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0. Introduction

The object of our study is a subclass of piecewise-deterministic Markov processes (PDMPs), somewhat
similar to that considered in [2-4,10,22,24], which plays an important role in biology, providing a mathe-
matical framework for the analysis of gene expression dynamics (cf. [25,30]). Recall that a Markov process
may be regarded as belonging to the class of PDMPs whenever, roughly speaking, its randomness stems only
from the jump mechanism and, in particular, it admits no diffusive dynamics. This huge class of processes
has been introduced by Davis [16], and arises naturally in many applied areas, such as population dynamics
[5,9], neuronal activity [27], excitable membranes [29], storage modelling [8] or internet traffic [19].
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The process considered in this paper is an instance of that introduced in [11], and further examined in [15]
(cf. also [12-14]). More specifically, we study a Markov process {(Y(¢),£(t))}+>0 evolving on X =Y x I,
where Y is a closed subset of R? (but not necessarily bounded, in contrast to e.g. [4]), and I is a finite
set. It is assumed that the process involves a deterministic motion punctuated by random jumps, appearing
at random moments 7, < 75 < ---, coinciding with the jump times of a homogeneous Poisson process.
The underlying random dynamical system can be described in terms of a finite collection {S; : ¢ € I} of
semiflows, acting from [0,00) X Y to Y, and an arbitrary family {wy : 6 € O} of transformations from
Y into itself. In the main part of the paper, we assume that © is either an interval in R or a finite set.
Between any two consecutive jumps, the evolution of the first coordinate Y(+) is driven by a semiflow S;,
where i is the value of the second coordinate £(-). The latter is constant on each time interval between
jumps and it is randomly changed right after the jump, depending on the current states of both coordinates.
Moreover, the post-jump location of the first coordinate after the nth jump, i.e. Y(7,), is obtained as a
result of transforming the pre-jump state Y (7,,—), using a map wg, where the index 6 is randomly drawn
from O, depending on this state. It is worth noting here that such transformations are not present e.g. in
the models discussed in [2-4,10], where the jumps are only related to the semiflow changes. Consequently,
the first coordinate of the process can be shortly expressed as

Y(t) _ Sf(t)(t — Tn, Y(Tn)) for t € [Tann+1)7
wnn+1 (Y(Tn‘i‘li)) fOr t= Tn+1,

where n € NU{0}, 79 := 0, and {9, } nen is an appropriate sequence of random variables with values in 6. In
our study, a significant role will be also played by the discrete-time Markov chain {(Y,,&,)}nenuqoy defined
by

Y, =Y (m), & =¢&(m) for neNU{0},

to which we will further refer as to the chain given by the post-jump locations.

In [11, Theorem 4.1] (cf. also [15]), we have provided a set of tractable conditions implying that the chain
{(Ys,&n) }n is geometrically ergodic in the Fortet—Mourier metric (also known as the dual-bounded Lipschitz
distance; see [20]), which induces the topology of weak convergence of probability measures (see [18]). This
means that the chain possesses a unique, and thus ergodic, stationary distribution, and, for any initial
state, the distribution of the chain (at consecutive time points) converges weakly to the stationary one at
a geometric rate with respect to the above-mentioned distance. Moreover, we have established a one-to-one
correspondence between invariant distributions of that chain and those of the process {(Y(¢),£(¢))}+ (see
[11, Theorem 4.4]). This has led us to the conclusion that the aforementioned conditions guarantee the
existence and uniqueness of a stationary distribution for the PDMP as well. Although not relevant here, it
is worth mentioning that the aforesaid results are valid in a more general setting than the one given above;
namely, it is enough to require that Y is a Polish metric space, and © is an arbitrary measurable topological
space endowed with a finite measure.

The main goal of the present paper is to provide certain verifiable conditions that would imply the absolute
continuity of all the stationary distributions of the PDMP {(Y(¢),&(t))}+ which correspond to ergodic
stationary distributions of the associated chain {(Y,,&,)}n (see Theorem 3.2). The absolute continuity is
understood here to hold with respect to the product measure ¢4 of the d-dimensional Lebesgue measure and
the counting measure on I. As we shall see in Theorem 3.1(ii), the problem reduces, in fact, to examining
the invariant distributions of the Markov chain given by the post-jump locations.

Simultaneously, it should be emphasized that the hypotheses of the above-mentioned [11, Theorem 4.4]
do not ensure that the unique (and thus ergodic) stationary distribution of the chain {(Y,,&,)}n (or that
of the continuous-time process) is absolutely continuous. The simplest example illustrating this claim is a
system including only one transformation w; = 0, for which the Dirac measure at 0 is a unique stationary
distribution.
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On the other hand, it is well known and not hard to prove that, whenever the transition operator of
a Markov chain preserves the absolute continuity of measures, then any ergodic stationary distribution of
the chain (or, in other words, any ergodic invariant probability measure of the transition operator) must
be either singular or absolutely continuous (see [21, Lemma 2.2 with Remark 2.1] and cf. [2, Theorem 6]).
As will be clarified later (in Lemma 3.1), this is the case for the chain {(Y;,,&,)}, if, for instance, all the
transformations wy and S;(t,-) are non-singular with respect to the Lebesgue measure. Yet, as shown in
Example 5.2, even under this assumption, the conditions imposed in [11] do not guarantee that a unique
invariant distribution of the chain and, thus, that of the PDMP, is absolutely continuous. It should be also
stressed that, in general, the singularity of some of the transformations wy does not necessarily exclude the
absolute continuity of invariant measures as well (see e.g. [24]).

Obviously, the above-mentioned absolute continuity/singularity dichotomy significantly simplifies the
analysis, since, in such a setting, we only need to guarantee that the continuous part of a given ergodic
invariant distribution of {(Y},, &,)}n, say f«, is non-trivial. One way to achieve this is to provide the existence
of an open /z-small set (in the sense of [26]) that is uniformly accessible from some measurable subset of X
with positive measure p. in a specified number of steps (see Proposition 3.1).

Following ideas of [4], we show (in Lemma 3.3) that the existence of an open small set, containing a
given point (yo, jo), can be accomplished by assuming that, for some n > d and certain “admissible” paths
(j1se- s fn1) €I"L (01,...,0,) € O™, the composition

(Oa Oo)n > (tla cee atn) = wen(Sjn_1 (tna <o, Wy (Sjo (tlv yO)) .. ))

has at least one regular point (at which it is a submersion). This requirement is similar in nature to that
employed e.g. in [2,4,30], involving the so-called cumulative flows, which can be usually checked by using a
Hérmander’s type condition (see [2, Theorems 4 and 5]). Furthermore, if the chain is asymptotically stable,
i.e., it admits a unique invariant probability measure to which the distribution of the chain converges weakly,
independently of the initial state (which is the case, e.g., under the hypotheses employed in [11]), and (yo, jo)
belongs to the support of p., then the Portmanteau theorem ([6, Theorem 2.1]) ensures that every open
neighbourhood of (yo, jo) is uniformly accessible from some other (sufficiently small) neighbourhood of this
point with positive measure p, in a given number of steps (cf. Corollary 3.1). In general, the latter may,
however, be difficult to verify directly, and the argument works only if the chain is asymptotically stable.
Therefore, we also propose a more practical condition ensuring the accessibility (cf. Lemma 3.4), which
concerns the above-specified compositions of wg and S;.

Finally, let us draw attention to the special case where S;(¢,y) := y for every i« € I (which is, however,
out of the scope of this paper). In this case, we have Y,,;1 = wg, ,(Y,) for every n € NU {0}, and thus
{Y,.}», can be viewed as the Markov chain arising from an iterated function system (IFS in short) with
place-dependent probabilities (also called a learning system,; cf. [20,23,32]). The results in [31] (cf. also [21])
show that for most (in the sense of Baire category) such systems the corresponding invariant measures are
singular, at least in the case where O is finite and Y is a compact convex subset of R%. More precisely, it has
been proved that asymptotically stable IFSs with singular invariant measures constitute a residual subset
of the family of all Lipschitzian IF'Ss enjoying some additional property, which somehow links the Lipschitz
constants of wy with the associated probabilities.

The outline of the paper is as follows. In Section 1, we introduce the notations and basic definitions
regarding Markov operators acting on measures, as well as we give a proof of the aforementioned result
on the absolute continuity/singularity dichotomy for their ergodic invariant measures. Section 2 provides
a detailed description of the model under study. The main results are established in Section 3, which is
divided into two parts. Section 3.1 contains an interpretation of the dichotomy criterion in the given
framework and a significant conclusion on the mutual dependence between the absolute continuity of
stationary distributions of the chain given by the post-jump locations and the corresponding invariant
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distributions of the PDMP. Here we also state a general key observation, linking the absolute continuity of
the ergodic invariant distributions of {(Yy,,&,)}, with the existence of a suitable open £4-small set. Further,
in Section 3.2, we provide some testable conditions implying the existence of such a set and, therefore,
guaranteeing the absolute continuity of the invariant measures under consideration. Section 4 contains the
statement of [11, Theorem 4.1], providing the exponential ergodicity of the chain {(Y;,,&,)}, (and hence
the existence and uniqueness of a stationary distribution for the PDMP). Some remarks and examples related
to our main result are given in Section 5.

1. Preliminaries

Let (E,p) be an arbitrary separable metric space, endowed with the Borel o-field B(E). Further, let
M¢in(E) be the set of all finite non-negative Borel measures on E, and let M., (E) stand for the subset
of My (E) consisting of all probability measures. Moreover, by M;’mb(E) we will denote the set of all
measures (€ Mo, (E) with finite first moment, i.e. satisfying

/ plx,x*) u(dr) < oo for some z* € E.
E

Now, suppose that we are given a o-finite non-negative Borel measure m on E. Then, a o-finite Borel
measure p on F is called absolutely continuous with respect to m, which is denoted by p < m, whenever

u(A) =0 forevery A€ B(E) suchthat m(A)=0.

By the Radon—Nikodym theorem, p < m can be equivalently characterized by saying that there is a unique
(modulo sets of m — measure 0) Borel measurable function f# : E — [0,00), usually denoted by du/dm,
such that

w(A) = /Af“(m) m(dz) for ever A€ B(E).

Obviously, if 4 € My, (E), then f* is a member of £!(E,m), i.e. the space of all Borel measurable and
m-integrable functions from E to R (identified, as usual, with the corresponding quotient space under the
relation of m-almost everywhere equality).
The measure p is said to be singular with respect to m, which is denoted by p L m, if there exists a set
F € B(E) such that
w(F)=0 and m(E\F)=0.

It is well-known that, due to the Lebesgue decomposition theorem, any o-finite Borel measure p can be
uniquely decomposed as

W= tac + tsin, SO that Hac KM and Msin L m.
With regard to the definitions given above, we will use the following notation:

Mae(E,m) ={pn € Mypin(E) : p << m},
Mgin(E,;m) = {p € Msin(E): p L m}.
Let us now briefly recall the concept of Frobenius—Perron operator, which will be used in the analysis

that follows. For this aim, suppose that we are given a Borel measurable transformation S : E — E that is
non-singular with respect to m, i.e.

m(ST'(A)) =0 forevery Ac B(E) satisfying m(A)=0.

4
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The non-singularity condition assures that, if € My.(E,m), and pg is defined by
ns(A) = p(S7'(4)) for A€ B(E),

then g € Mgy.(E,m). This allows one to define a linear operator Ps : L1(E, m) — L}(E,m) in such a way
that

dp\  dus
Ps (dm) = for every u € My (E,m),
which, in other words, means that
/ Pof(x) mde) = / F@)m(dz) forall AcB(E), f € £X(E,m). (1.1)
A 5-1(4)

Such an operator Pg is commonly known as the Frobenius—Perron operator.

Now, we shall recall several basic definitions from the theory of Markov operators, which will be used
throughout the paper. A function P : E x B(E) — [0,1] is called a stochastic kernel if for each A € B(E),
x +— P(x,A) is a measurable map on F, and for each « € E, A+ P(x, A) is a probability Borel measure on
B(E). Given a stochastic kernel P, we can consider the corresponding operator P : M y;n(E) — My (E),
acting on measures, given by

Pu(A) = /EP(aj,A) p(dr) for pe Mypn(E), A€ B(E). (1.2)

Such an operator is usually called a regular Markov operator. For notational simplicity, we use here the same
symbol for the stochastic kernel and the corresponding Markov operator. This slight abuse of notation will
not, however, lead to any confusion.

We say that the Markov operator P is Feller (or that it enjoys the Feller property) whenever the map
T fE f(y)P(x,dy) is continuous for every bounded continuous function f: E — R.

A measure p, € My (E) is called invariant for the Markov operator P (or, simply, P-invariant) if
P, = . If there exists a unique P-invariant measure p, € My,0p(E) such that, for every p € Myop(E),
the sequence { P"u},en is weakly convergent to p., then the operator P is said to be asymptotically stable.
Let us recall here that a sequence {p,}nen C Myin(E) is said to be weakly convergent to p € Myin(E)

whenever

/fd,un—>/fdu, as n — oo,
E E

for each bounded continuous function f : £ — R.

Remark 1.1. Suppose that P is a regular Markov—Feller operator, and that there exists a measure
fs € Mprop(E) such that {P"0, }nen is weakly convergent to p, for every « € E. Then P is asymptotically
stable.

Indeed, note that, due to the Feller property, P : My,op(E) = Myrop(E) is continuous in the topology
of weak convergence of measures. Taking this into account, we infer that

Pp, = P(lim P",) = lim P""'§, = . (weakly, with any = € ),
n— oo n—oo

which shows that u, is P-invariant. Moreover, using the assumption of the weak convergence of {P"d, }nen
(for each « € F) and the Lebesgue’s dominated convergence theorem we can simply conclude that {P"u},en
converges weakly to p., for every p € My,,op(E). This also proves that . is a unique invariant probability
measure for P.
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An invariant probability measure p. € My,p(E) is said to be ergodic with respect to P (or P-ergodic)
whenever p.(A) € {0,1} for every A € B(E) satisfying

P(x,A)=1 for p, - almost every x € A.

It is well-known (see e.g. [17, Corollary 7.17]) that, if p, is a unique invariant probability measure for P,
then it must be ergodic. Moreover, according to [1, Theorem 19.25], the P-ergodic measures are precisely the
extreme points of the set of all P-invariant probability measures. These observations lead to the following
simple, but extremely useful, conclusion regarding the dichotomy between absolute continuity and singularity
of P-ergodic measures, which can be found e.g. in [21, Lemma 2.2, Remark 2.1], and whose proof is also given
in the Appendix.

Lemma 1.1. Let m be an arbitrary o-finite non-negative Borel measure on E, and suppose that
P: Myin(E) = Mysin(E) is a reqular Markov operator which preserves absolute continuity of measures,
i.e. P(Mae(E,m)) C Mu.(E, m). Then, every ergodic invariant probability measure of P is either absolutely
continuous or singular with respect to m.

For any given E-valued time-homogeneous Markov chain { @, },,enufoy, defined on some probability space
(2, F,P), the stochastic kernel P(-,*) satisfying

Pz, A)=P(P,11 € A| D, =x) forall z€ FE, AcB(E),nec NU{0}

is called a one-step tramsition law of this process, and the distribution of @ is said to be its initial
distribution. Obviously, in this case, the Markov operator defined by (1.2) describes the evolution of the
distributions p, () = P(®, € -), n € NU {0}, that is, p, = Pun—1 for each n € N. In this connection,
an invariant probability measure of P is called a stationary distribution of the chain. Moreover, it is well
known (see e.g. [28]) that, for any given stochastic kernel P(-,*) on E X B(E) and p € Mp,o,(E), on some
probability space, there exists a time-homogeneous Markov chain for which P(-, *) serves as a description of
the one-step transition law, and p is the initial distribution.

A family of regular Markov operators {P,};>0 on M, (E), generated according to (1.2), is called a
regular Markov semigroup whenever it constitutes a semigroup under composition with Fy = id as the unity
element. A measure v, € My;,(E) is said to be invariant for such a semigroup if P, v, = v, for every ¢ > 0.

Analogously to the discrete-time case, by the transition law (or a transition semigroup) of a homogeneous
continuous-time Markov process { #(t)};>0 we mean the family {P,(-, *)};>¢ of stochastic kernels satisfying

P(z,A)=P(P(t+s)c A| &(s)=xz) forall ze€E, Aec B(E), s, t>0.

Since {P;(-,*)}i>0 satisfies the Chapman—Kolmogorov equation, the family {P,;};>o of Markov operators
generated by such kernels is a Markov semigroup (under the composition), which describes the evolution of
the distributions p(¢)(-) = P(P(t) € -), t > 0, i.e. u(s+t) = Pu(s) for all s,t > 0. In this context, an
invariant probability measure of {P;};>¢ is called a stationary distribution of the process { @(¢)}+>0.

2. Description of the model

Let us now present a formal description of the investigated model (originating from [11]), which has
already been briefly discussed in the introduction. Recall that such a system can be viewed as a PDMP
evolving through random jumps, which arrive one by one (at random time points 7,,) in exponentially
distributed time intervals. The parameter of the exponential distribution, determining the jump rate, will be

6
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denoted by A. The deterministic evolution of the process will be governed by a finite number of continuous
semiflows, randomly switched at the jump times.

Let Y be a Polish metric space, endowed with the Borel o-field B(Y), R4 := [0,00), and Ny := N U {0}.
Further, suppose that we are given a finite collection {S; : i € I} of continuous semiflows, where I =
{1,...,N}and S; : Ry xY — Y for every i € I. In what follows, we will assume that I is equipped with the
discrete topology. The semiflows will be switched at the jump times according to a matrix {m;; : 4,5 € I}
of place-dependent continuous probabilities m;; : Y — [0, 1], satisfying

> mii(y) =1 forall icl ycY.
jeI
Moreover, let © be an arbitrary separable topological space equipped with a finite Borel measure 9, and let
{wg : 6 € O} be an arbitrary family of transformations from Y to itself, such that the map (y, 8) — wq(y) is
continuous. These transformations will be related to the post-jump locations of the process; more specifically,
if the system is in the state y just before a jump, then its position directly after the jump should be wy(y)
with some randomly selected 8 € 6. The choice of 6 will depend on the current state y and is determined
by a probability density function 6 — py(y) such that (6,y) — pe(y) is continuous.
We shall first introduce a discrete-time model. For this aim, define Z :=Y x I x O x R (endowed with
the product topology) and a stochastic kernel P : Z x B(Z) — [0,1] by setting

PO =3 [ [ A Lo(wa(Si(t,1). 50,10 + )5 (wn (it ) (S5t ) 9(d8)
ier/o Je
for z = (y,1,60,t0) € Z and C € B(Z). Further, for an arbitrarily given i € Mp,,,(Z), consider a Z-valued
time-homogeneous Markov chain {(Y},,&n, n, Tn) Jnen, (Wherein Yy, &,, 1, and 7, take valuesin Y, I, © and
R, respectively) with transition law P and initial distribution i, constructed on some suitable probability
space, equipped with a probability measure P. It is then easy to check that

Y, =wy, (Se,_,(ATn,Yn-1)) P—a.s. forevery neN, where Ar, =7, — 7,1, (2.1)
and that the following laws hold:
Pn=7&-1=10Yy=y)=my;y) for yeY, ijel,
Pl € D e, (4 Yar) = 1) = [ ) 9(d6) for y €Y. DeB(e),

D
P(A7, <t|Tp_1 =to) = (1 — e_)‘(t_tO)) Litg,c0)t) for to,t € Ry

Moreover, note that the increments Ar,, n € N, form a sequence of independent and exponentially
distributed random variables with the same rate parameter A, and thus 7,, 1 co P-almost everywhere (a.e.),
as n — oo (due to the strong law of large numbers). These observations confirm that such a model coincides
with our description of the jump mechanism.

Let X := Y x I and suppose that i1 has the form g = M®(§90 ®00, where p € Mprop(X), 6p is an arbitrarily
fixed element of ©, and 390, dp are the Dirac measures on B(0), B(R.), respectively. In what follows we
will focus on the sequence {9, },en, given by

@, = (Y,,&,) for n e Ny,

which can be viewed as an X-valued Markov chain with initial distribution p and transition law of the form

P((y,i),A) = P((y,4,00,0), A x O x Ry)
=5 [ e a8t ) s oSt ) o Sit) otagy ar. B

JjeI
for (y,i) € X and A € B(X).
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We can now define an interpolation {@(t)}:>o of the chain { &, },en, as follows:
D(t) = (Y(t),£(t)) for ¢>0,

where
Y(t) =S¢, (t —7n,Y,) and &(t) :==&,, whenever ¢ € [1,,7,41) for n € No. (2.3)

It is easily seen that {®(f)}:>0 is a time-homogeneous Markov process, and that &(r,) = &, for every
n € Ny, which means that {®,},en describes the post-jump locations of this process. By {P;}i>0 we will
denote the transition semigroup of { @(t)};>o, i.e.

Pi((y,1),A) =P (P(s+t) € A| &(s) = (y,1)) for (y,i) € X, Ae B(X), s,t>0. (2.4)

Referring to P and { P, };>0 in our further discussion, we will always mean the Markov operator generated
by the transition law of { ), },en,, given by (2.2), and the Markov semigroup induced by the transition law
of the process { D(t) }1>0, satisfying (2.4), respectively. It is worth noting here that, by continuity of functions
Si, wg, pe and m;;, both the operator P and the semigroup {P,};>¢ are Feller (cf. [11, Lemma 6.3]).

As mentioned in the introduction, a set of directly testable conditions for the existence and uniqueness
of P-invariant probability measures (which, simultaneously, guarantee a form of geometric ergodicity for P)
has already been provided in [11, Theorem 4.1]. This theorem will be quoted in Section 4. The main results
of the paper, concerning the absolute continuity of ergodic invariant measures for P, presented in Section 3,
will be derived by assuming a priori that such measures exist.

Let us also recall that, by virtue of [11, Theorem 4.4], there is a one-to-one correspondence between
invariant probability measures of the operator P and those of the semigroup {P;};>o. Moreover, such
a correspondence can be expressed explicitly by using the Markov operators G and W induced by the
stochastic kernels of the form

G((y,i),A) = /OOQ e M4 (S;(t,y), ) dt, (2.5)
W(y,i) A) =3 /@ La(ws(y) )35 (wa(y))po(y) 9(d0) (2.6)
jerl

for (y,i) € X and A € B(X). More precisely, the following holds:

Theorem 2.1 ([11, Theorem 4.4]). Let P and { P, };>¢ denote the Markov operator and the Markov semigroup
induced by (2.2) and (2.4), respectively.

(i) If pe € Mprop(X) is an invariant measure of P, then Gu. is an invariant measure of {P,}1>0 and
WG = s

(it) If v € Mprop(X) is an invariant measure of {P;}t>0, then Wu, is an invariant measure of P and
GWv, = v,.

3. Main results

Throughout the remainder of the paper, we assume that Y is a closed subset of R? (endowed with the
Euclidean norm ||-||) such that int Y # @), and we write ¢4 for the d-dimensional Lebesgue measure restricted
to B(Y'). Moreover, by ¢4 we denote the product measure ¢4 @ m. on X =Y x I, where m, is the counting
measure on /. The latter can be therefore expressed as m.(J) = >_,c; 0;(J) for J C I, where §; stands for
the Dirac measure at j. Our aim is to find conditions ensuring the absolute continuity (with respect to £)
of ergodic invariant probability measures of the operator P, if any exist, and the corresponding invariant
measures of the semigroup {P,};>o.
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3.1. Singularity/absolute continuity dichotomy of ergodic P-invariant measures

We begin our analysis with simple observations regarding the case where the Markov operator P, induced
by (2.2), as well as the operators G and W, corresponding to (2.5) and (2.6), respectively, preserve the
absolute continuity of measures.

Lemma 3.1.  Suppose that, for oll @ € O, k € I andt > 0, the transformations wy and Sk(t,-) are
non-singular with respect to £q. Then the Markov operator P induced by (2.2) satisfies

P (Mac(X, Ed)) C Mge (X, Zd) .

Lemma 3.2. Suppose that the assumption of Lemma 3.1 is fulfilled. Then the Markov operators G and W,
generated by (2.5) and (2.6), respectively, satisfy

G (Mae(X,la)) C Mac (X, 0a)  and W (Mae(X,la)) C Mac (X, 4a) -

The idea underlying the proofs of these lemmas is to construct the densities of Py, Gu and W by using
the density of u € M, (X, Zd) and the Frobenius-Perron operators P ;:, P; and Py ; associated with the
non-singular transformations mapping (y, ) to (we(S;(t,v)),7), (Si(t,y),4) and (we(y), j), respectively. The
details are rather technical, and thus the rigorous proofs are postponed to the Appendix.

Collecting all the results obtained so far, we can state the following theorem:

Theorem 3.1. Let P,G,W be the Markov operators generated by (2.2), (2.5) and (2.6), respectively, and
let {P,}1>0 be the Markov semigroup corresponding to (2.4). Further, suppose that, for all® € O, k € I and
t > 0, the transformations wg and Sk (t,-) are non-singular with respect to the Lebesgue measure £4. Then

(i) Every ergodic invariant probability measure of P is either absolutely continuous or singular with respect
to Zd.

(10) If o, v € Mprop(X) are invariant probability measures for P and {P,}1>0, respectively, which
correspond to each other in the manner of Theorem 2.1, that is,

Vs = G, or, equivalently, p. = Wy,

then the measure . is absolutely continuous with respect to Lq if and only if so is v,.
(160) If po, v € Mprop(X) are the unique invariant probability measures for P and {P;}t>0, respectively,
then p,. is absolutely continuous with respect to £y if and only if so is v,.

Proof. The first statement of the theorem follows immediately from Lemmas 1.1 and 3.1. The second one is
just a summary of Theorem 2.1 and Lemma 3.2. Finally, the last assertion is a straightforward consequence
of the second one. O

For a given ergodic P-invariant probability measure p,, Theorem 3.1 enables us to restrict our enquiry
about the absolute continuity of both u, and G, to the one about the non-triviality of the continuous part
of u.. Certain general conditions providing the positive answer to this question are given in the result below.
These conditions should be viewed as a starting point for the forthcoming discussion regarding possible
restrictions on the component functions of the model that would guarantee the desired absolute continuity.

Proposition 3.1. Let p, be any invariant probability measure of the Markov operator P, corresponding
0 (2.2). Suppose that there exist non-empty open subsets U,V of Y and an index i € I such that, for some
n € N and some ¢ > 0,
P*(z,Bx{j})>cly(BNV) forall ze€Ux/{i}, je€lI and B e B(Y). (3.1)
9
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Furthermore, assume that there exist a set X € B(X) with i ()~() >0, m €N and § > 0 such that
P™(x,U x {i}) > 6 for every =€ X. (3.2)

Then the absolutely continuous part of . with respect to {q is non-trivial. If, additionally, pu, is ergodic and
the assumption of Theorem 3.1 is fulfilled, then both ., and G, are absolutely continuous with respect to {g.

Proof. Let B € B(Y) and j € I. Taking into account the invariance of p, and condition (3.1), we can write
(B A}) = P (B x (i) = [ P x ) ()
> [ P B i) () 2 e la(B OV (U x (3).

Ux{i}

Using again the invariance of p., we get
e (B x{j}) > cla(BNV)P"u (U x {i}) > cly(BNV) /~ P™(x,U x {i}) p«(dz).
X
Finally, applying hypothesis (3.2) gives
ps(B x {j}) > &pu(X)la(BNV),

which shows that ., indeed has a non-trivial absolutely continuous part. The second part of the assertion
follows immediately from Theorem 3.1. O

The assumptions of Proposition 3.1, referring to an open set U x {i}, may be interpreted as follows.
Condition (3.1) says that this set is (n, £4]v )-small in the sense of [26]. According to (3.2), it is also uniformly
accessible from some subset of X with positive measure p, in some specified number of steps.

3.2. A criterion on absolute continuity of ergodic invariant measures associated with the model

In this section, as well as in the rest of the paper, we require that © C R is either a finite set, viewed as a
subset of R with the discrete topology (in which it is open) or an arbitrary interval, considered as a subset
of R with the usual (Euclidean) topology. Let us note that, in the first case, we just have int © = 6, while
in the second one, int © means @ without its endpoints.

If O is finite, we assume it is equipped with the counting measure ¥ =, 4 dg, while in the case where
it is an interval, we require that v is a non-atomic Borel measure that is positive on every non-empty open
subset of @ (e.g., if 6 is bounded, we can just take ¥ = /1|z(e))-

As mentioned in the introduction, our main goal is to provide a set of tractable conditions for the
components of the model, which are sufficient for the absolute continuity of the unique invariant probability
measures associated with the Markov operator P and the semigroup {P,};>o, induced by (2.2) and (2.4),
respectively. To do this, we shall need an explicit form of the nth-step kernel (x, A) — P"(z, A). For this
reason, it is convenient to introduce the following piece of notation.

For each k € N, let ji, tx, 0% denote (j1,...,5x) € I¥, (t1,...,tr) € RE, (01,...,0:) € OF, respectively.
Further, given any i,j € I, we employ the following convention:

(Zv.]k) = (Ljh"')jk) and (Za.]ka.]) = (Ljh"')jk)j)'

Here, for notational consistency, we additionally put (¢, jo) := 7 and (4, jo,j) := (4,4) if k = 0. In some places,
we will write jg, t, O or ji, ty, O (instead of ji, tx, O, respectively), using the same convention.

10
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With this notation, for any n € N, y € Y, i € I and (jn,tn,6,) € I" x R} x 6", we may define

Wi(y,i,t1,01) = we, (Si(t1,y)),
Wiy (4,dn-1), tn, 0n) = wo,, (S, _, (tn, Wa-1(y, (i,jn—2), tn-1,0n-1)));
I (y, (i, 1), t1, 01) = 5, (we, (Si(t1,y))),
I (y, (1530 ), 60, 0n) = 1 (Y, (4, 5n-1), b1, 0n—1)7j,, 1 i Wa(y, (4, 3n-1), tn, 00));
Pi(y,i,t1,61) = po, (Si(t1,9)),
Pu(Ys (i,3n—1)s tns €n) = Pr1(y, (,dn—2), tn—-1,0n-1)
XPoy, (Sjn_1 (tns Wn1(y, (i, 3n—2), tn—1,0n-1))).

The nth-step transition law of the chain { @ }ren, can be now expressed as

P, A) = Y /@ ) / AN L W (g, (o). s 00) )
+

jnelm™

X Hn(ya (Z7jn)7 tn7 Bn)Pn(y? (Zajn—l)7 tn; 0n) dtn 19®n(d0n)

for every (y,i) € X = Y x I and each A € B(X), where the symbols dt,, and 9®"(df,,) represent
ln(dty, ... dt,) and (V® - - ®39)(dby,...,db,), respectively.
In what follows, we shall assume that, for every 8 € © and each i € I, the maps

(3.3)

Y S (y1,..-,94) = y— we(y) and (0,00) xY > (¢,y) — Si(t,y)

are continuously differentiable with respect to each of the variables yx, k = 1,...,d, and ¢. In the case where
O is an interval, we additionally require that the map int @ > 6 — wy(y) is continuously differentiable for
allyeY.

Let § == (§1,...,9a) € Y,i e I,n €N, 0, = (01,...,0,) € 0", t, = (f1,...,1n) € (0,00)",
and, if n > 1, also jp_; = (J1s---+Jn_1) € I 1. For every m < n and any pairwise different indices
ki,...,km € {1,...,n}, the Jacobi matrix of the map

(thys - s thom) = Wa(Ds (i §n_1), tn, 0,) with fixed t, =, for r € {1,...,n\{k1,.. ., km}

at point (g, ...,tx,, ) will be denoted by 3(tk17__47tkm)Wn (9, (i,jn_l),f:n, 9n) More precisely, assuming that
W, = (W,sl), ce W,(ld)), where W,Sl) takes values in R for each [ € {1,...,d}, we put

owld
= (ya(za.]n—l)atnven)

6(tk1 ,.‘.,tkm)w’fl(g7 (iajn—1)7 fna én) :

o 8tkT le{1,...,d} .
re{l,..., m}
Analogously, for any pairwise different Iy, ..., € {1,...,n} and r1,...,7y € {1,...,d}, we can define the

matrices
6(911,...,91m)Wn(g7 (iajn—l)vtna On) and a(yrl,...7yrm)wn(ga (iajn—l)a tn, on)-

A key role in our discussion will be played by the following lemma, which provides a tractable condition
under which the law P verifies the first hypothesis of Proposition 3.1, expressed in (3.1). The proof of this
result is based upon ideas found in [4] (cf. the proofs of [4, Lemmas 6.2 and 6.3]).

Lemma 3.3. Let (§,i) € intY x I, and suppose that, for some integer n > d, there exist sequences
tn € (0,00)", 6, € (int ©)" and, in the case of n > 1, also ju_1 € I"™1, such that

Po (s (i 3n—1)s by ) (9, (i Jr—1,7), 0, 00) > 0 for every j eI, (3.4)
11
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and
rank Oy, Wi (9, (4,Jn-1),tn,0,) = d. (3.5)

Then there is an open neighbourhood Uy C'Y of § and an open neighbourhood Uy, C'Y of the point

A

W= Wn(:gv (iajn71)7fn70n) (36)
such that, for some constant ¢ > 0, we have

P"(x,B x{j}) > cla(BNUy) forall zeU;x{i}, BeB(Y), jel. (3.7)

Proof. According to (3.5), there exist k1,...,kq € {1,...,n} such that
det 8(tk1,...,tkd)wn(gv (ijn—l)v{:na én) 7é 0.
Without loss of generality, we may further assume that (kq,...,kq) = (1,...,d), i.e.

det g, Wn (9, (iy3n-1),tn,0,) # 0. (3.8)

In the analysis that follows, given t, = (t1,...,t,) € R}, we shall write t"~? to denote (tgy1,...,tn), SO
that t,, = (tgq,t"~9).

Case I: Consider first the case where O is finite. For each y € Y, let us introduce the map R, : (0, 00)" —
Y x R4 C R™ given by

Ry(tn) = (Wn(ya (ijn—l)atmén)vtn_d) for t, € (ano)n'

We can then easily observe that

atde ‘ 8tn7de

O Ry(tn) = On—d,d ‘ I (ya (Za.]n—l);tnaen)7

n

where 0,,_q 4 and I,,_4 are the zero matrix of size (n — d) x d and the identity matrix of order n — d,
respectively. This yields that

det Oy, Ry(tyn) = det Ox, Wi (v, (i,3n-1),tn, 0,) forall t, e (0,00)", y €Y. (3.9)

Further, let us define H : (0,00)" x intY — (¥ x Ri_d) x Y, acting from an open subset of R"*¢ into
itself, by
H(tn,y) = (Ry(tn),y) forall t, e (0,00)", yeintY.

Since the Jacobi matrix of H can also be written in a block form, namely

O¢, W | Opn—aWn OyWh g 5
a(tn,y)H(tnay) = :)dn d e In Y (Z—h (Z7Jn—1)7tna0n)a
it follows, due to (3.8), that
det Oy, 4 H(tn, §) = det e, Wo (9, (i,5n—1), tn, 0,) #0. (3.10)

Consequently, by virtue of the local inversion theorem, we can choose an open neighbourhood V(t a0 C
(0,00)" xint Y of (t,, ) so that 7—l|A V(t o H(V, (in,g)) 18 a diffeomorphism. Obviously, ’H(V(t 9) C
) mn;, n;

(Y x R4 x V.
If we now define

7;1(% (iajn—laj)?tN7 Bn) = )‘ne_k(tl—km-“n)Pn(ya (i7jn—1)v th, en)Hn(ya (iajn—laj)’ tn, 0n), (3'11)
12
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then, using (3.4) and (3.10), together with continuity of the component functions of the model and the map
Viin.g) 2 (bnoy) > det O, ) H(tn, y), we may find an open neighbourhood Vig - C Vig, o) of (tn, ) such
that, for some constant ¢ > 0,

|det O H b, 9)| " Ta (¥, (i Ju1,0) b0, 00) > & forall (tn,y) € Vg, 5, j € 1. (3.12)
Taking into account that, due to (3.9),
det e,y o) H(tn, y) = det D, Wa (y, (i,3u—1), tn, 0n) = det 8y, Ry (t,),
we then obtain
et O, Ry (6n)| ™" T (0, (6,3n-1,7): tn, 0n) > & forall  (tn,y) € Vg, ), 4 € 1. (3.13)

Clearly, ’H|‘~/<£n N 17(@'”7@) — 7—{(‘7@"7@)) is also a diffeomorphism, and thus, in particular, the set

»9)
H(Vi4, 5) 1s open. Since ((m,f"‘d),g) € H(Vi4, g5)> where @ is given by (3.6), there exist open bounded

neighbourhoods U(w gnd) CY x Rf‘[d and Uy C Y of the points (ﬁ}i”*d) and g, respectively, with the
property that U, in-a) x Uy C H(Vig,.9)- Let

Viensy =H (U

) o, < Uy

and, for any ((w,t"‘d);y) € U(wyfnfd) x Uy, write Hfl((iw,t"_d),y) = (R, (w,t"~%),y). Then, it follows
immediately that R, (Ry(w,t""%)) = (w,t"~%), whence R, is the continuously differentiable inverse of an
appropriate restriction of R,. More specifically, introducing

W(y) = {tn € (0,00)" : (tn,y) € Vi, 5} forevery ye Uy,

we see that each of these sets is open, and that Ry|W(y) W) —»U
y € Uy. Obviously, by the definition of W (y), we have

(0, i~ is a diffeomorphism for every

(tn,y) € Vi, 45 Whenever t, € W(y), y € Uy. (3.14)

In view of the above, we can choose (independently of y) open neighbourhoods U, C Y and U in—d C R?_—d

of w and ‘En_d, respectively, in such a way that
Up X Upn—a C U(m gndy = Ry(W(y)) forevery yeUj. (3.15)

Now, keeping in mind (3.3), (3.13) and (3.14), for any B € B(Y), j € I and y € U, we can write

Pn((yaz)aB X {j}) Z /Rn ]lB(Wn(ya (iajn—l)atnvén))%(ya (ivjn—laj)at7L7én)dtn
+

HBXR"*d(Ry(tn))ﬁl(ya (ivjn—la ])a tn7 en)dtn

J.
- / Lpssepn—a (Ry (ta))] det 8, Ry (6)] - [ det O, Ry (t0)| ™ Ty, (i,3u1,4), b B )t
w
c

1y pn-a(Ry(ty))| det Og, Ry (tn)] dt,,.
W (y)

13
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If we now change variables by setting s, = R,(t,) and, further, apply (3.15), then we can conclude that

P((4,i), B x {j}) > e/

Ry (W ()
= (B xRN (Ug X Upn-a)) = Eln—a(Ugn-a)la(B N Uy),

]]'BXR"L*d(Sn) dsn Z é‘/ ILBXRn—d(Sn) dsn
Uy ><U~n7d

Finally, we see that (3.7) holds with ¢ = é€,_a(U;n-a) > 0.
Case II: Let us now assume that © is an interval in R. The proof in this case is similar to the previous

one. This time, however, we need to consider a family {R, ¢, : y €Y, 6,, € O™} of maps from (0, c0)" into
Y x RT? € R", wherein R, g, is defined by

Ry, 0, (60) = Wy, (i, 3n-1), 6, 02),87) for ¢, € (0,00)".
Furthermore, H will now stand for the map
H:(0,00)" x intY x (int ©)" — (V x R4 x Y x 6"
(acting from an open subset of R?"* into itself) given by
H(tn,y,0,) = (Ry,0,(tn),y,0,) for t, e (0,00)", yecinty, 0, € (int O)".

Since the Jacobi matrix of H is of the form

e Wn | Ogn—aWn O, Wn 0p, WV
02n,d ‘ IQn

6(tnyy,9n)H( n7y’0 ) : (ya(iajn—l)ytnaon)v

similarly as in the previous case, we obtain

det e,y y.00)H(En, 9,0,) = det Do, Wi (9, (4, 5n-1), tn, 82) #0. (3.16)
This enables us to choose an open neighbourhood V(t o C (0,00)" X intY x (int ©)™ of the point
(tn, 3, 0,) so that Hlp is a diffeomorphism from Vt 5.6, Onto H(V, (Ems,0m))-

(tn 9,0n) e "

Appealing to (3.4), (3.16) and the continuity of the map
‘/}(Enﬁl)’ én) 2 (tna Y, en) — det 6(tn,y,9n)7{(tna Y, 971)7

we may find an open neighbourhood IN/({;% 5.0 C ‘A/(fn 5.00) of the point (f:n,gj,én) such that, for some
constant ¢ > 0,

-1 .2 . - =~ .
|det 8(tn,y,0n)7{(tnay79n)‘ 7;1(3/’ (Za.]n—laj)at’ruen) > ¢ for (tnay70n) € Vv({n,@,én)v JEeI,
where 7, is defined by (3.11). This obviously yields

|det B, Ry 0, ()|~ TaW, (i 5n—1,5), 60, 0n) = & for (6,,4,0,) € Vg, 55, G€ T (3.17)

Since H(V, (Er15,0m )) is open and ((, Enid), 9,0,) € H(V, (in,4,02))» it follows that there exist open bounded
~dy C YXR”fd Uy CY and Uy C O" of the points (), ‘En_d), § and 0,,, respectively,
such that U i) X U x Uy C H(V(tn 4,6,))- Define

neighbourhoods U

Vitng 60 = H (U, gn-a) x Uy x Up ),

(@,

W(y,0,) = {tn, € (0,00)" : (tn,y,0,) € V(En,@,én)} for (y,0,) € Uy x Uy

14
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Then, arguing analogously as in Case I, we can conclude that all the sets W(y, 0,,) are open, and that
Ry.0nw(y,0,) is a diffeomorphism from W(y,8,) onto Uﬁ)’én—d for every (y,0,) € Uy x Up, - This
observation, as before, enables us to choose (independently of y and 6,,) open neighbourhoods Uy C Y
and Uﬁn_d C Ri_d of the points @ and Enid, respectively, so that

Uy X Uén—d C U(ﬁhfn_d =Ry.0, (W(y,@n)) for all (y,0n) e Uy x Uén' (3.18)

)

Proceeding similarly as in the first part of the proof, from (3.3) and (3.17) we may now deduce that, for
any Be B(Y), j €I and y € Uy,

Pn((yvi)7B X {]}) 2 /@n /n]]-B(Wn(ya (i7jn—1)>tn30n))771(y7 (iajn—17j)7tnaHn)dtnﬁ(gn(dan)
+

Vv

/ / L g a(Ryon b)) T (s (1. 7), b, B0)dt 927 (6,,)
Uén W(yxe’ﬂ)

v

¢ / / Ly ana(Ryon (6))] det By, Ry, ()] dbn 927 (06,,).
U[;n W (y,0n)
Finally, substituting s,, = Ry e, (t,) (for every fixed (y, 6,,) separately) and applying (3.18), gives

P"((y,i), B x {j}) > é/ / 15, gn-d(s,)ds, 9%"(d6,,)
Uy, /Ry, (W(y.6n))

é/ / Ly n—d(Sn) ds, 9% (d6))
Uén UuA)XUEnfd

= e (Up, Ven—a(Upn-a)la(B N Uy),

v

which shows that (3.7) holds with ¢ := Eﬁ®n(Uén)£n7d(U£n7d) > 0 and, therefore, completes the proof. [

Remark 3.1. Note that, in the case where d = 1, condition (3.5) can be expressed in the following simple
form:

n 2
> (G idibn0)) >0
r=1 "

Assuming that conditions (3.4) and (3.5) hold with some point (§,4) € intY x I, we intend to apply
Proposition 3.1 with U = Uy and V = Uy, where Uy and Uy, are the open sets guaranteed by Lemma 3.3.
To do this, we need to know that, for any given P-ergodic invariant measure j., the set Uy x {i} is uniformly
accessible from an open set XcC X, satisfying 1. ()Z') > 0, in some given number of steps, i.e. condition (3.2)
holds with U = Uy and the given i for some m € N. This is the case, for example, if the operator P is
asymptotically stable, and the point (§,4), verifying the desired properties, belongs to the support of the
unique P-invariant measure.

Corollary 3.1. Let P and {P,}i>o stand for the Markov operator and the Markov semigroup induced by (2.2)
and (2.4), respectively. Further, suppose that, for some p. € Mprop(X), and for every x € X, the sequence
{P"0, }nen is weakly convergent to p. (which, by Remark 1.1, is equivalent to say that P is asymptotically
stable). Moreover, assume that all the transformations wg and S(t,-) are non-singular with respect to £q,
and that there exists a point (§,i) € (intY X I) N supp ps, for which the assumptions of Lemma 3.3 are
fulfilled. Then both p. and Gu., which are then unique invariant measures for P and {P;};>0, respectively,
are absolutely continuous with respect to £g.

15
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Proof. In the light of Proposition 3.1 and Lemma 3.3, it suffices to show that (3.2) holds for U = Uy
and the given 4. Since & = (§,4) € supp p, it follows that . = p.(U x {i}) > 0. Taking into account
that {P"(z,-)}nen converges weakly to p. for every x € X, we can apply the Portmanteau theorem
([6, Theorem 2.1]) to deduce that

liminf P"(z,U x {i}) > 6, for every =z € X.
n—oo

In particular, we therefore get P™(&,U x {i}) > 6./2 for some m € N. Since the operator P is Feller, the
map X 5z — P™(x,U x {i}) is lower-semicontinuous, and thus there exists an open neighbourhood of Z,
say X, such that P™(z,U x {i}) > 0,/3 for every z € X. Moreover, ju,(X) > 0, since # € supp p15. This
shows that (3.2) is indeed satisfied (with 6 = §./3) and completes the proof. [

The requirement (§,i) € supp p. is rather implicit and difficult to verify without any additional
information regarding the measure p.. Moreover, the above-stated results are limited by the assumption
that the underlying operator is asymptotically stable. In the remainder of the paper, we therefore derive a
somewhat more practical result, which does not require the stability, and enables one to establish the uniform
accessibility of Uy x {i} in the sense of (3.2), using a more intuitive argument, which refers directly to the
component functions of the model. More precisely, given (§,7) € X, we shall use the following condition:

(A) For every open neighbourhood Vj of 4 and each (y,j) € X, there exist n € N, t,, € R}, 6,, € 6™ and,
whenever n > 1, also j,_1 € I"7!, such that

Wn(yv (jvjn—l)vtnvan) € ng and Pn(yy (jajn—l) tnaa ) (yv (] .]n 1,° ) tnvg ) > 0.

The following lemma, which is essentially based on [4, Lemma 3.16], should be treated as an intermediate
result on the way to the above-mentioned implication (A) = (3.2).

Lemma 3.4. Let p € My, (X) be an arbitrary non-zero measure. Further, suppose that condition (A)
holds for some (§,4) € intY x I, and let Uy C Y be an arbitrary open neighbourhood of 4. Then, there exist
constants € > 0, B >0, meN, sequenceSJm velml g, € R7, 0,, € O™ (the former only if m > 1)
and an open set X C X with u(X) > 0 such that

Wm(y7 (jajmfl)atmyem) E UQ?
Pm(y7 (juim—l)?t'ﬂw OTI’L)H’HL(y7 (.jajm—la Z.)atﬁw gm) > /87

whenever (y,5) € X, t, € Bg_ (tm,e) and ., € Bo(0,,,¢), where
BR+(fm,€) = {t, eR}: ||tm — EmHm < e},

Bo(B,,.c) — {0, € O : |0, — Opp|lm <} if O is an interval,
O T (0, if © is finite,

and ||-||,,, stands for the Euclidean norm in R™.

(3.19)

Proof. For each k € N, let Ay denote the set of all (jx_1,tg, 0%, "), where jo_1 € I*71 t, € RY, 6, € OF
and B’ > 0 (excluding the first member whenever k = 1). Further, let Vj; be a bounded open neighbourhood
of § such that clV; C Uy, and define

O@k—1,tk, 0%, 8") == {(y,5) € X : Wi(y, (J,dr—-1), th, O) € V3, Qk(y, (4,3k-1,7), tk, Ok) > B},
with
Qk(y, (4,dk—1,9), tr, O1) = Pr(y, (4, Jk—1) ths On) i (y, (5, 3k—1, %), i, O),
for k € N and (jr—1,tx, 0k, 0') € Ag.
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Obviously, by continuity of the functions underlying the model, all the sets O(-) are open. Hence, from
hypothesis (A) it follows that

V= {O(jkfhtkvoknﬂ/) t ke N7 (jkflvtkvekvﬁl) S Ak}

is an open cover of X.
Since X is a Lindeldf space (as a separable metric space) there exists a countable subcover of V.
Consequently, we can choose sequences {k,},eny C N and {( (T) t(r) H(T),ﬁr)} , wherein (_],(;) ,t,(:),
reN T

ky

a(r)a 5r) € Ay, for every r € N, so that

x=Uo [ u o).

reN

Now, taking into account that p(X) > 0, we may find p € N such that

" (O (-]I(c];)—ht(p 0(”), 5]0))
Define
m = kpa (jm—lvtm70ma6) (J;Z)_pt(i)>91(¢i)aﬁp) ) X:=0 (jm—lvtmyemaﬂ) .

Clearly, we then have

W (ya (.]7.]771 1) magm) € ‘/Q and Qm(ya (jajm—lai)7EM7éTYL) > B for every (yv.]) E)?.

Since cl VN Uj = () and cl Vj is compact, the distance between V;; and U ; is positive. This, together with
continuity of W, and Q,, with respect to y, t,, and (if © is an interval) 8,,, enables one to choose € > 0
so small that

W (yv (]ajm 1) 9 ) € UA and Qm(ya (jajm—lai)atmaam) > 5/27

whenever (y,j) € X, t,, € Bg_ (tm,e) and 6, € Bo(0,,,¢). The proof is now complete. [

Remark 3.2. It is worth noting here that, in the proof of [4, Lemma 3.16], the authors choose a finite cover
of a compact space M (that plays the role of Y) consisting of the sets O((J,jn—1,%), tn,3) (defined similarly
to our sets O(+)) with common n € N and 5 > 0. This enables them to derive a condition resembling (3.19),
but valid for all initial states (y, j). Such a result, in turn, lead them to [4, Propositions 3.13 and 3.14], which
guarantee that the analogue of our neighbourhood Uy x {i} is uniformly accessible from the whole state space.
The aforementioned argument obviously fails within our framework, due to the lack of compactness of Y.
What is more, even while assuming that Y is compact, the union of the sets O(-) need not be increasing
with respect to the length of multi-indices (through the presence of jumps y — wy(y)), which is the case
in [4]. That is the reason why condition (3.2) states the accessibility only from a subset of X with positive
measure f, (in contrast to that obtained in the above-mentioned propositions in [4]). Thanks to such a
configuration, (3.2) can be derived from (A) by using the assertion of Lemma 3.4, which is weaker than that
of [4, Lemma 3.16].

We are now in a position to establish the main result of this paper, which provides conditions sufficient
for the absolute continuity of invariant measures for both the operator P and the semigroup {P;}+>o.

Theorem 3.2. Suppose that the transformations wyg, 0 € O, and Si(t,-), k € I, t > 0, are non-singular
with respect to £q. Further, assume that there exists a point (§,1) € int Y x I with property (A), for which (3.4)
and (3.5) hold with some integer n > d and some (jn_1,tn, 0,) € I" 1 x (0,00)™ x (int ©)" (excluding jo in
the case of n = 1). Then every ergodic invariant measure pt. € Mprop(X) of the Markov operator P, induced
by (2.2), as well as the corresponding invariant measure G of the semigroup {P;}i>0, generated by (2.4),
is absolutely continuous with respect to (4.
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Proof. Let p. € Myop(X) be an ergodic invariant probability measure of P. By virtue of Lemma 3.3 we
can choose an open neighbourhood Uy C Y of ¢, an open set Uy C Y and a constant ¢ > 0 so that (3.1)
holds with U = Uy, V = Uy and the given ¢, i.e.

P"(xz,B x {j}) > clq(BNUy) forall zeU;x{i}, jel and B € B(Y).

On the other hand, in view of Lemma 3.4, we may find € > 0, 8 > 0, m € N, sequences j,,_1 € I™~ ! (if
m > 1), t,, € R7, 0, € @™ and an open set X C X with p,(X) > 0 such that conditions (3.19) hold for
any z = (y,j) € X, t,, € Br, (tm, ) and 0,, € Bg(0,,,¢). Hence, appealing to (3.3), we see that

P™(z,Uy x {i}) > 519®’”(B@(ém,5))/ A At ttm) gy = § >0 forall ze X,
B(tm,e)

which exactly means that condition (3.2) holds for U = Uy and the given 4. The desired absolute continuity
of p, and G, now follows from Proposition 3.1. O

Finally, as a straightforward consequence of Theorems 3.2 and 3.1(iii), we obtain the following conclusion:

Corollary 3.2. Suppose that there exists a unique invariant probability measure for the operator P or,
equivalently, for the semigroup {P;}i>0. Then, under the hypotheses of Theorem 3.2, both of the invariant
measures, that for P, and that for {P,}1>0, are absolutely continuous with respect to 4.

4. The existence and uniqueness of invariant measures

It is clear that to ensure the existence and uniqueness of an invariant probability measure for the
Markov operator P (and therefore for the Markov semigroup {P;}+>0), some additional restrictions should
be imposed on the functions composing the model under consideration.

In what follows, we quote [11, Theorem 4.1] (cf. also [15, Theorem 4.1]), which, apart from the existence
of a unique P-invariant measure, also assures the geometric ergodicity of P in the Fortet—Mourier distance
on Mo (X) (see e.g. [20] or [18] for the equivalent Dudley metric).

Assuming that X =Y x [ is equipped with the metric of the form

pe((u,1), (v, 7)) = [lu = vl +ed(i,j)  for (u,d), (v,7) € X, (4.1)

where c is a given positive constant, the Forter-Mourier distance can be defined by

dpaa(p,v) = sup{] [ £

:fE}'FM(X)} for p,v € Mprop(X), (4.2)

where

Fru(X) = {f:X—> [0,1] : SHPM < 1}.
Ty pe(,y)

It is well-known (see e.g. [7, Theorem 8.3.2]) that the topology induced on My,o4(X) by dpas is equal to
the topology of weak convergence of probability measures (whenever X is a Polish space, which is the case
here).

Before we formulate the above-mentioned stability result, let us emphasize that it holds with a sufficiently
large constant ¢, whose magnitude depends on the quantities occurring in the hypotheses to be imposed on
the component functions of the model (see [11, Section 6]). Let us also note that, although we have assumed
that the metric on Y is induced by a norm, just to stay with the framework introduced in Section 3 (wherein
Y is a closed subset of R?), the result remains valid for any Polish metric space (cf. [15]).
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Theorem 4.1 ([11, Theorem 4.1]). Suppose that there exist « € R, L > 0 and L, > 0 satisfying
LLy + % <1, (4.3)

as well as constants Ly, Lr, cx, ¢, > 0, a point y* € Y and two Borel measurable functions: L :Y — R,
which is bounded on bounded sets, and ¢ : Ry — Ry satisfying

/ p(t)e M dt < oo,
Ry

such that, for any u,v € Y, the following conditions hold:

1S: (t, u) — Si(t,v)|| < Le®||u —v| forall i€, t>0; (4.4)
[1Si(t,u) — St W)l < @t)L(u) forall i,j €I, t>0;
sup/ /00 e_’\t||w9(5i(t,y*)) —y*|| pa(Si(t,y)) dt 9(df) < oo  for every i€ I; (4.6)
yeY Jo Jo
[ Tota) = wo(w)] o) 9(d) < Lo fu o] (47)
/@ Ipo(w) — po(v)| I(dO) < Ly [[u—vl|; (4.8)
Zmin{mk(u),ﬂjk(u)} >cyp for i,5 €1, and / min{pg(u), pe(v)} ¥(d0) > cp, (4.9)
kel O (u,v)

where
O(u,v) =={0 € O : |lwo(u) —wy(v)|| < Lu [|u—vl[}.

Then the Markov operator P generated by (2.2) admits a unique invariant distribution p. such that p. €

M}, 5 (X). Moreover, there exists § € (0,1) such that, for each € M}, . (X) and some constant C(p) € R,

we have
dpap (P, ps) < C(u)B™  for every n € N. (4.10)

In particular, P is then also asymptotically stable (cf. Remark 1.1).

Obviously, due to Theorem 2.1, the hypotheses of Theorem 4.1 also guarantee the existence and
uniqueness of an invariant probability measure for the semigroup {P;}:>0, generated by (2.4).

Remark 4.1. In paper [11], the above-stated theorem is proved under the assumption that (4.4) holds
with (t) = t. It is, however, easy to check that the same proof works without any significant changes if
¢ : Ry — Ry is an arbitrary function such that ¢ — ¢(t) exp(—At) is integrable over R, .

Remark 4.2. Tt is easy to verify (cf. [11, Corollary 3.4]) that, if © is compact, and there exist a Borel
measurable function 9 : Ry — R and y* € Y such that

Y(t)e Mdt < oo and ||S;(t,y*) —y*|| <¢(t) forall t>0,je€l,
Ry

then (4.6) holds under each of the following two conditions:

(i) The map y — pg(y) is constant for every 6 € @ and (4.7) is fulfilled.
(ii) There exists L,, > 0 such that all wy, 8 € O, are Lipschitz continuous with the same constant L,,.
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5. Examples

In this section, we shall illustrate the applicability of Theorem 3.2 by analysing a simple example, inspired
by [4, Example 5.2], wherein also the hypotheses of Theorem 4.1 are fulfilled. Furthermore, we will provide
two examples showing the necessity of some of the conditions imposed in Theorem 3.2. However, before that,
let us discuss some special cases wherein condition (A), introduced prior to Lemma 3.4, is fulfilled for some
identifiable point of X.

Proposition 5.1.  Suppose that there exist 6 € O, z € Y and i € I such that the following statements are
fulfilled:

(i) wy is a contraction satisfying wg(z) = z;
(i1) pg (y) >0 forally € Y;
(@ii) for every n € N, there is (j1,...,jn) € I™ with j, =i such that

T 1in(¥) >0 forall ke{l,....,n} and yewzg(Y) witheach jo€lI. (5.1)

Then condition (A) holds with § = z and the given i.

Proof. Fix (y,j) € X and € > 0. Letting K < 1 denote a Lipschitz constant of wy, we can choose n € N,
n > 1, so that K™ ||y — z|| < . According to (iii), for this n, we may find (j1,...,j,) € I"™ with j, = i such
that (5.1) is satisfied. Taking j,—1 = (j1,...,jn-1), 0:=(0,...,0) € R? and 0,, := (0,...,0) € O", we now
see that

IWa (g, (Grdn-1), 0,8n) — 2 = [[wB (v) — w2 ()] < K" 1y — 2] < &,

and P, (y, (J,jn-1),0,0,) I, (y, (4,jn-1,7),0,8,) > 0, due to (ii) and (5.1). O
Proposition 5.2. Suppose that condition (4.4) holds with o < 0, and that (4.7) is satisfied. Further, assume
that there exist z € Y, k € I, 0 € O and i € I such that the following statements are fulfilled:

(i) Sk(t,z) = z for allt > 0;
(i) wg is Lipschitz continuous;
(iii) pg (y) > 0 forally € Y;
() Tk (y)mri(y) > 0 for every j € I and each y € wz(Y).

Then condition (A) holds with § = wz(z) and the given i.
Proof. Let (y,j) € X and £ > 0. Further, choose ¢t > 0 so that LyLe® |[wg(y) — z|| < &, where Lj stands

for a Lipschitz constant of wz. Now, keeping in mind that S;(0,u) = u for all v € Y, and applying (ii), (i),
(4.4), sequentially, we infer that

[Wa(y, (4, k), (0,1), (0,0)) — ws(2)|| = [lws(Sk(t, ws(y))) — ws(2)|l < Lg [|Sk(t, wg(y)) — 2|
= Ly ||Sk(t,wy(y)) — Sk(t, 2)|
< LgLe™ [lwg(y) — 2|| < e.

Moreover, from (iii) and (iv) it follows that
Pa(y, (4,k), (0,1), (8,9)) = pa(y)pg(Sk(t, wg(y))) > 0,

Iy (y, (3 k,9), (0,4), (0,0)) = mj1(wg (y))mrs (wg (Su (t, wg(y)))) > 0. O
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Remark 5.1. Note, that in the case where O is finite (and ¥ is the counting measure), condition (ii) of
Proposition 5.2 can be guaranteed by assuming condition (4.7) and a strengthened version of (iii), namely
p = infyey pg(y) > 0. Under these settings, w; is Lipschitz continuous with L; = p~tLy. To see this, it
suffices to write

plwg(u) = wao)ll < Y llwe(u) —wo(v)| po(u) < Lu Ju—vl|  for w,veY.
0co

Proposition 5.2, together with the observation recorded in Remark 5.1, prove to be useful in analysing
the example given below.

Example 5.1. Let @ < 0 and a € R\{0}. Consider an instance of the dynamical system introduced in
Section 2, with @ satisfying the assumptions of Section 3.2, Y := R, I := {1,2}, and two semiflows S7, So
induced by the initial value problems (in R, ) associated with the equations v’ = au and v = a(u — a),
respectively. Clearly, the semiflows are of the form

Si(t,y) =e*y and So(t,y) =e(y—a)+a for t>0,ycR.

Furthermore, assume that conditions (4.6)—(4.8) hold for the transformations wy, € @, and the densities
0 — po(y), vy € R, with L,, = 1 and some L, > 0, as well as that

inf m;;(y) >0 and infpy(y) >0 forall 4,j€I,60¢€ 6. (5.2)
yER yER

Obviously, the foregoing requirement is just a strengthened form of condition (4.9). It is also worth noting
that (4.6) holds, for example, if @ is compact, and at least one of conditions (i) or (ii) from Remark 4.2 is
satisfied.

Clearly, the semiflows S7, S satisfy conditions (4.4), (4.5) with a <0, L=1, L= 1, p(t) = |a|(1 — e*),
and inequality (4.3) is then trivially fulfilled as well. Hence, due to Theorem 4.1, the Markov operator P,
corresponding to the chain given by the post-jump locations, possesses a unique invariant probability
measure .. What is more, due to Theorem 2.1, v, := Gpu, is the unique invariant probability measure
of the transition semigroup {P;}+>0, associated with the corresponding PDMP.

Suppose now that all the transformations y — wy(y), 0 € O, and, if © is an interval, also 0 — wy(y),

y € R, are continuously differentiable and non-singular with respect to ¢;. Furthermore, assume that, for at
!
0
the case where © is finite, assuming the latter is unnecessary, since the Lipschitz continuity is assured by

least one € O, wy(a)w}(ws(a)) # 0, and that the transformation w; is Lipschitz continuous. Plainly, in
(4.7) and (5.2) (due to Remark 5.1). Under the aforesaid conditions, both the invariant measures p, and v,
are absolutely continuous with respect to £;. To see this, first observe that Sy(¢,a) = a for all ¢ > 0. Then,
due to Proposition 5.2, condition (A) holds for (g,¢) = (wg(a),1). Moreover, we have

1o} - d d

O Wa(31,1,8) = (1, wa@) = g (e ya)) = e () (e wya) # 0
for small enough ¢ > 0, which ensures that (3.5) is satisfied with n = 1, § = w;(a), i = 1, 6; = 6 and some
sufficiently small £, > 0. Obviously, (3.4) is also fulfilled, due to (5.2). Consequently, in view of Corollary 3.2,

the measures u, and v, are absolutely continuous with respect to ¢;.

It is worth noting that the assumptions of non-singularity of the transformations S(t,-), wg, and the
existence of a point (§,4) for which (A) holds are not yet sufficient for the absolute continuity of the unique
P-invariant measure, even though the hypotheses of Theorem 4.1 are fulfilled. In other words, conditions
(3.5) and (3.4) in Theorem 3.2 cannot be omitted. The following simple example justifies this assertion:
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Example 5.2. Let Y := R, [ := {1}, © := {1}, and suppose that S;(t,y) := e ty, wi(y) =y for t >0
and y € R. In such a case, the state space X = R x {1} of our dynamical system can be identified with R,
and the transition law of { @y, }nen,, given by (2.2), takes the form

P(y, A) :/ e Ml (ye~t)dt for yeR, Ac BR).
0

Obviously, conditions (4.3)—(4.9) hold in this setup ((4.6) follows directly from Remark 4.2), and thus, due
to Theorem 4.1, there exists a unique invariant measure for P. Moreover, note that Si(t,-), t > 0, and w;
are non-singular with respect to ¢1, and that condition (A) is fulfilled for (g,4) := (0, 1), since S1(¢,0) =0
and wy (0) = 0 (cf. Proposition 5.2). On the other hand, it is easily seen that the unique P-invariant measure
is &g, which is singular with respect to ;.

The last example demonstrates that, under the assumptions of Theorem 3.2, there may exist a singular
invariant probability measure for P. This means that the assertion of our result is not valid for non-ergodic
invariant measures, and, simultaneously, shows that the conditions of Theorem 3.2 do not guarantee the
uniqueness of invariant distributions.

Example 5.3. Let Y :=R,, T :={1,2}, X :=Y x I and 6 := {1}. Consider the semiflows S, S2 generated
by the initial value problems (in R, ) associated with v/ = u and «' = u(1 — u), respectively, that is

etiy
L+ (el = 1)y

Further, put w1 (y) = y, and take m;;(y) == 1/2 for ally € Ry, 4,5 € {1,2}. Under this setting, the transition
law P of { @, }nen, is given by

Si(t,y) =e'y and So(t,y) = for t,yeRy.

1 [e.¢]
P((ya k)7A) = 5/ Ae—)\t (]IA(Sk(fﬂy)?l)+1A(Sk(t7y)a2))dt for (y7k) €X7 A€ B(X)
0
Obviously, all the transformations Sy (t, ), Sa(t,), t and w; are non-singular with respect to ¢;.
Moreover, since Sa(t,1) = 1 for every ¢t > 0, and mj2(y )7721( ) >0 for all y € Ry, j € {1,2}, it follows from
Proposition 5.2 that condition (A) is fulfilled with (g,¢) := (1,1), and we also get

%Wl(y,z t,1) = —tSl(t, 1)=¢e" #0 forevery t>0,

which shows that (3.5) holds (with n = 1) as well. Condition (3.4) is trivially satisfied, since m;;(y) > 0 for
all y € Ry and 4,5 € {1,2}. Hence, all the hypotheses of Theorem 3.2 are fulfilled.
On the other hand, we see that Si(¢,0) = Sa(¢,0) = 0 for every ¢ > 0, which implies that

1

5 (001 +90.2)

is an invariant probability measure for the operator P. According to Theorem 3.2 such a measure cannot be
ergodic (since it is singular with respect to ¢4), and, in turn, it cannot be the unique P-invariant measure
too.
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Appendix

As announced in Section 1, for the self-containedness of the paper, we give here a proof of Lemma 1.1.
However, prior to that, note a simple consequence of [1, Theorem 19.25], which says that P-ergodic measures
are the extreme points of the set of P-invariant probability measures.

If . € Mprop(E) is an ergodic invariant measure of a Markov operator P : M, (E) — M, (E), then
it cannot be a sum of two distinct non-zero P-invariant measures. To see this, suppose that p, = pq + po for
certain non-trivial invariant measures pi1, o € Myin(E), and let o; == p;(E) for i = 1,2. Then a1 +as =1,
and [i; = p;/a;, © = 1,2, are invariant probability measures for P. Since p. = ayfi1 + asfiz, and p, is an
extreme point of the set of P-invariant probability measures, it follows that p; = uo.

Proof of Lemma 1.1. Let p,. € Mpo(E) be an ergodic P-invariant measure. By virtue of the Lebesgue
decomposition theorem we can write

Hx = Hac + Hsin,

where poe € Muc(E,m) and pgin € Mgin(E, m) are uniquely determined by p.. Consequently, it now
follows that

P:U/* :P,uac"'_P,U/sin-

From the principal assumption of the lemma we know that Pu,. € My.(E, m). Further, using the invariance
of p., we also get px = Ppge + Pusin. If we now take the absolutely continuous part of each side of this
equality, then we get

ftac = Ppige + (Ptsin) acs

which, in particular, implies that
MGC(E) = /Jac(E) + (Pﬂsin)ac(E>-

Hence (Plsin)ac = 0, and thus Py, € Mg (E,m). From the identity

Pac + fsin = s = P,U/ac + P/J/sin

and the uniqueness of the Lebesgue decomposition it now follows that both measures p,. and pg;, are
invariant for the operator P. Finally, taking into account the aforementioned consequence of [1, Theorem
19.25] and the fact that pee # fsin, we can apply the above remark to conclude that at least one of the
measures fiqe, fbsin Must be trivial, which gives the desired conclusion. [

In the remainder of this section, we provide the proofs of Lemmas 3.1 and 3.2, referring to the Markov
operators P, G and W, induced by the kernels (2.2), (2.5) and (2.6), respectively.

Proof of Lemma 3.1. Forany §# € ©, j € I and t > 0, let us define Ty ;, : X — X by

TaJ,t(y)i) = (wG(Sz(t’y))vj) for (:%Z) € X.

Obviously, each of the transformations Ty ;; is then Borel measurable and non-singular with respect to ly.
Consequently, for any 6§ € ©, j € I and t > 0, we can consider the Frobenius—Perron operator associated
with Tj ;+, say Pg .+, which satisfies

/X ]lA(TO,j,t(y’i))f(yvi) Zd(dy’ dl) = Apﬁ,j,tf(y’ Z) Zoi(dy’ dl) for A€ B(X)7 f € ‘Cl(X) Ed) (Al)
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Let € Mgo(X,£y), and, for each (0,75,t) € © x I x R, define

£ i) = m(w(&(t,y)))m(&(t,y))jg(y,z'>, (1) € X.

Note that fét,j,t € LY(X,ly) forall j € T and 9@/, - a.e. (6,t) € Ry x 6. To justify this, observe that, for
every i € I, the map (6,t,y) — e *py(S;(t,y)) is measurable with respect to B(0) ® B(R,) ® B(Y), since
the functions (0, y) — pe(y) and (¢,y) — S;(t,y) are continuous. Moreover, since 6 — py(y) is a density for
each y € Y, we have

/ /°°/ e Mpo(Si(t,y)) 9(dO) dt pu(dy x {i}) = A7 (Y x {i}) < o,
Y JO e

which (by [7, Theorem 3.4.5]) guarantees that the function (0,t,y) — e~ pa(S:(t,y)) is ¥ @ €1 @ p(- x {i})-
integrable for every ¢ € I. From Fubini’s theorem ([7, Theorem 3.4.4]) it now follows that, for each ¢ € I, the
map y — e Mpg(S;(t,y)) is u(- x {i})-integrable for ¥ ® f1-a.e. (6,t) € O x Ry, and so is y — pa(S;(t,v))-
This obviously implies that such a function is also u-integrable for ¥ ® ¢1-a.e. (0,t) € © x Ry, which finally
gives

/ féfj_t(y,i) Ca(dy, di) < / po(Si(t,y))u(dy,di) < oo for Y ® €, —ae. (0,t) € O xRy, jel.
x 7 b's

In view of the above, there exists a set N € B(0) @ B(Ry), with (J ® ¢)(N) = 0, such that
fo: € LY(X, 0y) for all (0,t) € (6 x Ry)\N and j € I. Hence we can now use (A.1) to conclude that,
for every A € B(X),

P =3 / N /@ A /X Ls (o (Si(t, ), 5)ms; (wo (Si(t, 1)) po(Si(t, ) a(dy, di)9 () dt

- /(@ e (/ 1A<Te,j,t<y7i))fgfj,xmefd<dy,dz'>> (9® 0,)(d6 x dt)
i1/ (OXRI\N b's

—Z/(@ . sy </Ap97j,t (f;fj,t) (y,i)zd(dy,di)> (9 01)(d0 x dt)
R4

JjeI

-,

We have therefore shown that the map

/( S APy S (fgfj,t) (y,4) (9 @ £1)(d6 x dt) | Za(dy, di).
JeI xRt

X3 (yi)— /( . Ae NPy ( 1 N) (y,1) (0 @ £1)(d6 x dt)

Jel

is a Radon-Nikodym derivative of Py with respect to £y, whence Py € M,go(X,ly) and the proof is
complete. [

Proof of Lemma 3.2. To prove the first inclusion, for every ¢ > 0, we define H; : X — X by setting
Hy(y,i) = (Si(t,y),7) for (y,i)e€ X.

Such a transformation is then Borel measurable and non-singular with respect to £4. Hence, we can consider
the Frobenius—Perron operator associated with Hy, say P;, which satisfies

/X ]lA(Ht(I%Z))f(ZU,'L) é_d(dy,dz) = /A,Ptf(:%l) Zd(d:%dl) for all A€ B(X)’ f € Ll(X7 Zd)
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and putting h* = du/dly € L(X, ), we then see that, for any A € B(X),

d)
/ e M4 (S;(t,y), 1) p(dy, di) dt

_ /0 T e M ( /X ILA(Ht(y,i))h”(y,i)éd(dy,di)> dt

= /OOO e M (/A PhH (y, 1) ed(dy,di)) dt = /A (/Ooo e MP,hH(y, 1) dt> La(dy, di).

This shows that o
(y,i) — / e MNP (y,0) dt
0

is a Radon-Nikodym derivative of G with respect to £4, which means that Gu € Mg.(X, £4) and, therefore,
shows the first inclusion in the assertion of the lemma.

The proof of the second inclusion goes similarly. In this case, for every § € © and each j € I, we consider
Ry ; : X — X given by

Rg,j(y,i) = (wo(y),j) for (y,i) € X.

Obviously, all the transformations Ry ; are Borel measurable and non-singular with respect to 4. This
observation, as before, enables us to introduce the Frobenius-Perron operator associated with Ry j, say
Po,;, which satisfies

/ ]1A(R97](y7l))f(y77’) g_d(dy7d7’) = / PQ jf(y7 )gd(dyadl) for A € B(X)7 f € ‘Cl(Xv Ed) (A2)
b'e
Let p € Mgo(X, 04) and define
d
%wn:wmmmm5%w>mrmwex

Proceeding analogously as in the proof of Lemma 3.1, one can show that there exists N € B(#) satisfying
Y(N) = 0 such that ry ; € LY(X, ) for all # € O\N and j € I. Hence, taking into account (A.2), we infer
that, for every A € B(X),

A) =3 [ [ Lot gy wols)oo(o) ey i) o(a)

JEI

= Z/ </ La(wo( ),j)mj(we(y))pe(y)u(dy,di)) 0(df)

jel

= Z/(;)\N (/X La(Ro,j(y,i))rp ;(y, i )Ed(dy,dz)> 9(d6)

jel

= Z/@\N (/A Po,j(ry ;) (Y, )éd(dy,dz)> 9(d)

jel
- / Z Po,; (1 ;) (y,1) 9(dO) La(dy, di).
A \jer/e\N
Consequently, we now see that the map
X2 i) oD [ Poslry;) i) 9(dd)
jer

is a RadonNikodym derivative of Wy with respect to £gq, which, in turn, yields that Wy € Mgae(X,£4) and
completes the proof of the lemma. [

25



D. Czapla, K. Horbacz and H. Wojewédka-Scigzko Nonlinear Analysis 213 (2021) 112522

References

[1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis. a Hitchhiker’s Guide, third ed., Springer-Verlag, Berlin,
2006.

[2] Y. Bakhtin, T. Hurth, Invariant densities for dynamical systems with random switching, Nonlinearity 25 (10) (2012)
2937-2952, http://dx.doi.org/10.1088/0951-7715/25/10/2937.

[3] M. Benaim, S. Le Borgne, F. Malrieu, P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems, Electron.
Commun. Probab. 17 (2012) 1-14, http://dx.doi.org/10.1214/ecp.v17-1932.

[4] M. Benaim, S. Le Borgne, F. Malrieu, P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov
processes, Ann. Inst. Henri Poincaré Probab. 51 (3) (2015) 1040-1075, http://dx.doi.org/10.1214/14-aihp619.

[5] M. Benaim, C. Lobry, Lotka—Volterra with randomly fluctuating environments or “how switching between beneficial
environments can make survival harder”, Ann. Appl. Probab. 26 (6) (2016) 3754-3785, http://dx.doi.org/10.1214/16-
aapl192.

[6] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999.

[7] V. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, 2007.

[8] O. Boxma, H. Kaspi, O. Kella, D. Perry, On/off storage systems with state-dependent inpout, outpout and switching
rates, Probab. Engrg. Inform. Sci. 19 (1) (2005) 1-14, http://dx.doi.org/10.1017/s0269964805050011.

[9] B. Cloez, R. Dessalles, A. Genadot, F. Malrieu, A. Marguet, R. Yvinec, Probabilistic and piecewise deterministic models
in biology, ESAIM: Proc. Surv. 60 (2017) 225-245, http://dx.doi.org/10.1051/proc/201760225.

[10] O. Costa, F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. Control Optim. 47
(2) (2008) 1053-1077.

[11] D. Czapla, K. Horbacz, H. Wojewédka-éci@iko, Ergodic properties of some piecewise-deterministic Markov process with
application to gene expression modelling, Stochastic Process. Appl. 130 (5) (2020) 2851-2885, http://dx.doi.org/10.1016/
j-spa.2019.08.006.

[12] D. Czapla, K. Horbacz, H. Wojewédka-Sciaciko7 A useful version of the central limit theorem for a general class of
Markov chains, J. Math. Anal. Appl. 484 (1) (2020) 123725, http://dx.doi.org/10.1016/j.jmaa.2019.123725.

[13] D. Czapla, K. Horbacz, H. Wojewddka-Scigzko, The law of the iterated logarithm for a piecewise deterministic Markov
process assured by the properties of the Markov chain given by its post-jump locations, Stoch. Anal. Appl. 39 (2) (2021)
357-379, http://dx.doi.org/10.1080/07362994.2020.1798252.

[14] D. Czapla, K. Horbacz, H. VVojew()dka—Sciadiko7 The strassen invariance principle for certain non-stationary Markov-Feller
chains, Asymptot. Anal. 121 (1) (2021) 1-34, http://dx.doi.org/10.3233/ASY-191592.

[15] D. Czapla, J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson-driven
stochastic differential equation, Dyn. Syst. - Int. J. 34 (1) (2019) 130-156, http://dx.doi.org/10.1080/14689367.2018.
1485879.

[16] M. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. R. Statist. Soc.
Ser. B 46 (3) (1984) 353—-388.

[17] D. Douc, E. Moulinesand, D. Stoffer, Nonlinear Time Series: Theory, Methods and Applications with R Examples,
Chapman and Hall/CRC, New York, 2014.

[18] R. Dudley, Convergence of baire measures, Studia Math. 27 (1966) 251268, http://dx.doi.org/10.4064 /sm-27-3-251-268.

[19] C. Graham, P. Robert, Interacting multi-class transmissions in large stochastic networks, Ann. Appl. Probab. 19 (6)
(2009) 2334-2361, http://dx.doi.org/10.1214/09-aap614.

[20] A. Lasota, From fractals to stochastic differential equations, in: Chaos The Interplay Between Stochastic and
Deterministic Behaviour, in: Lecture Notes in Phys., vol. 457, (Springer Verlag), 1995, pp. 235-255.

[21] A. Lasota, J. Myjak, Generic properties of fractal measures, Bull. Pol. Acad. Sci. Math. 42 (4) (1994) 283-296.

[22] A. Lasota, J. Traple, Invariant measures related with Poisson driven stochastic differential equation, Stochastic Process.
Appl. 106 (1) (2003) 81-93, http://dx.doi.org/10.1016/s0304-4149(03)00017-6.

[23] A. Lasota, J. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput.
Dyn. 2 (1) (1994) 41-77.

[24] E. Locherbach, Absolute continuity of the invariant measure in piecewise deterministic Markov processes having
degenerate jumps, Stochastic Process. Appl. 128 (6) (2018) 1797-1829, http://dx.doi.org/10.1016/j.spa.2017.08.011.

[25] M. Mackey, M. Tyran-Kamiriska, R. Yvinec, Dynamic behavior of stochastic gene expression models in the presence of
bursting, SIAM J. Appl. Math. 73 (5) (2013) 1830-1852.

[26] S. Meyn, R. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993.

[27] K. Pakdaman, M. Thieullen, G. Wainrib, Fluid limit theorems for stochastic hybrid systems with application to neuron
models, Adv. Appl. Probab. 42 (3) (2010) 761-794, http://dx.doi.org/10.1239/aap/1282924062.

[28] D. Revuz, Markov Chains, Elsevier Science Publishers B.V., North-Holland, Amsterdam, 1984.

[29] M. Riedler, M. Thieullen, G. Wainrib, Limit theorems for infinite-dimensional piecewise deterministic Markov processes.
applications to stochastic excitable membrane models, Electron. J. Probab. 17 (2012) http://dx.doi.org/10.1214 /ejp.v17-
1946.

[30] R. Rudnicki, M. Tyran-Kaminska, Piecewise Deterministic Processes in Biological Models, Springer, 2017, http://dx.
doi.org/10.1007/978-3-319-61295-9.

[31] T. Szarek, Generic properties of learning systems, Ann. Polon. Math. 73 (2) (2000) 93—-103, http://dx.doi.org/10.4064 /ap-
73-2-93-103.

[32] T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math. 154 (3) (2003)

207-222, URL: https://doi.org/10.4064/sm154-3-2.

26


http://refhub.elsevier.com/S0362-546X(21)00175-9/sb1
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb1
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb1
http://dx.doi.org/10.1088/0951-7715/25/10/2937
http://dx.doi.org/10.1214/ecp.v17-1932
http://dx.doi.org/10.1214/14-aihp619
http://dx.doi.org/10.1214/16-aap1192
http://dx.doi.org/10.1214/16-aap1192
http://dx.doi.org/10.1214/16-aap1192
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb6
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb7
http://dx.doi.org/10.1017/s0269964805050011
http://dx.doi.org/10.1051/proc/201760225
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb10
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb10
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb10
http://dx.doi.org/10.1016/j.spa.2019.08.006
http://dx.doi.org/10.1016/j.spa.2019.08.006
http://dx.doi.org/10.1016/j.spa.2019.08.006
http://dx.doi.org/10.1016/j.jmaa.2019.123725
http://dx.doi.org/10.1080/07362994.2020.1798252
http://dx.doi.org/10.3233/ASY-191592
http://dx.doi.org/10.1080/14689367.2018.1485879
http://dx.doi.org/10.1080/14689367.2018.1485879
http://dx.doi.org/10.1080/14689367.2018.1485879
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb16
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb16
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb16
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb17
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb17
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb17
http://dx.doi.org/10.4064/sm-27-3-251-268
http://dx.doi.org/10.1214/09-aap614
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb20
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb20
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb20
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb21
http://dx.doi.org/10.1016/s0304-4149(03)00017-6
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb23
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb23
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb23
http://dx.doi.org/10.1016/j.spa.2017.08.011
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb25
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb25
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb25
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb26
http://dx.doi.org/10.1239/aap/1282924062
http://refhub.elsevier.com/S0362-546X(21)00175-9/sb28
http://dx.doi.org/10.1214/ejp.v17-1946
http://dx.doi.org/10.1214/ejp.v17-1946
http://dx.doi.org/10.1214/ejp.v17-1946
http://dx.doi.org/10.1007/978-3-319-61295-9
http://dx.doi.org/10.1007/978-3-319-61295-9
http://dx.doi.org/10.1007/978-3-319-61295-9
http://dx.doi.org/10.4064/ap-73-2-93-103
http://dx.doi.org/10.4064/ap-73-2-93-103
http://dx.doi.org/10.4064/ap-73-2-93-103
https://doi.org/10.4064/sm154-3-2

	On absolute continuity of invariant measures associated with a piecewise-deterministic Markov process with random switching between flows
	Introduction
	Preliminaries
	Description of the model
	Main results
	Singularity/absolute continuity dichotomy of ergodic P-invariant measures
	A criterion on absolute continuity of ergodic invariant measures associated with the model

	The existence and uniqueness of invariant measures
	Examples
	
	Appendix
	References




