfies (1) and g|H×L = g0.
For every i ∈ {1, . . . , n} there exist a rational function ri ∈ Q(x, y) such that
αi = ri(a1, a2). Similarly, for every j ∈ {1, . . . , m} there exists a rational
function sj ∈ Q(x, y) such that βj = sj(b1, b2).

By Lemmas 1 and 2,

g(x, y) = g
( n∑

i=1

αihi,

m∑
j=1

βj lj

)
=

n∑
i=1

m∑
j=1

g(αihi, βj lj)

=
n∑

i=1

m∑
j=1

g
(
ri(a1, a2)hi, sj(b1, b2)lj

)

=
n∑

i=1

m∑
j=1

ri(A1, A2)sj(B1, B2)g(hi, lj)

=
n∑

i=1

m∑
j=1

Φ
(
ri(a1, a2)

)
Ψ

(
sj(b1, b2)

)
g
(
hi, lj

)

=
n∑

i=1

m∑
j=1

Φ(αi)Ψ(βj)g0(hi, lj).

Consequently, g must be given by the formula (13), which proves the unique-
ness and finishes the proof. �

Theorem 4. Hypotheses (H1) and (H2) hold if and only if there exists a non-
zero biadditive function g : X2 → Y satisfying (1).

Proof. The sufficiency follows from Proposition 1, and the proof of necessity
is done similarly to that in Theorem 2. �

Corollary 5. Suppose (1) has a non-constant solution f : X2 → Y . Then (H1)
or (H2) holds true.

Proof. It is enough to observe that system (1) has a non-constant solution
f : X2 → Y , that is, using the form (4) of f ,

g �= 0 or ϕ �= 0 or ψ �= 0. �

As an immediate consequence of Theorems 1, 2, 3, 4 and Corollary 5 we
are able to state the following.
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Corollary 6. System (1) has a non-constant solution f : X2 → Y if and only
if at least one of the following conditions holds

(i) (H1) and (H2);
(ii) (H1) and B1 + B2 = 1;
(iii) (H2) and A1 + A2 = 1.

Solutions of (3)

In what follows we shall study (3). We start with the following result (see
also [9] in which a function with values in an arbitrary field of characteristic
different from two is considered).

Theorem 5. If f : X2 → Y satisfies (3), then there exist a biadditive function
g : X2 → Y, additive functions ϕ,ψ : X → Y and a constant δ ∈ Y such that
f has the form (4) and for all x, y ∈ X,

g(a1x, b1y) = C1g(x, y),
g(a1x, b2y) = C2g(x, y),
g(a2x, b1y) = C3g(x, y),
g(a2x, b2y) = C4g(x, y),

(14)

ϕ(a1x) = (C1 + C2)ϕ(x),
ϕ(a2x) = (C3 + C4)ϕ(x), (15)

ψ(b1y) = (C1 + C3)ψ(y),
ψ(b2y) = (C2 + C4)ψ(y), (16)

and

δ(C1 + C2 + C3 + C4 − 1) = 0. (17)

Conversely, each function f of the form (4) with g biadditive, ϕ,ψ additive,
and such that conditions (14), (15), (16), (17) are satisfied, is a solution of (3).

Proof. Assume f : X2 → Y satisfies (3). From (3), for all x1, x2, y1, y2 ∈ X we
have

f(a1x1, b1y1) = C1f(x1, y1) + C2f(x1, 0) + C3f(0, y1) + C4f(0, 0),
f(a1x1, b2y2) = C1f(x1, 0) + C2f(x1, y2) + C3f(0, 0) + C4f(0, y2),
f(a2x2, b1y1) = C1f(0, y1) + C2f(0, 0) + C3f(x2, y1) + C4f(x2, 0),
f(a2x2, b2y2) = C1f(0, 0) + C2f(0, y2) + C3f(x2, 0) + C4f(x2, y2).

(18)

Moreover, for all x1, x2, y1, y2 ∈ X,

f(a1x1, 0) = (C1 + C2)f(x1, 0) + (C3 + C4)f(0, 0),
f(a2x2, 0) = (C3 + C4)f(x2, 0) + (C1 + C2)f(0, 0),
f(0, b1y1) = (C1 + C3)f(0, y1) + (C2 + C4)f(0, 0),
f(0, b2y2) = (C2 + C4)f(0, y2) + (C1 + C3)f(0, 0).

(19)
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From (3), (18) and (19) we obtain

f(a1x1 + a2x2, b1y1 + b2y2) = f(a1x1, b1y1) + f(a1x1, b2y2)
+f(a2x2, b1y1) + f(a2x2, b2y2)
−f(a1x1, 0) − f(a2x2, 0)
−f(0, b1y1) − f(0, b2y2) + f(0, 0),

and since a1a2b1b2 �= 0, we have

f(x1 + x2, y1 + y2) = f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)
−f(x1, 0) − f(x2, 0) − f(0, y1) − f(0, y2)
+f(0, 0), (20)

for all x1, x2, y1, y2 ∈ X.
Immediately from (20) we get

f(0, y1 + y2) = f(0, y1) + f(0, y2) − f(0, 0), y1, y2 ∈ X,

and

f(x1 + x2, 0) = f(x1, 0) + f(x2, 0) − f(0, 0), x1, x2 ∈ X,

that is, ψ(y) := f(0, y) − f(0, 0) for y ∈ X and ϕ(x) := f(x, 0) − f(0, 0) for
x ∈ X are additive. It is easy to check that the function g(x, y) := f(x, y) −
f(0, y) − f(x, 0) + f(0, 0) for all x, y ∈ X is biadditive and

f(x, y) = g(x, y) +
(
f(x, 0) − f(0, 0)

)
+

(
f(0, y) − f(0, 0)

)
+ f(0, 0), x, y ∈ X,

which means that f has the form (4) with δ = f(0, 0).
Substituting this form into (3), with x1 = x2 = y1 = y2 = 0 we get

δ = (C1 + C2 + C3 + C4)δ, that is, we have (17).
Now, it is enough to apply (3) with f(x, y) = g(x, y) + ϕ(x) + ψ(y) for

x, y ∈ X. Suitable fixing of variables x1, x2, y1, y2 immediately gives (14), (15),
(16).

The converse implication we obtain by a direct computation. �

Similarly to the previous section, we start with studying solutions of (3) in
some special cases. For this purpose we introduce the following conditions:

a1b1 = C1 ∧ a1b2 = C2 ∧ a2b1 = C3 ∧ a2b2 = C4, (cα)

C1 + C2 = a1 ∧ C3 + C4 = a2, (cβ)

C1 + C3 = b1 ∧ C2 + C4 = b2, (cγ)

C1 + C2 + C3 + C4 = 1. (cδ)
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Corollary 7. Let f : X2 → Y satisfy (3) and let coefficients ai, bi, i ∈ {1, 2}, be
rational. Then there exist a biadditive function g : X2 → Y , additive functions
ϕ,ψ : X → Y and a constant δ ∈ Y such that f has the form (4) and

g = 0, whenever ∼ (cα);
ϕ = 0, whenever ∼ (cβ);
ψ = 0, whenever ∼ (cγ);
δ = 0, whenever ∼ (cδ).

Remark 3. Notice that

• [(cα) ∧ (cβ)∧ ∼ (cγ)] ⇒ ∼ (cδ)
(because then b1 + b2 = 1 and C1 + C2 + C3 + C4 = a1 + a2 �= 1),

• [(cα) ∧ ∼ (cβ) ∧ (cγ)] ⇒ ∼ (cδ)
(because then a1 + a2 = 1 and C1 + C2 + C3 + C4 = b1 + b2 �= 1).

Moreover, we have [(cα) ∧ (cβ) ∧ (cγ)] ⇒ (cδ).

As a consequence of Theorem 5 we also have the following.

Corollary 8. Let f : R2 → R satisfy any regularity condition that forces a bi-
additive function to be continuous. The general regular solution of (3) is of the
form

f(x, y) = αxy + βx + γy + δ, x, y ∈ R, (21)

where α, β, γ, δ ∈ R are arbitrary and such that

α = 0, whenever ∼ (cα);
β = 0, whenever ∼ (cβ);
γ = 0, whenever ∼ (cγ);
δ = 0, whenever ∼ (cδ).

Remark 4. By Corollaries 7 and 8, in the two special cases it follows that

• there exists a non-zero biadditive g which is a solution of (3) if and only
if (cα) holds;

• there exists a non-zero additive function ϕ such that f(x, y) := ϕ(x) is a
solution of (3) if and only if (cβ) holds;

• there exists a non-zero additive function ψ such that f(x, y) := ψ(y) is a
solution of (3) if and only if (cγ) holds;

• there exists δ �= 0 such that function f(x, y) ≡ δ is a solution of (3) if
and only if (cδ) holds.

Before presenting the general solution of (3), we make some remarks and
observations.

As an immediate consequence of Theorem 5 we obtain
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Corollary 9. A function f : X2 → Y of the form (4) is a solution of (3) if and
only if g is biadditive and satisfies (14), ϕ, ψ are additive functions satisfying
the general linear equations

ϕ(a1x1 + a2x2) = (C1 + C2)ϕ(x1) + (C3 + C4)ϕ(x2), x1, x2 ∈ X, (22)
ψ(b1y1 + b2y2) = (C1 + C3)ψ(y1) + (C2 + C4)ψ(y2), y1, y2 ∈ X, (23)

respectively, and δ satisfies (17).

Concerning non-constant solutions of (3), the following facts are of interest.

Remark 5. A non-constant function f is a solution of (3) if and only if g �= 0
or ϕ �= 0 or ψ �= 0.

Remark 6. If g is a non-zero function satisfying (14) then C1C4 = C2C3. In-
deed,

C1C4g(x, y) = g(a1a2x, b1b2y) = C2C3g(x, y),

moreover

C1g(x, b2y) = g(a1x, b1b2y) = C2g(x, b1y),
C3g(x, b2y) = g(a2x, b1b2y) = C4g(x, b1y),
C1g(a2x, y) = g(a1a2x, b1y) = C3g(a1x, y),
C2g(a2x, y) = g(a1a2x, b2y) = C4g(a1x, y).

In what follows we give an example of a general bilinear equation where
not all coefficients are rational which has a non-constant solution and later on
we proceed with general considerations concerning non-constant solutions of
(3).

Example 2. Consider the following equation

f(2x1 +
√

2x2,
√

3y1 +
√

5y2) = f(x1, y1) + f(x1, y2) + πf(x2, y1)

+(
√

2 − π)f(x2, y2)

for all x1, x2, y1, y2 ∈ X. One can easily check that

f(x, y) = ϕ(x), x, y ∈ X, (24)

where ϕ : X → Y is an arbitrary additive function satisfying

ϕ(
√

2x) =
√

2ϕ(x), x ∈ X, (25)

is a solution to (3).

In the sequel, we describe results concerning each of the functions ϕ, ψ and
g appearing in the form (4) separately.

Theorem 6. The function f : X2 → Y given by (24) with some non-zero addi-
tive function ϕ : X → Y satisfies (3) if and only if
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(H3) there exists an isomorphism Γ: Q(a1, a2) → Q(C1 + C2, C3 + C4) such
that Γ(a1) = C1 + C2 and Γ(a2) = C3 + C4.

Proof. By Corollary 9, function f given by (24) satisfies (3) if and only if ϕ
satisfies the general linear equation (22). This fact is therefore equivalent (see,
e.g., Kuczma [10, Theorem 13.10.4]) to (H3). �

Analogously, with the use of (23), we obtain

Theorem 7. The function f : X2 → Y given by f(x, y) := ψ(y) for all x, y ∈ X
with some non-zero additive function ψ : X → Y satisfies (3) if and only if

(H4) there exists an isomorphism Λ: Q(b1, b2) → Q(C1 + C3, C2 + C4) such
that Λ(b1) = C1 + C3 and Λ(b2) = C2 + C4.

It is obvious that if both ϕ and ψ are not constant, then Γ(a1) + Γ(a2) =
Λ(b1) + Λ(b2) = C1 + C2 + C3 + C4.

In what follows we study biadditive solutions of (3).

Proposition 2. Assume ai, bi ∈ K
∗, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}. If there

exist Ai, Bi ∈ K, i ∈ {1, 2}, such that

(H5) C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2, and both hypotheses
(H1) and (H2) hold

then for every function g0 : H×L → Y , there exists a unique biadditive function
g : X2 → Y satisfying (3) and such that g|H×L = g0, where H,L ⊂ X are bases
of X over Q(a1, a2) and Q(b1, b2), respectively.

Proof. We notice that the assumptions of Theorem 4 are satisfied, so for every
function g0 : H × L → Y , there exists a unique biadditive function g : X2 →
Y satisfying (1) and such that g|H×L = g0. As a consequence, since C1 =
A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2, g satisfies also (3). �

As a consequence of the above we can state

Theorem 8. Assume ai, bi ∈ K
∗, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}. If there

exist Ai, Bi ∈ K, i ∈ {1, 2}, such that (H5) holds, then there exists a non-zero
biadditive function g : X2 → Y satisfying (3) and, moreover, (5).

Proof. By the construction of a solution in Proposition 2, g satisfies (1). Hence,
using Theorem 1, it satisfies (5). �

Remark 7. Since ai, bi ∈ K
∗, so do their isomorphic images, whenever (H5)

is satisfied. Therefore, also Cj ∈ K
∗. Moreover, if at least one of a1, a2, b1, b2

is rational, its image being the same number is uniquely determined, and the
conditions C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 uniquely
determine the other numbers from A1, A2, B1, B2.
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Remark 8. For every C1, C2, C3, C4 ∈ K
∗ such that C1C4 = C2C3 there exist

A1, A2, B1, B2 from K
∗ such that

C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2.

Indeed, it is enough to choose one of the elements A1, A2, B1, B2 and the others
are already clearly defined. For example, if we choose A1 then

B1 =
C1

A1

, B2 =
C2

A1

and A2 =
C3

B1

.

We will come back now to Example 2.

Remark 9. Based on the above results one can see that in fact function f of
the form (24) is the general solution of the equation

f(2x1 +
√

2x2,
√

3y1 +
√

5y2) = f(x1, y1) + f(x1, y2) + πf(x2, y1)

+(
√

2 − π)f(x2, y2)

for all x1, x2, y1, y2 ∈ X, where ϕ : X → Y is an arbitrary additive function
satisfying condition (25). Indeed, by Theorem 5 the solutions f are of the form
(4) with (14), (15), (16) and (17) satisfied. Since C1C4 =

√
2−π �= π = C2C3,

on account of Remark 6, the biadditive function g equals zero. The existence
of an additive function ϕ : X → Y is guaranteed by Theorem 6. Further,
none of the elements

√
3,

√
5 is conjugated to any of π + 1, 1 +

√
2 − π, so

no isomorphism Ψ : Q(
√

3,
√

5) → Q(π + 1, 1 +
√

2 − π) exists [10, Theorem
4.12.2], and by Theorem 7, ψ = 0. Finally, since C1 + C2 + C3 + C4 �= 1, we
have δ = 0.

From Remark 5 and Theorems 6, 7, 8 we get the following.

Theorem 9. Assume f : X2 → Y . If at least one of the hypotheses (H3), (H4)
holds or there exist A1, A2, B1, B2 ∈ K

∗ such that (H5) holds then there exists
a non-constant solution of (3).

Theorem 8, and so Theorem 9, give a sufficient condition for the existence
of a non-constant solution of (3). Some approach for obtaining the necessary
conditions in the case Y is a field is given in [9, Section 6]. Therefore it is
worth finishing this section with formulating a problem.

Problem 1. Find the general (biadditive) solution f : X2 → Y of (3).

Equivalence of (1) and (3)

Comparing the form of solutions of (1) and (3), we come back to the question
about conditions which have to be satisfied for (1) and (3) to be equivalent.
First we answer this question in two special cases: for equations with rational
coefficients and when we are looking for regular solutions f : R2 → R.
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On account of Remarks 2 and 4 we are able to prove the following result
which completely describes the equivalence between (1) and (3) in these cases.

Theorem 10. Let f : X2 → Y and a1, a2, b1, b2 ∈ Q
∗ or let f : R2 → R be a

regular solution of (1) or (3). Then (1) and (3) are equivalent (have the same
set of solutions) if and only if one of the following conditions hold:

1◦ (α) ∧ (cα) ∧ (
(a1 + a2 = b1 + b2 = 1) ∨ (a1 + a2)(b1 + b2) �= 1

)
;

2◦ ∀i∈{1,2} ai = Ai ∧ ∃i∈{1,2} bi �= Bi ∧ B1 + B2 = 1 ∧ ∼ (cα) ∧ (cβ) ∧
∼ (cγ);

3◦ ∃i∈{1,2} ai �= Ai ∧ ∀i∈{1,2} bi = Bi ∧ A1 + A2 = 1 ∧ ∼ (cα) ∧
∼ (cβ) ∧ (cγ);

4◦ ∼ (
(α) ∨ (cα) ∨ (β) ∨ (cβ) ∨ (γ) ∨ (cγ)

)
∧ (

C1 + C2 + C3 + C4 = A1 + A2 = B1 + B2 = 1
∨ (C1 + C2 + C3 + C4 �= 1 ∧ (A1 + A2)(B1 + B2) �= 1)

)
.

Proof. Assume that (1) and (3) are equivalent.
I. We start with the case when there exists a non-zero biadditive function

g which is a solution of both (1) and (3), that is, by Remarks 2 and 4, (α) and
(cα) are satisfied.

Since under the above assumptions we have

(C1 + C2 = a1 ∧ C3 + C4 = a2) ⇔ B1 + B2 = 1

and

(C1 + C3 = b1 ∧ C2 + C4 = b2) ⇔ A1 + A2 = 1,

it is crucial that (δ) and (cδ) hold simultaneously, and this we have if either
a1+a2 = b1+b2 = 1, or (a1+a2)(b1+b2) �= 1. Consequently, we have obtained
1◦.

II. Assume that only the zero biadditive function g satisfies (1) and (3).
Observe first that it is impossible that the solution in such a case consists

of both a non-zero ϕ and a non-zero ψ. Indeed, in such a case (α) would hold,
contrary to the assumption.

Assume that there exists a non-zero ϕ and only ψ = 0 forms the solution.
Then we have ∼(α), ∼(cα), (β), (cβ), ∼(γ) and ∼(cγ). By ∼(α) and (β) we
have ∀i∈{1,2} ai = Ai, ∃i∈{1,2} bi �= Bi and B1 + B2 = 1. By (cβ) it follows
that C1 + C2 + C3 + C4 = a1 + a2 = A1 + A2. This means that (δ) and (cδ)
are equivalent, and we have 2◦.

Assume that there exists a non-zero ψ and only the zero functions g and
ϕ are parts of the solution of (1) and (3). Then we have ∼(α), ∼(cα), ∼(β),
∼(cβ), (γ) and (cγ), and we proceed analogously as above, obtaining 3◦.

Assume finally, that there are only constant solutions of (1) and (3), that
is, ∼(α), ∼(cα), ∼(β), ∼(cβ), ∼(γ) and ∼(cγ) hold. That means that either
any non-zero constant or only f(x, y) ≡ 0 is a solution both to (1) and (3).
Therefore, either C1 + C2 + C3 + C4 = A1 + A2 = B1 + B2 = 1 or

(
C1 + C2 +
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C3 + C4 �= 1 and (A1 + A2 �= 1 or B1 + B2 �= 1)
)
. The above conditions gives

4◦.
For the converse, assume now that 1◦ holds. It means that function f(x, y) =

g(x, y)+ϕ(x)+ψ(y)+δ with any biadditive g satisfies both (1) and (3). If also
a1 + a2 = b1 + b2 = 1, then (β), (γ) and (δ). And by (α), also (cβ), (cγ) and
(cδ). All further computations are direct on account of Remarks 2 and 4. �

The next result solves the problem of alienation answering the question
when, given (3), there exist A1, A2, B1, B2 ∈ K such that f satisfying (3) is
also a solution of system (1), so in other words, when (3)“splits” into system
(1) of two equations? It follows directly from Theorem 10.

Theorem 11. Let f : X2 → Y be a solution of (3) with a1, a2, b1, b2 ∈ Q
∗ or let

f : R2 → R be a regular solution of (3). Define Ai, Bi, i ∈ {1, 2}:
1◦ if (cα) and (a1 + a2 = b1 + b2 = 1) ∨ (a1 + a2)(b1 + b2) �= 1, then take

Ai := ai and Bi := bi, i ∈ {1, 2};
2◦ if ∼ (cα), (cβ) and ∼ (cγ), then take Ai := ai and Bi, i ∈ {1, 2}, such

that B1 + B2 = 1 and Bi �= bi for some i ∈ {1, 2};
3◦ if ∼ (cα), ∼ (cβ) and (cγ), then take Bi := bi and Ai, i ∈ {1, 2}, such

that A1 + A2 = 1 and Ai �= ai for some i ∈ {1, 2};
4◦ if ∼ (cα), ∼ (cβ) and ∼ (cγ), then take arbitrary Ai, Bi, i ∈ {1, 2},

such that Ai �= ai for some i ∈ {1, 2}, Bi �= bi for some i ∈ {1, 2} and,
moreover, A1 + A2 = B1 + B2 = 1 whenever (cδ), and (A1 + A2)(B1 +
B2) �= 1, whenever ∼ (cδ).

Then the function f satisfies (1) with given ai, bi and defined as above coeffi-
cients Ai, Bi for i ∈ {1, 2}.

Now, we will provide conditions which guarantee that (1) and (3) are
equivalent in the general case. We will say that two non-zero numbers x and
y are rationally dependent if there exist rational numbers ξ and η such that
ξx + ηy = 1.

Before presenting the first main result of this section we prove the following.

Lemma 3. Assume that ai, bi ∈ K
∗, Ai, Bi, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}

and hypothesis (H5) holds.
(i) If (H3) and a1, a2 are rationally dependent, then B1 + B2 = 1. Con-

versely, if B1 + B2 = 1, then (H3) holds.
(ii) If (H4) and b1, b2 are rationally dependent, then A1 + A2 = 1. Con-

versely, if A1 + A2 = 1, then (H4) holds.

Proof. First we assume that hypothesis (H3) holds and a1, a2 are rationally
dependent. Indeed, we have

Γ(a1) = C1 + C2 = A1B1 + A1B2 = Φ(a1)Ψ(b1 + b2),
Γ(a2) = C3 + C4 = A2B1 + A2B2 = Φ(a2)Ψ(b1 + b2).
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Since a1, a2 are non-zero, so are Φ(a1),Φ(a2) and

Γ(a1)
Φ(a1)

= Ψ(b1 + b2) =
Γ(a2)
Φ(a2)

,

that is Γ(ai) = μΦ(ai) for some μ �= 0 and for i ∈ {1, 2}.
Since a1, a2 are rationally dependent, there exist rational numbers ξ and η

such that ξa1 + ηa2 = 1 and, consequently (since Φ|Q = Γ|Q = id),

1 = Φ(ξa1 + ηa2) = Γ(ξa1 + ηa2) = μξΦ(a1) + μηΦ(a2) = μΦ(ξa1 + ηa2) = μ,

that is μ = 1, and B1 + B2 = 1.
For the converse it is enough to observe that C1+C2 = A1B1+A1B2 = A1

and C3 + C4 = A2B1 + A2B2 = A2, and to define Γ := Φ.
Analogously we show the second item. �

Theorem 12. Assume that ai, bi ∈ K
∗, Ai, Bi, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}.

If one of the conditions

(i) (H5) ∧ A1 + A2 = 1 ∧ B1 + B2 = 1;
(ii) (H5) ∧ A1 + A2 �= 1 ∧ B1 + B2 = 1;
(iii) (H5) ∧ A1 + A2 = 1 ∧ B1 + B2 �= 1;
(iv) (H5) ∧ A1 + A2 �= 1 ∧ B1 + B2 �= 1 ∧ (A1 + A2)(B1 + B2) �= 1 ∧

∼ (H3) ∧ ∼ (H4);
(v) C1C4 �= C2C3 ∧ B1 + B2 = 1 ∧ (H1) ∧ ∼ (H2) ∧ (H3) ∧ ∼ (H4);
(vi) C1C4 �= C2C3 ∧ A1 + A2 = 1 ∧ ∼ (H1) ∧ (H2) ∧ ∼ (H3) ∧ (H4);
(vii) C1C4 �= C2C3 ∧ ∼ (

(H1) ∨ (H2) ∨ (H3) ∨ (H4)
)

∧ (
C1 + C2 + C3 + C4 = A1 + A2 = B1 + B2 = 1
∨ (C1 + C2 + C3 + C4 �= 1 ∧ (A1 + A2)(B1 + B2) �= 1)

)
holds then (1) and (3) are equivalent.

Proof. First we observe that from Theorem 8 in all first four items there is a
biadditive function g satisfying (1) and (3) and we have

A1 + A2 = 1 ∧ B1 + B2 = 1 ⇔ C1 + C2 + C3 + C4 = 1.

In case (i), on account of Lemma 3 the hypotheses (H3) and (H4) hold, so a
function f of the form (4), where g is a biadditive function satisfying (5), ϕ,ψ
are additive functions satisfying (6) and (7), respectively, and δ is an arbitrary
constant, is a solution of both (3) and (1).

In case (ii), on account of Lemma 3 the hypothesis (H4) does not hold.
Indeed, if we suppose that (H4) holds, then since b1 + b2 = 1, that is, b1, b2 are
rationally dependent, we would get that A1+A2 = 1, which is a contradiction.
The hypothesis (H3) holds, so the general solution of (3) as well as of (1) is
f(x, y) = g(x, y) + ϕ(x), where g is a biadditive function satisfying (5) and ϕ
is an additive function satisfying (6) as well as (15).

Analogously we show the equivalence of (3) and (1) in cases (iii) and (iv).
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Now, we assume that C1C4 �= C2C3. On account of Remark 6, there is no
nontrivial biadditive function satisfying (3). This corresponds to the situation
when there does not exist an isomorphism Φ (more exactly, we have ∼ (H1))
or there does not exist an isomorphism Ψ (more exactly, we have ∼ (H2)),
which means that there is no nontrivial biadditive function satisfying (1). It
follows also that the general solution of (1) and (3) in this case does not consist
of both non-zero ϕ and non-zero ψ.

Assumptions B1 + B2 = 1 ∧ (H1) ∧ ∼ (H2) ∧ (H3)∧ ∼ (H4) ensure that
f(x, y) := ϕ(x) with non-zero ϕ such that both (6) and (15) hold true satisfies
(1) and (3). Moreover, there is no non-zero ψ such that f(x, y) := ψ(y) satisfies
(1) and (3). Further, we have

Γ(a1 + a2) = C1 + C2 + C3 + C4.

If 1 = A1+A2 = Φ(a1+a2), then a1+a2 = 1, and consequently, C1+C2+C3+
C4 = 1, and conversely. That is, either every δ, or only δ = 0 simultaneously
appears in the solution of both (1) and (3).

Analogously, we treat the case with A1 + A2 = 1 ∧ ∼ (H1) ∧ (H2)
∧ ∼ (H3) ∧ (H4).

From C1C4 �= C2C3 ∧ ∼ (
(H1) ∨ (H2) ∨ (H3) ∨ (H4)

)
we know that only

constant functions are taken into account as solutions of (1) and (3). Condition
C1 + C2 + C3 + C4 = A1 + A2 = B1 + B2 = 1 ∨ (

C1 + C2 + C3 + C4 �= 1
∧ (A1 + A2)(B1 + B2) �= 1

)
ensures that either only the zero function or each

constant function is simultaneously a solution of (1) and (3). �

The following examples will show that under the hypothesis (H5) we cannot
expect that the conjunction (H1) and B1+B2 = 1 is equivalent to (H3) (or that
the conjunction (H2) and A1 + A2 = 1 is equivalent to (H4)) (cf., Lemma 3).

Example 3. Let a1 = π, a2 = 2π, b1 = b2 = 1, A1 = e,A2 = 2e,B1 = B2 =
1, C1 = C2 = e, C3 = C4 = 2e. Then we have C1 = A1B1, C2 = A1B2, C3 =
A2B1, C4 = A2B2, there exists an isomorphism Φ: Q(π) → Q(e) such that
Φ(π) = e and Ψ := id. So, we have (H5) and every biadditive function g : X2 →
Y such that

g(πx, y) = eg(x, y), x, y ∈ X (26)

is a solution of both (3) and (1).
Further, there exists Γ: Q(π) → Q(e) such that Γ(π) = C1 + C2 = 2e and

Γ(2π) = C3+C4 = 4e (i.e., (H3) holds), and there does not exist Λ: Q(b1, b2) =
Q → Q(C1 + C3, C2 + C4) = Q(e) such that Λ(1) = 3e. Consequently, the
function f(x, y) = g(x, y) + ϕ(x), x, y ∈ X, with additive ϕ satisfying the
condition

ϕ(πx) = 2eϕ(x), x ∈ X,

is the general solution of (3).
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Since A1 + A2 �= 1 and B1 + B2 �= 1, the function f = g with biadditive g
satisfying (26) is the general solution of (1), so (1) and (3) are not equivalent.

Consequently, we see that in Lemma 3 we have to make an additional
assumption to (H3) in order to get B1 + B2 = 1. The question is how weak
this additional assumption may be.

We say further that x and y are algebraically independent over Q if they
do not satisfy any non-trivial polynomial equation with coefficients in Q. It is
interesting to ask whether rational dependence in Lemma 3 can be exchanged
for algebraic dependence. The answer is given in the next example.

Example 4. Let a1 =
√

π, a2 = 2π+1, A1 = e,A2 = 2e2+1 and let b1, b2, B1, B2

and Cj , j ∈ {1, 2, 3, 4}, be such that (H5) and (H3) are satisfied. We have
Φ(

√
π) = e and

Γ(
√

π) = C1 + C2 = A1(B1 + B2) = e(B1 + B2),

Γ(2π + 1) = C3 + C4 = A2(B1 + B2) = (2e2 + 1)(B1 + B2).

From the other side,

Γ(2π + 1) = 2Γ(
√

π)2 + 1 = 2e2(B1 + B2)2 + 1.

If μ := B1+B2, then (2e2+1)μ = 2e2μ2+1, that is 2e2μ2−(2e2+1)μ+1 = 0.
Solving this equation with respect to μ, we obtain μ1 = 1

2e2 and μ2 = 1, so in
this case B1 + B2 may be different from 1. Therefore in Lemma 3 we cannot
replace rational dependence by algebraic dependence.

Later on we will still need the following result.

Lemma 4. Let ai, bi, Cj ∈ K
∗, i ∈ {1, 2}, j ∈ {1, 2, 3, 4} and C1C4 = C2C3.

If a1, a2 or b1, b2 are rationally dependent, then each non-zero biadditive func-
tion satisfying (3) satisfies also (1) with

B1 = ξC1 + ηC3, B2 =
B1C2

C1
, Ai =

C2i−1

B1
, i ∈ {1, 2} (27)

whenever ξa1 + ηa2 = 1 for some ξ, η ∈ Q, and

A1 = μC1 + νC2, A2 =
A1C3

C1
, Bi =

Ci

A1
, i ∈ {1, 2} (28)

whenever μb1 + νb2 = 1 for some μ, ν ∈ Q.

Proof. We assume that a1, a2 are rationally dependent and g is a biadditive
function satisfying (3). Then there exist two rational constants ξ, η such that
ξa1 + ηa2 = 1 and

g(x, b1y) = g
(
(ξa1 + ηa2)x, b1y

)
= g(ξa1x, b1y) + g(ηa2x, b1y)

= ξg(a1x, b1y) + ηg(a2x, b1y) = (ξC1 + ηC3)g(x, y),
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so,

B1 = ξC1 + ηC3,

and the further coefficients A1, A2, B2 are already uniquely determined (cf.,
Remarks 7 and 8), Ai := C2i−1

B1
, i ∈ {1, 2} and B2 := B1C2

C1
, moreover

g(aix, y) = Aig(x, y), i ∈ {1, 2} and g(x, b2y) = B2g(x, y).

Analogously, we proceed in the case when b1, b2 are rationally dependent. �
The next result discusses the alienation problem.

Theorem 13. Assume that ai, bi ∈ K
∗, Cj ∈ K, i ∈ {1, 2}, j ∈ {1, 2, 3, 4} and

f : X2 → Y satisfies (3). Define Ai, Bi ∈ K, i ∈ {1, 2} :
(i) if C1C4 = C2C3, a1 + a2 = b1 + b2 = 1, (H3) and (H4), then take

A1 := C1 + C2, A2 := C3 + C4, B1 := C1 + C3 and B2 := C2 + C4;
(ii) if C1C4 = C2C3, a1 + a2 �= 1, b1 + b2 = 1, (H3) and (H2) with Bi :=

Ci

C1+C2
, i ∈ {1, 2}, then take A1 := C1 + C2, A2 := C3 + C4, and

Bi, i ∈ {1, 2}, as defined above;
(iii) if C1C4 = C2C3, a1 + a2 = 1, b1 + b2 �= 1 and (H4) and (H1) with

Ai := C2i−1
C1+C3

, i ∈ {1, 2}, then take B1 := C1 + C3, B2 := C2 + C4, and
Ai, i ∈ {1, 2} as defined above;

(iv) if C1C4 = C2C3, a1 + a2 �= 1, b1 + b2 �= 1, C1 + C2 + C3 + C4 �= 1,
and

(
(a1, a2 are rationally dependent ∧ ∼ (H4) ∧ (H1) ∧ (H2) with

(27)) ∨ (b1, b2 are rationally dependent ∧ ∼ (H3) ∧ (H1) ∧ (H2) with
(28))

)
, then take A1, A2, B1, B2 as indicated above;

(v) if C1C4 �= C2C3 ∧ (H3) ∧ ∼ (H4), then take A1 := C1 + C2, A2 :=
C3 + C4, and arbitrary B1, B2 such that ∼ (H2) and B1 + B2 = 1;

(vi) if C1C4 �= C2C3 ∧ ∼ (H3) ∧ (H4), then take B1 := C1 + C3, B2 :=
C2 + C4, and arbitrary A1, A2 such that ∼ (H1) and A1 + A2 = 1;

(vii) if C1C4 �= C2C3 ∧ ∼ (H3) ∧ ∼ (H4), then take arbitrary A1, A2, B1, B2

such that ∼ (H1) ∧ ∼ (H2) and, moreover, A1 + A2 = B1 + B2 = 1
whenever C1+C2+C3+C4 = 1, and (A1+A2)(B1+B2) �= 1, whenever
C1 + C2 + C3 + C4 �= 1.

Then f satisfies (1) with given ai, bi and with coefficients Ai, Bi for i ∈ {1, 2}
as defined above.

Proof. In case (i), since C1C4 = C2C3, we have

A1B1 = (C1 + C2)(C1 + C3) = C1(C1 + C2 + C3 + C4) = C1,

and analogously we check that C2 = A1B2, C3 = A2B1, C4 = A2B2. Hypothe-
ses (H1) and (H2) hold with Φ := Γ and Ψ := Λ. Moreover, it is easy to see
that A1 + A2 = B1 + B2 = 1 and the assertion follows from Theorem 12.

For (ii), it is necessary first to observe that C1 + C2 �= 0. Indeed, by (H3),
there exists the isomorphism Γ such that (among others) Γ(a1) = C1 + C2,
and since a1 �= 0, so does C1 + C2. The rest follows from Theorem 12.
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We treat cases (iii)-(vii) similarly (using additionally Lemma 4 for proving
(iv)) . �

Remark 10. In the above theorem, for alienation in case (v) it is enough to
take B1 := q ∈ Q\{b1, 0, 1}, B2 := 1 − B1, in case (vi) it is enough to take
A1 := q ∈ Q\{a1, 0, 1}, A2 := 1 − A1, and in case (vii), A1 := C1 + C2, A2 :=
C3 + C4, B1 := C1 + C3 and B2 := C2 + C4.

In case (iv) of Theorem 13 we can not replace rational dependence with
algebraic dependence, which is shown by the following.

Example 5. Let a1 =
√

π, a2 = 2π +1, b1 = 1
20 , b2 = 1

2e2 − 1
20 , C1 = e

20 , C2 =
1
2e − e

20 , C3 = 2e2+1
20 , C4 = 1+ 1

2e2 − 2e2+1
20 . We have to take B1 = 1

20 (we want
(H2) to hold) and A1 = e,A2 = 2e2 + 1, B2 = 1

2e2 − 1
20 . Then, it is easy to

check that the condition

C1C4 = C2C3 ∧ a1 + a2 �= 1 ∧ b1 + b2 �= 1 ∧ C1 + C2 + C3 + C4 �= 1
∧ (

(a1, a2 are algebraic dependent ∧ ∼ (H4) ∧ (H1) ∧ (H2)
)

is satisfied, moreover (H3) holds. The additive function ϕ such that ϕ(
√

πx) =
eϕ(x) is a solution of (3) but is not a solution of (1).

Theorem 12 gives sufficient conditions for the equivalence of (1) and (3).
Therefore, it seems natural to state the following.

Problem 2. Find conditions which completely describe the equivalence be-
tween (1) and (3).
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