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a b s t r a c t

We are concerned with the absolute continuity of stationary distributions corre-
sponding to some piecewise deterministic Markov process, being typically encoun-
tered in biological models. The process under investigation involves a deterministic
motion punctuated by random jumps, occurring at the jump times of a Poisson
process. The post-jump locations are obtained via random transformations of
the pre-jump states. Between the jumps, the motion is governed by continuous
semiflows, which are switched directly after the jumps. The main goal of this paper
is to provide a set of verifiable conditions implying that any invariant distribution
of the process under consideration that corresponds to an ergodic invariant measure
of the Markov chain given by its post-jump locations has a density with respect
to the Lebesgue measure.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction

The object of our study is a subclass of piecewise-deterministic Markov processes (PDMPs), somewhat
similar to that considered in [2–4,10,22,24], which plays an important role in biology, providing a mathe-
matical framework for the analysis of gene expression dynamics (cf. [25,30]). Recall that a Markov process
may be regarded as belonging to the class of PDMPs whenever, roughly speaking, its randomness stems only
from the jump mechanism and, in particular, it admits no diffusive dynamics. This huge class of processes
has been introduced by Davis [16], and arises naturally in many applied areas, such as population dynamics
[5,9], neuronal activity [27], excitable membranes [29], storage modelling [8] or internet traffic [19].
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The process considered in this paper is an instance of that introduced in [11], and further examined in [15]
(cf. also [12–14]). More specifically, we study a Markov process {(Y (t), ξ(t))}t≥0 evolving on X := Y × I,

here Y is a closed subset of Rd (but not necessarily bounded, in contrast to e.g. [4]), and I is a finite
et. It is assumed that the process involves a deterministic motion punctuated by random jumps, appearing
t random moments τ1 < τ2 < · · · , coinciding with the jump times of a homogeneous Poisson process.
he underlying random dynamical system can be described in terms of a finite collection {Si : i ∈ I} of

emiflows, acting from [0,∞) × Y to Y , and an arbitrary family {wθ : θ ∈ Θ} of transformations from
into itself. In the main part of the paper, we assume that Θ is either an interval in R or a finite set.

etween any two consecutive jumps, the evolution of the first coordinate Y (·) is driven by a semiflow Si,
here i is the value of the second coordinate ξ(·). The latter is constant on each time interval between

umps and it is randomly changed right after the jump, depending on the current states of both coordinates.
oreover, the post-jump location of the first coordinate after the nth jump, i.e. Y (τn), is obtained as a

esult of transforming the pre-jump state Y (τn−), using a map wθ, where the index θ is randomly drawn
rom Θ , depending on this state. It is worth noting here that such transformations are not present e.g. in
he models discussed in [2–4,10], where the jumps are only related to the semiflow changes. Consequently,
he first coordinate of the process can be shortly expressed as

Y (t) =
{
Sξ(t)(t− τn, Y (τn)) for t ∈ [τn, τn+1),
wηn+1(Y (τn+1−)) for t = τn+1,

here n ∈ N∪{0}, τ0 := 0, and {ηn}n∈N is an appropriate sequence of random variables with values in Θ . In
ur study, a significant role will be also played by the discrete-time Markov chain {(Yn, ξn)}n∈N∪{0} defined
y

Yn := Y (τn), ξn := ξ(τn) for n ∈ N ∪ {0},

o which we will further refer as to the chain given by the post-jump locations.
In [11, Theorem 4.1] (cf. also [15]), we have provided a set of tractable conditions implying that the chain

(Yn, ξn)}n is geometrically ergodic in the Fortet–Mourier metric (also known as the dual-bounded Lipschitz
istance; see [20]), which induces the topology of weak convergence of probability measures (see [18]). This
eans that the chain possesses a unique, and thus ergodic, stationary distribution, and, for any initial

tate, the distribution of the chain (at consecutive time points) converges weakly to the stationary one at
geometric rate with respect to the above-mentioned distance. Moreover, we have established a one-to-one

orrespondence between invariant distributions of that chain and those of the process {(Y (t), ξ(t))}t (see
11, Theorem 4.4]). This has led us to the conclusion that the aforementioned conditions guarantee the
xistence and uniqueness of a stationary distribution for the PDMP as well. Although not relevant here, it
s worth mentioning that the aforesaid results are valid in a more general setting than the one given above;
amely, it is enough to require that Y is a Polish metric space, and Θ is an arbitrary measurable topological
pace endowed with a finite measure.

The main goal of the present paper is to provide certain verifiable conditions that would imply the absolute
ontinuity of all the stationary distributions of the PDMP {(Y (t), ξ(t))}t which correspond to ergodic
tationary distributions of the associated chain {(Yn, ξn)}n (see Theorem 3.2). The absolute continuity is
nderstood here to hold with respect to the product measure ℓ̄d of the d-dimensional Lebesgue measure and
he counting measure on I. As we shall see in Theorem 3.1(ii), the problem reduces, in fact, to examining
he invariant distributions of the Markov chain given by the post-jump locations.

Simultaneously, it should be emphasized that the hypotheses of the above-mentioned [11, Theorem 4.4]
o not ensure that the unique (and thus ergodic) stationary distribution of the chain {(Yn, ξn)}n (or that
f the continuous-time process) is absolutely continuous. The simplest example illustrating this claim is a
ystem including only one transformation w1 ≡ 0, for which the Dirac measure at 0 is a unique stationary

istribution.
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On the other hand, it is well known and not hard to prove that, whenever the transition operator of
a Markov chain preserves the absolute continuity of measures, then any ergodic stationary distribution of
the chain (or, in other words, any ergodic invariant probability measure of the transition operator) must
be either singular or absolutely continuous (see [21, Lemma 2.2 with Remark 2.1] and cf. [2, Theorem 6]).
As will be clarified later (in Lemma 3.1), this is the case for the chain {(Yn, ξn)}n if, for instance, all the
ransformations wθ and Si(t, ·) are non-singular with respect to the Lebesgue measure. Yet, as shown in
xample 5.2, even under this assumption, the conditions imposed in [11] do not guarantee that a unique

nvariant distribution of the chain and, thus, that of the PDMP, is absolutely continuous. It should be also
tressed that, in general, the singularity of some of the transformations wθ does not necessarily exclude the
bsolute continuity of invariant measures as well (see e.g. [24]).

Obviously, the above-mentioned absolute continuity/singularity dichotomy significantly simplifies the
nalysis, since, in such a setting, we only need to guarantee that the continuous part of a given ergodic
nvariant distribution of {(Yn, ξn)}n, say µ∗, is non-trivial. One way to achieve this is to provide the existence
f an open ℓ̄d-small set (in the sense of [26]) that is uniformly accessible from some measurable subset of X
ith positive measure µ∗ in a specified number of steps (see Proposition 3.1).
Following ideas of [4], we show (in Lemma 3.3) that the existence of an open small set, containing a

iven point (y0, j0), can be accomplished by assuming that, for some n ≥ d and certain “admissible” paths
j1, . . . , jn−1) ∈ In−1, (θ1, . . . , θn) ∈ Θn, the composition

(0,∞)n ∋ (t1, . . . , tn) ↦→ wθn(Sjn−1(tn, . . . , wθ1(Sj0(t1, y0)) . . .))

as at least one regular point (at which it is a submersion). This requirement is similar in nature to that
mployed e.g. in [2,4,30], involving the so-called cumulative flows, which can be usually checked by using a
örmander’s type condition (see [2, Theorems 4 and 5]). Furthermore, if the chain is asymptotically stable,

.e., it admits a unique invariant probability measure to which the distribution of the chain converges weakly,
ndependently of the initial state (which is the case, e.g., under the hypotheses employed in [11]), and (y0, j0)
elongs to the support of µ∗, then the Portmanteau theorem ([6, Theorem 2.1]) ensures that every open
eighbourhood of (y0, j0) is uniformly accessible from some other (sufficiently small) neighbourhood of this
oint with positive measure µ∗ in a given number of steps (cf. Corollary 3.1). In general, the latter may,
owever, be difficult to verify directly, and the argument works only if the chain is asymptotically stable.
herefore, we also propose a more practical condition ensuring the accessibility (cf. Lemma 3.4), which
oncerns the above-specified compositions of wθ and Sj .

Finally, let us draw attention to the special case where Si(t, y) := y for every i ∈ I (which is, however,
ut of the scope of this paper). In this case, we have Yn+1 = wθn+1(Yn) for every n ∈ N ∪ {0}, and thus
Yn}n can be viewed as the Markov chain arising from an iterated function system (IFS in short) with
lace-dependent probabilities (also called a learning system; cf. [20,23,32]). The results in [31] (cf. also [21])
how that for most (in the sense of Baire category) such systems the corresponding invariant measures are
ingular, at least in the case where Θ is finite and Y is a compact convex subset of Rd. More precisely, it has
een proved that asymptotically stable IFSs with singular invariant measures constitute a residual subset
f the family of all Lipschitzian IFSs enjoying some additional property, which somehow links the Lipschitz
onstants of wθ with the associated probabilities.

The outline of the paper is as follows. In Section 1, we introduce the notations and basic definitions
egarding Markov operators acting on measures, as well as we give a proof of the aforementioned result
n the absolute continuity/singularity dichotomy for their ergodic invariant measures. Section 2 provides
detailed description of the model under study. The main results are established in Section 3, which is

ivided into two parts. Section 3.1 contains an interpretation of the dichotomy criterion in the given
ramework and a significant conclusion on the mutual dependence between the absolute continuity of
tationary distributions of the chain given by the post-jump locations and the corresponding invariant
3
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distributions of the PDMP. Here we also state a general key observation, linking the absolute continuity of
the ergodic invariant distributions of {(Yn, ξn)}n with the existence of a suitable open ℓ̄d-small set. Further,
n Section 3.2, we provide some testable conditions implying the existence of such a set and, therefore,
uaranteeing the absolute continuity of the invariant measures under consideration. Section 4 contains the
tatement of [11, Theorem 4.1], providing the exponential ergodicity of the chain {(Yn, ξn)}n (and hence
he existence and uniqueness of a stationary distribution for the PDMP). Some remarks and examples related
o our main result are given in Section 5.

. Preliminaries

Let (E, ρ) be an arbitrary separable metric space, endowed with the Borel σ-field B(E). Further, let
fin(E) be the set of all finite non-negative Borel measures on E, and let Mprob(E) stand for the subset

f Mfin(E) consisting of all probability measures. Moreover, by M1
prob(E) we will denote the set of all

easures µ ∈ Mprob(E) with finite first moment, i.e. satisfying∫
E

ρ(x, x∗)µ(dx) < ∞ for some x∗ ∈ E.

Now, suppose that we are given a σ-finite non-negative Borel measure m on E. Then, a σ-finite Borel
easure µ on E is called absolutely continuous with respect to m, which is denoted by µ ≪ m, whenever

µ(A) = 0 for every A ∈ B(E) such that m(A) = 0.

y the Radon–Nikodym theorem, µ ≪ m can be equivalently characterized by saying that there is a unique
modulo sets of m – measure 0) Borel measurable function fµ : E → [0,∞), usually denoted by dµ/dm,
uch that

µ(A) =
∫

A

fµ(x)m(dx) for ever A ∈ B(E).

bviously, if µ ∈ Mfin(E), then fµ is a member of L1(E,m), i.e. the space of all Borel measurable and
-integrable functions from E to R (identified, as usual, with the corresponding quotient space under the

elation of m-almost everywhere equality).
The measure µ is said to be singular with respect to m, which is denoted by µ ⊥ m, if there exists a set
∈ B(E) such that

µ(F ) = 0 and m(E\F ) = 0.

It is well-known that, due to the Lebesgue decomposition theorem, any σ-finite Borel measure µ can be
niquely decomposed as

µ = µac + µsin, so that µac ≪ m and µsin ⊥ m.

With regard to the definitions given above, we will use the following notation:

Mac(E,m) := {µ ∈ Mfin(E) : µ ≪ m},
Msin(E,m) := {µ ∈ Mfin(E) : µ ⊥ m}.

Let us now briefly recall the concept of Frobenius–Perron operator, which will be used in the analysis
hat follows. For this aim, suppose that we are given a Borel measurable transformation S : E → E that is
on-singular with respect to m, i.e.

−1
m(S (A)) = 0 for every A ∈ B(E) satisfying m(A) = 0.
4
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The non-singularity condition assures that, if µ ∈ Mac(E,m), and µS is defined by

µS(A) := µ(S−1(A)) for A ∈ B(E),

hen µS ∈ Mac(E,m). This allows one to define a linear operator PS : L1(E,m) → L1(E,m) in such a way
hat

PS

(
dµ

dm

)
= dµS

dm
for every µ ∈ Mac(E,m),

hich, in other words, means that∫
A

PSf(x)m(dx) =
∫

S−1(A)
f(x)m(dx) for all A ∈ B(E), f ∈ L1(E,m). (1.1)

uch an operator PS is commonly known as the Frobenius–Perron operator.
Now, we shall recall several basic definitions from the theory of Markov operators, which will be used

hroughout the paper. A function P : E × B(E) → [0, 1] is called a stochastic kernel if for each A ∈ B(E),
↦→ P (x,A) is a measurable map on E, and for each x ∈ E, A ↦→ P (x,A) is a probability Borel measure on
(E). Given a stochastic kernel P , we can consider the corresponding operator P : Mfin(E) → Mfin(E),
cting on measures, given by

Pµ(A) =
∫

E

P (x,A)µ(dx) for µ ∈ Mfin(E), A ∈ B(E). (1.2)

uch an operator is usually called a regular Markov operator. For notational simplicity, we use here the same
ymbol for the stochastic kernel and the corresponding Markov operator. This slight abuse of notation will
ot, however, lead to any confusion.

We say that the Markov operator P is Feller (or that it enjoys the Feller property) whenever the map
↦→

∫
E
f(y)P (x, dy) is continuous for every bounded continuous function f : E → R.

A measure µ∗ ∈ Mfin(E) is called invariant for the Markov operator P (or, simply, P -invariant) if
µ∗ = µ∗. If there exists a unique P -invariant measure µ∗ ∈ Mprob(E) such that, for every µ ∈ Mprob(E),

he sequence {Pnµ}n∈N is weakly convergent to µ∗, then the operator P is said to be asymptotically stable.
et us recall here that a sequence {µn}n∈N ⊂ Mfin(E) is said to be weakly convergent to µ ∈ Mfin(E)
henever ∫

E

f dµn →
∫

E

f dµ, as n → ∞,

or each bounded continuous function f : E → R.

emark 1.1. Suppose that P is a regular Markov–Feller operator, and that there exists a measure
∗ ∈ Mprob(E) such that {Pnδx}n∈N is weakly convergent to µ∗ for every x ∈ E. Then P is asymptotically
table.

Indeed, note that, due to the Feller property, P : Mprob(E) → Mprob(E) is continuous in the topology
f weak convergence of measures. Taking this into account, we infer that

Pµ∗ = P ( lim
n→∞

Pnδx) = lim
n→∞

Pn+1δx = µ∗ (weakly, with any x ∈ E),

hich shows that µ∗ is P -invariant. Moreover, using the assumption of the weak convergence of {Pnδx}n∈N

for each x ∈ E) and the Lebesgue’s dominated convergence theorem we can simply conclude that {Pnµ}n∈N

onverges weakly to µ∗ for every µ ∈ Mprob(E). This also proves that µ∗ is a unique invariant probability

easure for P .

5
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An invariant probability measure µ∗ ∈ Mprob(E) is said to be ergodic with respect to P (or P -ergodic)
whenever µ∗(A) ∈ {0, 1} for every A ∈ B(E) satisfying

P (x,A) = 1 for µ∗ - almost every x ∈ A.

It is well-known (see e.g. [17, Corollary 7.17]) that, if µ∗ is a unique invariant probability measure for P ,
hen it must be ergodic. Moreover, according to [1, Theorem 19.25], the P -ergodic measures are precisely the
xtreme points of the set of all P -invariant probability measures. These observations lead to the following
imple, but extremely useful, conclusion regarding the dichotomy between absolute continuity and singularity
f P -ergodic measures, which can be found e.g. in [21, Lemma 2.2, Remark 2.1], and whose proof is also given
n the Appendix.

emma 1.1. Let m be an arbitrary σ-finite non-negative Borel measure on E, and suppose that
: Mfin(E) → Mfin(E) is a regular Markov operator which preserves absolute continuity of measures,

.e. P (Mac(E,m)) ⊂ Mac(E,m). Then, every ergodic invariant probability measure of P is either absolutely
ontinuous or singular with respect to m.

For any given E-valued time-homogeneous Markov chain {Φn}n∈N∪{0}, defined on some probability space
Ω ,F ,P), the stochastic kernel P (·, ∗) satisfying

P (x,A) = P(Φn+1 ∈ A | Φn = x) for all x ∈ E, A ∈ B(E), n ∈ N ∪ {0}

s called a one-step transition law of this process, and the distribution of Φ0 is said to be its initial
istribution. Obviously, in this case, the Markov operator defined by (1.2) describes the evolution of the
istributions µn(·) := P(Φn ∈ ·), n ∈ N ∪ {0}, that is, µn = Pµn−1 for each n ∈ N. In this connection,
n invariant probability measure of P is called a stationary distribution of the chain. Moreover, it is well
nown (see e.g. [28]) that, for any given stochastic kernel P (·, ∗) on E × B(E) and µ ∈ Mprob(E), on some
robability space, there exists a time-homogeneous Markov chain for which P (·, ∗) serves as a description of
he one-step transition law, and µ is the initial distribution.

A family of regular Markov operators {Pt}t≥0 on Mfin(E), generated according to (1.2), is called a
egular Markov semigroup whenever it constitutes a semigroup under composition with P0 = id as the unity
lement. A measure ν∗ ∈ Mfin(E) is said to be invariant for such a semigroup if Pt ν∗ = ν∗ for every t ≥ 0.

Analogously to the discrete-time case, by the transition law (or a transition semigroup) of a homogeneous
ontinuous-time Markov process {Φ(t)}t≥0 we mean the family {Pt(·, ∗)}t≥0 of stochastic kernels satisfying

Pt(x,A) = P(Φ(t+ s) ∈ A | Φ(s) = x) for all x ∈ E, A ∈ B(E), s, t ≥ 0.

ince {Pt(·, ∗)}t≥0 satisfies the Chapman–Kolmogorov equation, the family {Pt}t≥0 of Markov operators
enerated by such kernels is a Markov semigroup (under the composition), which describes the evolution of
he distributions µ(t)(·) := P(Φ(t) ∈ ·), t ≥ 0, i.e. µ(s + t) = Ptµ(s) for all s, t ≥ 0. In this context, an
nvariant probability measure of {Pt}t≥0 is called a stationary distribution of the process {Φ(t)}t≥0.

. Description of the model

Let us now present a formal description of the investigated model (originating from [11]), which has
lready been briefly discussed in the introduction. Recall that such a system can be viewed as a PDMP
volving through random jumps, which arrive one by one (at random time points τn) in exponentially

istributed time intervals. The parameter of the exponential distribution, determining the jump rate, will be

6
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denoted by λ. The deterministic evolution of the process will be governed by a finite number of continuous
semiflows, randomly switched at the jump times.

Let Y be a Polish metric space, endowed with the Borel σ-field B(Y ), R+ := [0,∞), and N0 := N ∪ {0}.
urther, suppose that we are given a finite collection {Si : i ∈ I} of continuous semiflows, where I =
1, . . . , N} and Si : R+ ×Y → Y for every i ∈ I. In what follows, we will assume that I is equipped with the
iscrete topology. The semiflows will be switched at the jump times according to a matrix {πij : i, j ∈ I}
f place-dependent continuous probabilities πij : Y → [0, 1], satisfying∑

j∈I

πij(y) = 1 for all i ∈ I, y ∈ Y.

Moreover, let Θ be an arbitrary separable topological space equipped with a finite Borel measure ϑ, and let
{wθ : θ ∈ Θ} be an arbitrary family of transformations from Y to itself, such that the map (y, θ) ↦→ wθ(y) is
ontinuous. These transformations will be related to the post-jump locations of the process; more specifically,
f the system is in the state y just before a jump, then its position directly after the jump should be wθ(y)
ith some randomly selected θ ∈ Θ . The choice of θ will depend on the current state y and is determined

by a probability density function θ ↦→ pθ(y) such that (θ, y) ↦→ pθ(y) is continuous.
We shall first introduce a discrete-time model. For this aim, define Z := Y × I × Θ × R+ (endowed with

he product topology) and a stochastic kernel P̄ : Z × B(Z) → [0, 1] by setting

P̄ (z, C) =
∑
j∈I

∫ ∞

0

∫
Θ

λe−λt1C(wθ(Si(t, y)), j, θ, t0 + t)πij(wθ(Si(t, y)))pθ(Si(t, y))ϑ(dθ) dt

or z = (y, i, θ0, t0) ∈ Z and C ∈ B(Z). Further, for an arbitrarily given µ̄ ∈ Mprob(Z), consider a Z-valued
ime-homogeneous Markov chain {(Yn, ξn, ηn, τn)}n∈N0 (wherein Yn, ξn, ηn and τn take values in Y , I, Θ and
+, respectively) with transition law P̄ and initial distribution µ̄, constructed on some suitable probability

pace, equipped with a probability measure P. It is then easy to check that

Yn = wηn(Sξn−1(∆τn, Yn−1)) P − a.s. for every n ∈ N, where ∆τn := τn − τn−1, (2.1)

nd that the following laws hold:

P(ξn = j | ξn−1 = i, Yn = y) = πij(y) for y ∈ Y, i, j ∈ I,

P(ηn ∈ D | Sξn−1(∆τn, Yn−1) = y) =
∫

D

pθ(y)ϑ(dθ) for y ∈ Y, D ∈ B(Θ),

P(∆τn ≤ t | τn−1 = t0) =
(

1 − e−λ(t−t0)
)
1[t0,∞)(t) for t0, t ∈ R+.

oreover, note that the increments ∆τn, n ∈ N, form a sequence of independent and exponentially
istributed random variables with the same rate parameter λ, and thus τn ↑ ∞ P-almost everywhere (a.e.),
s n → ∞ (due to the strong law of large numbers). These observations confirm that such a model coincides
ith our description of the jump mechanism.
Let X := Y ×I and suppose that µ̄ has the form µ̄ = µ⊗ δ̂θ0 ⊗δ0, where µ ∈ Mprob(X), θ0 is an arbitrarily

xed element of Θ , and δ̂θ0 , δ0 are the Dirac measures on B(Θ), B(R+), respectively. In what follows we
ill focus on the sequence {Φn}n∈N0 given by

Φn = (Yn, ξn) for n ∈ N0,

hich can be viewed as an X-valued Markov chain with initial distribution µ and transition law of the form

P ((y, i), A) := P̄ ((y, i, θ0, 0), A× Θ × R+)

=
∑
j∈I

∫ ∞

0

∫
Θ

λe−λt1A(wθ(Si(t, y)), j)πij(wθ(Si(t, y))) pθ(Si(t, y))ϑ(dθ) dt. (2.2)

or (y, i) ∈ X and A ∈ B(X).

7
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We can now define an interpolation {Φ(t)}t≥0 of the chain {Φn}n∈N0 as follows:

Φ(t) := (Y (t), ξ(t)) for t ≥ 0,

here
Y (t) := Sξn(t− τn, Yn) and ξ(t) := ξn, whenever t ∈ [τn, τn+1) for n ∈ N0. (2.3)

t is easily seen that {Φ(t)}t≥0 is a time-homogeneous Markov process, and that Φ(τn) = Φn for every
∈ N0, which means that {Φn}n∈N describes the post-jump locations of this process. By {Pt}t≥0 we will

enote the transition semigroup of {Φ(t)}t≥0, i.e.

Pt((y, i), A) = Pµ(Φ(s+ t) ∈ A | Φ(s) = (y, i)) for (y, i) ∈ X, A ∈ B(X), s, t ≥ 0. (2.4)

Referring to P and {Pt}t≥0 in our further discussion, we will always mean the Markov operator generated
y the transition law of {Φn}n∈N0 , given by (2.2), and the Markov semigroup induced by the transition law
f the process {Φ(t)}t≥0, satisfying (2.4), respectively. It is worth noting here that, by continuity of functions
i, wθ, pθ and πij , both the operator P and the semigroup {Pt}t≥0 are Feller (cf. [11, Lemma 6.3]).

As mentioned in the introduction, a set of directly testable conditions for the existence and uniqueness
f P -invariant probability measures (which, simultaneously, guarantee a form of geometric ergodicity for P )
as already been provided in [11, Theorem 4.1]. This theorem will be quoted in Section 4. The main results
f the paper, concerning the absolute continuity of ergodic invariant measures for P , presented in Section 3,
ill be derived by assuming a priori that such measures exist.
Let us also recall that, by virtue of [11, Theorem 4.4], there is a one-to-one correspondence between

nvariant probability measures of the operator P and those of the semigroup {Pt}t≥0. Moreover, such
correspondence can be expressed explicitly by using the Markov operators G and W induced by the

tochastic kernels of the form

G((y, i), A) =
∫ ∞

0
λe−λt1A(Si(t, y), i) dt, (2.5)

W ((y, i), A) =
∑
j∈I

∫
Θ

1A(wθ(y), j)πij(wθ(y))pθ(y)ϑ(dθ) (2.6)

or (y, i) ∈ X and A ∈ B(X). More precisely, the following holds:

heorem 2.1 ([11, Theorem 4.4]). Let P and {Pt}t≥0 denote the Markov operator and the Markov semigroup
nduced by (2.2) and (2.4), respectively.

(i) If µ∗ ∈ Mprob(X) is an invariant measure of P , then Gµ∗ is an invariant measure of {Pt}t≥0 and
WGµ∗ = µ∗.

ii) If ν∗ ∈ Mprob(X) is an invariant measure of {Pt}t≥0, then Wν∗ is an invariant measure of P and
GWν∗ = ν∗.

. Main results

Throughout the remainder of the paper, we assume that Y is a closed subset of Rd (endowed with the
uclidean norm ∥·∥) such that intY ̸= ∅, and we write ℓd for the d-dimensional Lebesgue measure restricted

o B(Y ). Moreover, by ℓ̄d we denote the product measure ℓd ⊗mc on X = Y × I, where mc is the counting
easure on I. The latter can be therefore expressed as mc(J) =

∑
j∈I δj(J) for J ⊂ I, where δj stands for

he Dirac measure at j. Our aim is to find conditions ensuring the absolute continuity (with respect to ℓ̄d)
f ergodic invariant probability measures of the operator P , if any exist, and the corresponding invariant

easures of the semigroup {Pt}t≥0.

8
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3.1. Singularity/absolute continuity dichotomy of ergodic P -invariant measures

We begin our analysis with simple observations regarding the case where the Markov operator P , induced
y (2.2), as well as the operators G and W , corresponding to (2.5) and (2.6), respectively, preserve the

absolute continuity of measures.

Lemma 3.1. Suppose that, for all θ ∈ Θ , k ∈ I and t ≥ 0, the transformations wθ and Sk(t, ·) are
on-singular with respect to ℓd. Then the Markov operator P induced by (2.2) satisfies

P
(
Mac(X, ℓ̄d)

)
⊂ Mac

(
X, ℓ̄d

)
.

emma 3.2. Suppose that the assumption of Lemma 3.1 is fulfilled. Then the Markov operators G and W ,
enerated by (2.5) and (2.6), respectively, satisfy

G
(
Mac(X, ℓ̄d)

)
⊂ Mac

(
X, ℓ̄d

)
and W

(
Mac(X, ℓ̄d)

)
⊂ Mac

(
X, ℓ̄d

)
.

The idea underlying the proofs of these lemmas is to construct the densities of Pµ, Gµ and Wµ by using
he density of µ ∈ Mac(X, ℓ̄d) and the Frobenius–Perron operators Pθ,j,t, Pt and Pθ,j associated with the
on-singular transformations mapping (y, i) to (wθ(Si(t, y)), j), (Si(t, y), i) and (wθ(y), j), respectively. The
etails are rather technical, and thus the rigorous proofs are postponed to the Appendix.

Collecting all the results obtained so far, we can state the following theorem:

heorem 3.1. Let P,G,W be the Markov operators generated by (2.2), (2.5) and (2.6), respectively, and
et {Pt}t≥0 be the Markov semigroup corresponding to (2.4). Further, suppose that, for all θ ∈ Θ , k ∈ I and
≥ 0, the transformations wθ and Sk(t, ·) are non-singular with respect to the Lebesgue measure ℓd. Then

(i) Every ergodic invariant probability measure of P is either absolutely continuous or singular with respect
to ℓ̄d.

(ii) If µ∗, ν∗ ∈ Mprob(X) are invariant probability measures for P and {Pt}t≥0, respectively, which
correspond to each other in the manner of Theorem 2.1, that is,

ν∗ = Gµ∗ or, equivalently, µ∗ = Wν∗,

then the measure µ∗ is absolutely continuous with respect to ℓ̄d if and only if so is ν∗.
(iii) If µ∗, ν∗ ∈ Mprob(X) are the unique invariant probability measures for P and {Pt}t≥0, respectively,

then µ∗ is absolutely continuous with respect to ℓ̄d if and only if so is ν∗.

roof. The first statement of the theorem follows immediately from Lemmas 1.1 and 3.1. The second one is
ust a summary of Theorem 2.1 and Lemma 3.2. Finally, the last assertion is a straightforward consequence
f the second one. □

For a given ergodic P -invariant probability measure µ∗, Theorem 3.1 enables us to restrict our enquiry
bout the absolute continuity of both µ∗ and Gµ∗ to the one about the non-triviality of the continuous part
f µ∗. Certain general conditions providing the positive answer to this question are given in the result below.
hese conditions should be viewed as a starting point for the forthcoming discussion regarding possible

estrictions on the component functions of the model that would guarantee the desired absolute continuity.

roposition 3.1. Let µ∗ be any invariant probability measure of the Markov operator P , corresponding
o (2.2). Suppose that there exist non-empty open subsets U, V of Y and an index i ∈ I such that, for some
∈ N and some c̄ > 0,

Pn(x,B × {j}) ≥ c̄ ℓ (B ∩ V ) for all x ∈ U × {i}, j ∈ I and B ∈ B(Y ). (3.1)
d
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Furthermore, assume that there exist a set X̃ ∈ B(X) with µ∗(X̃) > 0, m ∈ N and δ > 0 such that

Pm(x, U × {i}) ≥ δ for every x ∈ X̃. (3.2)

hen the absolutely continuous part of µ∗ with respect to ℓ̄d is non-trivial. If, additionally, µ∗ is ergodic and
he assumption of Theorem 3.1 is fulfilled, then both µ∗ and Gµ∗ are absolutely continuous with respect to ℓ̄d.

Proof. Let B ∈ B(Y ) and j ∈ I. Taking into account the invariance of µ∗ and condition (3.1), we can write

µ∗(B × {j}) = Pnµ∗(B × {j}) =
∫

X

Pn(x,B × {j})µ∗(dx)

≥
∫

U×{i}
Pn(x,B × {j})µ∗(dx) ≥ c̄ ℓd(B ∩ V )µ∗(U × {i}).

sing again the invariance of µ∗, we get

µ∗(B × {j}) ≥ c̄ ℓd(B ∩ V )Pmµ∗(U × {i}) ≥ c̄ ℓd(B ∩ V )
∫

X̃

Pm(x, U × {i})µ∗(dx).

inally, applying hypothesis (3.2) gives

µ∗(B × {j}) ≥ c̄δµ∗(X̃)ℓd(B ∩ V ),

hich shows that µ∗ indeed has a non-trivial absolutely continuous part. The second part of the assertion
ollows immediately from Theorem 3.1. □

The assumptions of Proposition 3.1, referring to an open set U × {i}, may be interpreted as follows.
ondition (3.1) says that this set is (n, ℓd|V )-small in the sense of [26]. According to (3.2), it is also uniformly
ccessible from some subset of X with positive measure µ∗ in some specified number of steps.

.2. A criterion on absolute continuity of ergodic invariant measures associated with the model

In this section, as well as in the rest of the paper, we require that Θ ⊂ R is either a finite set, viewed as a
ubset of R with the discrete topology (in which it is open) or an arbitrary interval, considered as a subset
f R with the usual (Euclidean) topology. Let us note that, in the first case, we just have intΘ = Θ , while
n the second one, intΘ means Θ without its endpoints.

If Θ is finite, we assume it is equipped with the counting measure ϑ =
∑

θ∈Θ δθ, while in the case where
t is an interval, we require that ϑ is a non-atomic Borel measure that is positive on every non-empty open
ubset of Θ (e.g., if Θ is bounded, we can just take ϑ = ℓ1|B(Θ)).

As mentioned in the introduction, our main goal is to provide a set of tractable conditions for the
omponents of the model, which are sufficient for the absolute continuity of the unique invariant probability
easures associated with the Markov operator P and the semigroup {Pt}t≥0, induced by (2.2) and (2.4),

espectively. To do this, we shall need an explicit form of the nth-step kernel (x,A) ↦→ Pn(x,A). For this
eason, it is convenient to introduce the following piece of notation.

For each k ∈ N, let jk, tk, θk denote (j1, . . . , jk) ∈ Ik, (t1, . . . , tk) ∈ Rk
+, (θ1, . . . , θk) ∈ Θk, respectively.

urther, given any i, j ∈ I, we employ the following convention:

(i, jk) := (i, j1, . . . , jk) and (i, jk, j) := (i, j1, . . . , jk, j).

ere, for notational consistency, we additionally put (i, j0) := i and (i, j0, j) := (i, j) if k = 0. In some places,
ˆ ˆ ˆ ¯ ¯ ¯
e will write jk, tk,θk or jk, tk,θk (instead of jk, tk,θk, respectively), using the same convention.
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With this notation, for any n ∈ N, y ∈ Y , i ∈ I and (jn, tn,θn) ∈ In × Rn
+ × Θn, we may define

W1(y, i, t1, θ1) := wθ1(Si(t1, y)),
Wn(y, (i, jn−1), tn,θn) := wθn(Sjn−1(tn,Wn−1(y, (i, jn−2), tn−1,θn−1)));

Π1(y, (i, j1), t1, θ1) := πij1(wθ1(Si(t1, y))),
Πn(y, (i, jn), tn,θn) := Πn−1(y, (i, jn−1), tn−1,θn−1)πjn−1jn(Wn(y, (i, jn−1), tn,θn));

P1(y, i, t1, θ1) := pθ1(Si(t1, y)),
Pn(y, (i, jn−1), tn,θn) := Pn−1(y, (i, jn−2), tn−1,θn−1)

×pθn(Sjn−1(tn,Wn−1(y, (i, jn−2), tn−1,θn−1))).

The nth-step transition law of the chain {Φk}k∈N0 can be now expressed as

Pn((y, i), A) =
∑

jn∈In

∫
Θn

∫
Rn

+

λne−λ(t1+···+tn)1A(Wn(y, (i, jn−1), tn,θn), jn)

× Πn(y, (i, jn), tn,θn)Pn(y, (i, jn−1), tn,θn) dtn ϑ
⊗n(dθn)

(3.3)

or every (y, i) ∈ X = Y × I and each A ∈ B(X), where the symbols dtn and ϑ⊗n(dθn) represent
n(dt1, . . . , dtn) and (ϑ⊗ · · · ⊗ ϑ)(dθ1, . . . , dθn), respectively.

In what follows, we shall assume that, for every θ ∈ Θ and each i ∈ I, the maps

Y ∋ (y1, . . . , yd) =: y ↦→ wθ(y) and (0,∞) × Y ∋ (t, y) ↦→ Si(t, y)

re continuously differentiable with respect to each of the variables yk, k = 1, . . . , d, and t. In the case where
is an interval, we additionally require that the map intΘ ∋ θ ↦→ wθ(y) is continuously differentiable for

ll y ∈ Y .
Let ŷ := (ŷ1, . . . , ŷd) ∈ Y , i ∈ I, n ∈ N, θ̂n := (θ̂1, . . . , θ̂n) ∈ Θn, t̂n := (t̂1, . . . , t̂n) ∈ (0,∞)n,

nd, if n > 1, also ĵn−1 := (ĵ1, . . . , ĵn−1) ∈ In−1. For every m ≤ n and any pairwise different indices
1, . . . , km ∈ {1, . . . , n}, the Jacobi matrix of the map

(tk1 , . . . , tkm) ↦→ Wn(ŷ, (i, ĵn−1), tn, θ̂n) with fixed tr = t̂r for r ∈ {1, . . . , n}\{k1, . . . , km}

t point (t̂k1 , . . . , t̂km) will be denoted by ∂(tk1 ,...,tkm )Wn(ŷ, (i, ĵn−1), t̂n, θ̂n). More precisely, assuming that

n = (W(1)
n , . . . ,W(d)

n ), where W(l)
n takes values in R for each l ∈ {1, . . . , d}, we put

∂(tk1 ,...,tkm )Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) :=
[
∂W(l)

n

∂tkr

(ŷ, (i, ĵn−1), t̂n, θ̂n)
]

l∈{1,...,d}
r∈{1,...,m}

.

nalogously, for any pairwise different l1, . . . , lm ∈ {1, . . . , n} and r1, . . . , rm ∈ {1, . . . , d}, we can define the
atrices

∂(θl1 ,...,θlm )Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) and ∂(yr1 ,...,yrm )Wn(ŷ, (i, ĵn−1), t̂n, θ̂n).

A key role in our discussion will be played by the following lemma, which provides a tractable condition
nder which the law P verifies the first hypothesis of Proposition 3.1, expressed in (3.1). The proof of this
esult is based upon ideas found in [4] (cf. the proofs of [4, Lemmas 6.2 and 6.3]).

emma 3.3. Let (ŷ, i) ∈ intY × I, and suppose that, for some integer n ≥ d, there exist sequences
n ∈ (0,∞)n, θ̂n ∈ (intΘ)n and, in the case of n > 1, also ĵn−1 ∈ In−1, such that

P (ŷ, (i, ĵ ), t̂ , θ̂ )Π (ŷ, (i, ĵ , j), t̂ , θ̂ ) > 0 for every j ∈ I, (3.4)
n n−1 n n n n−1 n n
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and
rank ∂tnWn(ŷ, (i, ĵn−1), t̂n, θ̂n) = d. (3.5)

hen there is an open neighbourhood Uŷ ⊂ Y of ŷ and an open neighbourhood Uŵ ⊂ Y of the point

ŵ := Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) (3.6)

uch that, for some constant c̄ > 0, we have

Pn(x,B × {j}) ≥ c̄ ℓd(B ∩ Uŵ) for all x ∈ Uŷ × {i}, B ∈ B(Y ), j ∈ I. (3.7)

roof. According to (3.5), there exist k1, . . . , kd ∈ {1, . . . , n} such that

det ∂(tk1 ,...,tkd
)Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) ̸= 0.

ithout loss of generality, we may further assume that (k1, . . . , kd) = (1, . . . , d), i.e.

det ∂td
Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) ̸= 0. (3.8)

n the analysis that follows, given tn = (t1, . . . , tn) ∈ Rn
+, we shall write tn−d to denote (td+1, . . . , tn), so

hat tn = (td, tn−d).
Case I: Consider first the case where Θ is finite. For each y ∈ Y , let us introduce the map Ry : (0,∞)n →
× Rn−d

+ ⊂ Rn given by

Ry(tn) := (Wn(y, (i, ĵn−1), tn, θ̂n), tn−d) for tn ∈ (0,∞)n.

e can then easily observe that

∂tnRy(tn) =
[
∂td

Wn ∂tn−dWn

0n−d, d In−d

]
(y, (i, ĵn−1), tn, θ̂n),

here 0n−d, d and In−d are the zero matrix of size (n − d) × d and the identity matrix of order n − d,
espectively. This yields that

det ∂tnRy(tn) = det ∂td
Wn(y, (i, ĵn−1), tn, θ̂n) for all tn ∈ (0,∞)n, y ∈ Y. (3.9)

Further, let us define H : (0,∞)n × intY → (Y × Rn−d
+ ) × Y , acting from an open subset of Rn+d into

tself, by
H(tn, y) := (Ry(tn), y) for all tn ∈ (0,∞)n, y ∈ intY.

ince the Jacobi matrix of H can also be written in a block form, namely

∂(tn,y)H(tn, y) =
[
∂td

Wn ∂tn−dWn ∂yWn

0n, d In

]
(y, (i, ĵn−1), tn, θ̂n),

t follows, due to (3.8), that

det ∂(tn,y)H(t̂n, ŷ) = det ∂td
Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) ̸= 0. (3.10)

onsequently, by virtue of the local inversion theorem, we can choose an open neighbourhood V̂(t̂n,ŷ) ⊂
0,∞)n×intY of (t̂n, ŷ) so that H|

V̂(t̂n,ŷ)
: V̂(t̂n,ŷ) → H(V̂(t̂n,ŷ)) is a diffeomorphism. Obviously, H(V̂(t̂n,ŷ)) ⊂

Y × Rn−d
+ ) × Y .

If we now define

T (y, (i, ĵ , j), t ,θ ) := λne−λ(t1+···+tn)P (y, (i, ĵ ), t ,θ )Π (y, (i, ĵ , j), t ,θ ), (3.11)
n n−1 n n n n−1 n n n n−1 n n
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then, using (3.4) and (3.10), together with continuity of the component functions of the model and the map
V̂(t̂n,ŷ) ∋ (tn, y) ↦→ det ∂(tn,y)H(tn, y), we may find an open neighbourhood Ṽ(t̂n,ŷ) ⊂ V̂(t̂n,ŷ) of (t̂n, ŷ) such
that, for some constant c̃ > 0,⏐⏐det ∂(tn,y)H(tn, y)

⏐⏐−1 Tn(y, (i, ĵn−1, j), tn, θ̂n) ≥ c̃ for all (tn, y) ∈ Ṽ(t̂n,ŷ), j ∈ I. (3.12)

Taking into account that, due to (3.9),

det ∂(tn,y)H(tn, y) = det ∂td
Wn(y, (i, ĵn−1), tn, θ̂n) = det ∂tnRy(tn),

we then obtain

|det ∂tnRy(tn)|−1 Tn(y, (i, ĵn−1, j), tn, θ̂n) ≥ c̃ for all (tn, y) ∈ Ṽ(t̂n,ŷ), j ∈ I. (3.13)

Clearly, H|
Ṽ(t̂n,ŷ)

: Ṽ(t̂n,ŷ) → H(Ṽ(t̂n,ŷ)) is also a diffeomorphism, and thus, in particular, the set

H(Ṽ(t̂n,ŷ)) is open. Since ((ŵ, t̂n−d), ŷ) ∈ H(Ṽ(t̂n,ŷ)), where ŵ is given by (3.6), there exist open bounded
neighbourhoods U(ŵ, t̂n−d) ⊂ Y × Rn−d

+ and Uŷ ⊂ Y of the points (ŵ, t̂n−d) and ŷ, respectively, with the
property that U(ŵ, t̂n−d) × Uŷ ⊂ H(Ṽ(t̂n,ŷ)). Let

V(t̂n,ŷ) := H−1(U(ŵ, t̂n−d) × Uŷ),

and, for any ((w, tn−d), y) ∈ U(ŵ, t̂n−d) × Uŷ, write H−1((w, tn−d), y) = (Ry(w, tn−d), y). Then, it follows
mmediately that Ry

(
Ry(w, tn−d)

)
= (w, tn−d), whence Ry is the continuously differentiable inverse of an

appropriate restriction of Ry. More specifically, introducing

W (y) := {tn ∈ (0,∞)n : (tn, y) ∈ V(t̂n,ŷ)} for every y ∈ Uŷ,

e see that each of these sets is open, and that Ry|W (y) :W (y) → U(ŵ, t̂n−d) is a diffeomorphism for every
∈ Uŷ. Obviously, by the definition of W (y), we have

(tn, y) ∈ V(t̂n,ŷ) whenever tn ∈ W (y), y ∈ Uŷ. (3.14)

In view of the above, we can choose (independently of y) open neighbourhoods Uŵ ⊂ Y and Ut̂n−d ⊂ Rn−d
+

of ŵ and t̂n−d, respectively, in such a way that

Uŵ × Ut̂n−d ⊂ U(ŵ, t̂n−d) = Ry(W (y)) for every y ∈ Uŷ. (3.15)

Now, keeping in mind (3.3), (3.13) and (3.14), for any B ∈ B(Y ), j ∈ I and y ∈ Uŷ, we can write

Pn((y, i), B × {j}) ≥
∫
Rn

+

1B(Wn(y, (i, ĵn−1), tn, θ̂n))Tn(y, (i, ĵn−1, j), tn, θ̂n)dtn

≥
∫

W (y)
1B×Rn−d(Ry(tn))Tn(y, (i, ĵn−1, j), tn, θ̂n)dtn

=
∫

W (y)
1B×Rn−d(Ry(tn))| det ∂tnRy(tn)| · | det ∂tnRy(tn)|−1Tn(y, (i, ĵn−1, j), tn, θ̂n)dtn

≥ c̃

∫
W (y)

1B×Rn−d(Ry(tn))| det ∂tnRy(tn)| dtn.
13
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If we now change variables by setting sn = Ry(tn) and, further, apply (3.15), then we can conclude that

Pn((y, i), B × {j}) ≥ c̃

∫
Ry(W (y))

1B×Rn−d(sn) dsn ≥ c̃

∫
Uŵ×U

t̂n−d

1B×Rn−d(sn) dsn

= c̃ ℓn((B × Rn−d) ∩ (Uŵ × Ut̂n−d)) = c̃ ℓn−d(Ut̂n−d)ℓd(B ∩ Uŵ),

Finally, we see that (3.7) holds with c̄ := c̃ ℓn−d(Ut̂n−d) > 0.
Case II: Let us now assume that Θ is an interval in R. The proof in this case is similar to the previous

one. This time, however, we need to consider a family {Ry, θn : y ∈ Y, θn ∈ Θn} of maps from (0,∞)n into
Y × Rn−d

+ ⊂ Rn, wherein Ry, θn is defined by

Ry, θn(tn) := (Wn(y, (i, ĵn−1), tn,θn), tn−d) for tn ∈ (0,∞)n.

Furthermore, H will now stand for the map

H : (0,∞)n × intY × (intΘ)n → (Y × Rn−d
+ ) × Y × Θn

(acting from an open subset of R2n+d into itself) given by

H(tn, y,θn) := (Ry, θn(tn), y,θn) for tn ∈ (0,∞)n, y ∈ intY, θn ∈ (intΘ)n.

Since the Jacobi matrix of H is of the form

∂(tn,y,θn)H(tn, y,θn) =
[
∂td

Wn ∂tn−dWn ∂yWn ∂θnWn

02n, d I2n

]
(y, (i, ĵn−1), tn,θn),

similarly as in the previous case, we obtain

det ∂(tn,y,θn)H(t̂n, ŷ, θ̂n) = det ∂td
Wn(ŷ, (i, ĵn−1), t̂n, θ̂n) ̸= 0. (3.16)

his enables us to choose an open neighbourhood V̂(t̂n,ŷ, θ̂n) ⊂ (0,∞)n × intY × (intΘ)n of the point
t̂n, ŷ, θ̂n) so that H|

V̂(t̂n,ŷ,θ̂n)
is a diffeomorphism from V̂(t̂n,ŷ,θ̂n) onto H(V̂(t̂n,ŷ,θ̂n)).

Appealing to (3.4), (3.16) and the continuity of the map

V̂(t̂n,ŷ, θ̂n) ∋ (tn, y,θn) ↦→ det ∂(tn,y,θn)H(tn, y,θn),

we may find an open neighbourhood Ṽ(t̂n,ŷ, θ̂n) ⊂ V̂(t̂n,ŷ, θ̂n) of the point (t̂n, ŷ, θ̂n) such that, for some
constant c̃ > 0,⏐⏐det ∂(tn,y, θn)H(tn, y,θn)

⏐⏐−1 Tn(y, (i, ĵn−1, j), tn,θn) ≥ c̃ for (tn, y,θn) ∈ Ṽ(t̂n,ŷ, θ̂n), j ∈ I,

where Tn is defined by (3.11). This obviously yields

|det ∂tnRy,θn(tn)|−1 Tn(y, (i, ĵn−1, j), tn,θn) ≥ c̃ for (tn, y,θn) ∈ Ṽ(t̂n,ŷ, θ̂n), j ∈ I. (3.17)

Since H(Ṽ(t̂n,ŷ,θ̂n)) is open and ((ŵ, t̂n−d), ŷ, θ̂n) ∈ H(Ṽ(t̂n,ŷ,θ̂n)), it follows that there exist open bounded
neighbourhoods U(ŵ, t̂n−d) ⊂ Y×Rn−d

+ , Uŷ ⊂ Y and Uθ̂n
⊂ Θn of the points (ŵ, t̂n−d), ŷ and θ̂n, respectively,

such that U(ŵ, t̂n−d) × Uŷ × Uθ̂n
⊂ H(Ṽ(t̂n,ŷ, θ̂n)). Define

V(t̂n,ŷ, θ̂n) := H−1(U(ŵ, t̂n−d) × Uŷ × Uθ̂n
),

W (y,θn) := {tn ∈ (0,∞)n : (tn, y,θn) ∈ V(t̂n,ŷ, θ̂n)} for (y,θn) ∈ Uŷ × Uθ̂n
.

14
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Then, arguing analogously as in Case I, we can conclude that all the sets W (y,θn) are open, and that
Ry,θn |W (y,θn) is a diffeomorphism from W (y,θn) onto U(ŵ, t̂n−d) for every (y,θn) ∈ Uŷ × Uθ̂n

. This
observation, as before, enables us to choose (independently of y and θn) open neighbourhoods Uŵ ⊂ Y

and Ut̂n−d ⊂ Rn−d
+ of the points ŵ and t̂n−d, respectively, so that

Uŵ × Ut̂n−d ⊂ U(ŵ, t̂n−d) = Ry,θn(W (y,θn)) for all (y,θn) ∈ Uŷ × Uθ̂n
. (3.18)

Proceeding similarly as in the first part of the proof, from (3.3) and (3.17) we may now deduce that, for
any B ∈ B(Y ), j ∈ I and y ∈ Uŷ,

Pn((y, i), B × {j}) ≥
∫
Θn

∫
Rn

+

1B(Wn(y, (i, ĵn−1), tn,θn))Tn(y, (i, ĵn−1, j), tn,θn)dtnϑ
⊗n(dθn)

≥
∫

U
θ̂n

∫
W (y,θn)

1B×Rn−d(Ry,θn(tn))Tn(y, (i, ĵn−1, j), tn,θn)dtn ϑ
⊗n(dθn)

≥ c̃

∫
U

θ̂n

∫
W (y,θn)

1B×Rn−d(Ry,θn(tn))| det ∂tnRy,θn(tn)| dtn ϑ
⊗n(dθn).

inally, substituting sn = Ry,θn(tn) (for every fixed (y,θn) separately) and applying (3.18), gives

Pn((y, i), B × {j}) ≥ c̃

∫
U

θ̂n

∫
Ry,θn (W (y,θn))

1B×Rn−d(sn) dsn ϑ
⊗n(dθn)

≥ c̃

∫
U

θ̂n

∫
Uŵ×U

t̂n−d

1B×Rn−d(sn) dsn ϑ
⊗n(dθn)

= c̃ ϑ⊗n(Uθ̂n
)ℓn−d(Ut̂n−d)ℓd(B ∩ Uŵ),

which shows that (3.7) holds with c̄ := c̃ ϑ⊗n(Uθ̂n
)ℓn−d(Ut̂n−d) > 0 and, therefore, completes the proof. □

Remark 3.1. Note that, in the case where d = 1, condition (3.5) can be expressed in the following simple
form:

n∑
r=1

(
∂Wn

∂tr
(ŷ, (i, ĵn−1), t̂n, θ̂n)

)2
> 0.

Assuming that conditions (3.4) and (3.5) hold with some point (ŷ, i) ∈ intY × I, we intend to apply
roposition 3.1 with U = Uŷ and V = Uŵ, where Uŷ and Uŵ are the open sets guaranteed by Lemma 3.3.
o do this, we need to know that, for any given P -ergodic invariant measure µ∗, the set Uŷ ×{i} is uniformly
ccessible from an open set X̃ ⊂ X, satisfying µ∗(X̃) > 0, in some given number of steps, i.e. condition (3.2)
olds with U = Uŷ and the given i for some m ∈ N. This is the case, for example, if the operator P is
symptotically stable, and the point (ŷ, i), verifying the desired properties, belongs to the support of the
nique P -invariant measure.

orollary 3.1. Let P and {Pt}t≥0 stand for the Markov operator and the Markov semigroup induced by (2.2)
nd (2.4), respectively. Further, suppose that, for some µ∗ ∈ Mprob(X), and for every x ∈ X, the sequence
Pnδx}n∈N is weakly convergent to µ∗ (which, by Remark 1.1, is equivalent to say that P is asymptotically
table). Moreover, assume that all the transformations wθ and Sk(t, ·) are non-singular with respect to ℓd,
nd that there exists a point (ŷ, i) ∈ (intY × I) ∩ suppµ∗, for which the assumptions of Lemma 3.3 are
ulfilled. Then both µ∗ and Gµ∗, which are then unique invariant measures for P and {Pt}t≥0, respectively,
re absolutely continuous with respect to ℓ̄d.
15
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Proof. In the light of Proposition 3.1 and Lemma 3.3, it suffices to show that (3.2) holds for U = Uŷ

nd the given i. Since x̂ := (ŷ, i) ∈ suppµ∗, it follows that δ∗ := µ∗(U × {i}) > 0. Taking into account
hat {Pn(x, ·)}n∈N converges weakly to µ∗ for every x ∈ X, we can apply the Portmanteau theorem
[6, Theorem 2.1]) to deduce that

lim inf
n→∞

Pn(x, U × {i}) ≥ δ∗ for every x ∈ X.

n particular, we therefore get Pm(x̂, U × {i}) > δ∗/2 for some m ∈ N. Since the operator P is Feller, the
ap X ∋ x ↦→ Pm(x, U × {i}) is lower-semicontinuous, and thus there exists an open neighbourhood of x̂,

ay X̃, such that Pm(x, U × {i}) > δ∗/3 for every x ∈ X̃. Moreover, µ∗(X̃) > 0, since x̂ ∈ suppµ∗. This
hows that (3.2) is indeed satisfied (with δ = δ∗/3) and completes the proof. □

The requirement (ŷ, i) ∈ suppµ∗ is rather implicit and difficult to verify without any additional
nformation regarding the measure µ∗. Moreover, the above-stated results are limited by the assumption
hat the underlying operator is asymptotically stable. In the remainder of the paper, we therefore derive a
omewhat more practical result, which does not require the stability, and enables one to establish the uniform
ccessibility of Uŷ × {i} in the sense of (3.2), using a more intuitive argument, which refers directly to the
omponent functions of the model. More precisely, given (ŷ, i) ∈ X, we shall use the following condition:

(A) For every open neighbourhood Vŷ of ŷ and each (y, j) ∈ X, there exist n ∈ N, tn ∈ Rn
+, θn ∈ Θn and,

whenever n > 1, also jn−1 ∈ In−1, such that

Wn(y, (j, jn−1), tn,θn) ∈ Vŷ and Pn(y, (j, jn−1), tn,θn)Πn(y, (j, jn−1, i), tn,θn) > 0.

The following lemma, which is essentially based on [4, Lemma 3.16], should be treated as an intermediate
result on the way to the above-mentioned implication (A) ⇒ (3.2).

Lemma 3.4. Let µ ∈ Mfin(X) be an arbitrary non-zero measure. Further, suppose that condition (A)
holds for some (ŷ, i) ∈ intY × I, and let Uŷ ⊂ Y be an arbitrary open neighbourhood of ŷ. Then, there exist
constants ε > 0, β > 0, m ∈ N, sequences j̄m−1 ∈ Im−1, t̄m ∈ Rm

+ , θ̄m ∈ Θm (the former only if m > 1)
and an open set X̃ ⊂ X with µ(X̃) > 0 such that

Wm(y, (j, j̄m−1), tm,θm) ∈ Uŷ,

Pm(y, (j, j̄m−1), tm,θm)Πm(y, (j, j̄m−1, i), tm,θm) > β,
(3.19)

whenever (y, j) ∈ X̃, tm ∈ BR+(t̄m, ε) and θm ∈ BΘ(θ̄m, ε), where

BR+(t̄m, ε) := {tm ∈ Rm
+ :

tm − t̄m


m
< ε},

BΘ(θ̄m, ε) :=
{

{θm ∈ Θm : ∥θm − θ̄m∥m < ε} if Θ is an interval,
{θ̄m} if Θ is finite,

nd ∥·∥m stands for the Euclidean norm in Rm.

Proof. For each k ∈ N, let Ak denote the set of all (jk−1, tk,θk, β
′), where jk−1 ∈ Ik−1, tk ∈ Rk

+, θk ∈ Θk

and β′ > 0 (excluding the first member whenever k = 1). Further, let Vŷ be a bounded open neighbourhood
of ŷ such that clVŷ ⊂ Uŷ, and define

O(jk−1, tk,θk, β
′) := {(y, j) ∈ X : Wk(y, (j, jk−1), tk,θk) ∈ Vŷ, Qk(y, (j, jk−1, i), tk,θk) > β′},

with
Qk(y, (j, jk−1, i), tk,θk) := Pk(y, (j, jk−1), tk,θk)Πk(y, (j, jk−1, i), tk,θk),

′
for k ∈ N and (jk−1, tk,θk, β ) ∈ Ak.
16



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 213 (2021) 112522

h

i

C

N

c
s

w

R
o

b
g
T
W
w
i
m
c
o

f

T
w
a
t
b
i

Obviously, by continuity of the functions underlying the model, all the sets O(·) are open. Hence, from
ypothesis (A) it follows that

V := {O(jk−1, tk,θk, β
′) : k ∈ N, (jk−1, tk,θk, β

′) ∈ Ak}.

s an open cover of X.
Since X is a Lindelöf space (as a separable metric space) there exists a countable subcover of V.

onsequently, we can choose sequences {kr}r∈N ⊂ N and
{(

j(r)
kr−1, t

(r)
kr
,θ

(r)
kr
, βr

)}
r∈N

, wherein
(

j(r)
kr−1, t

(r)
kr
,

θ
(r)
kr
, βr

)
∈ Akr for every r ∈ N, so that

X =
⋃
r∈N

O
(

j(r)
kr−1, t

(r)
kr
,θ

(r)
kr
, βr

)
.

ow, taking into account that µ(X) > 0, we may find p ∈ N such that

µ
(
O

(
j(p)
kp−1, t

(p)
kp
,θ

(p)
kp
, βp

))
> 0.

Define
m := kp, (̄jm−1, t̄m, θ̄m, β̄) :=

(
j(p)
kp−1, t

(p)
kp
,θ

(p)
kp
, βp

)
, X̃ := O

(̄
jm−1, t̄m, θ̄m, β̄

)
.

Clearly, we then have

Wm(y, (j, j̄m−1), t̄m, θ̄m) ∈ Vŷ and Qm(y, (j, j̄m−1, i), t̄m, θ̄m) > β̄ for every (y, j) ∈ X̃.

Since clVŷ ∩U c
ŷ = ∅ and clVŷ is compact, the distance between Vŷ and U c

ŷ is positive. This, together with
ontinuity of Wm and Qm with respect to y, tm and (if Θ is an interval) θm, enables one to choose ε > 0
o small that

Wm(y, (j, j̄m−1), tm,θm) ∈ Uŷ and Qm(y, (j, j̄m−1, i), tm,θm) > β̄/2,

henever (y, j) ∈ X̃, tm ∈ BR+(t̄m, ε) and θm ∈ BΘ(θ̄m, ε). The proof is now complete. □

emark 3.2. It is worth noting here that, in the proof of [4, Lemma 3.16], the authors choose a finite cover
f a compact space M (that plays the role of Y ) consisting of the sets O((j, jn−1, i), tn, β) (defined similarly

to our sets O(·)) with common n ∈ N and β > 0. This enables them to derive a condition resembling (3.19),
ut valid for all initial states (y, j). Such a result, in turn, lead them to [4, Propositions 3.13 and 3.14], which
uarantee that the analogue of our neighbourhood Uŷ×{i} is uniformly accessible from the whole state space.
he aforementioned argument obviously fails within our framework, due to the lack of compactness of Y .
hat is more, even while assuming that Y is compact, the union of the sets O(·) need not be increasing

ith respect to the length of multi-indices (through the presence of jumps y ↦→ wθ(y)), which is the case
n [4]. That is the reason why condition (3.2) states the accessibility only from a subset of X with positive
easure µ∗ (in contrast to that obtained in the above-mentioned propositions in [4]). Thanks to such a

onfiguration, (3.2) can be derived from (A) by using the assertion of Lemma 3.4, which is weaker than that
f [4, Lemma 3.16].

We are now in a position to establish the main result of this paper, which provides conditions sufficient
or the absolute continuity of invariant measures for both the operator P and the semigroup {Pt}t≥0.

heorem 3.2. Suppose that the transformations wθ, θ ∈ Θ , and Sk(t, ·), k ∈ I, t ≥ 0, are non-singular
ith respect to ℓd. Further, assume that there exists a point (ŷ, i) ∈ intY ×I with property (A), for which (3.4)
nd (3.5) hold with some integer n ≥ d and some (̂jn−1, t̂n, θ̂n) ∈ In−1 × (0,∞)n × (intΘ)n (excluding ĵ0 in
he case of n = 1). Then every ergodic invariant measure µ∗ ∈ Mprob(X) of the Markov operator P , induced
y (2.2), as well as the corresponding invariant measure Gµ∗ of the semigroup {Pt}t≥0, generated by (2.4),

¯
s absolutely continuous with respect to ℓd.
17



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 213 (2021) 112522

c

t

Proof. Let µ∗ ∈ Mprob(X) be an ergodic invariant probability measure of P . By virtue of Lemma 3.3 we
an choose an open neighbourhood Uŷ ⊂ Y of ŷ, an open set Uŵ ⊂ Y and a constant c̄ > 0 so that (3.1)

holds with U = Uŷ, V = Uŵ and the given i, i.e.

Pn(x,B × {j}) ≥ c̄ℓd(B ∩ Uŵ) for all x ∈ Uŷ × {i}, j ∈ I and B ∈ B(Y ).

On the other hand, in view of Lemma 3.4, we may find ε > 0, β > 0, m ∈ N, sequences j̄m−1 ∈ Im−1 (if
m > 1), t̄m ∈ Rm

+ , θ̄m ∈ Θm and an open set X̃ ⊂ X with µ∗(X̃) > 0 such that conditions (3.19) hold for
any z = (y, j) ∈ X̃, tm ∈ BR+(t̄m, ε) and θm ∈ BΘ(θ̄m, ε). Hence, appealing to (3.3), we see that

Pm(z, Uŷ × {i}) ≥ β ϑ⊗m(BΘ(θ̄m, ε))
∫

B(t̄m,ε)
λme−λ(t1+···+tm) dtm := δ > 0 for all z ∈ X̃,

which exactly means that condition (3.2) holds for U = Uŷ and the given i. The desired absolute continuity
of µ∗ and Gµ∗ now follows from Proposition 3.1. □

Finally, as a straightforward consequence of Theorems 3.2 and 3.1(iii), we obtain the following conclusion:

Corollary 3.2. Suppose that there exists a unique invariant probability measure for the operator P or,
equivalently, for the semigroup {Pt}t≥0. Then, under the hypotheses of Theorem 3.2, both of the invariant
measures, that for P , and that for {Pt}t≥0, are absolutely continuous with respect to ℓ̄d.

4. The existence and uniqueness of invariant measures

It is clear that to ensure the existence and uniqueness of an invariant probability measure for the
Markov operator P (and therefore for the Markov semigroup {Pt}t≥0), some additional restrictions should
be imposed on the functions composing the model under consideration.

In what follows, we quote [11, Theorem 4.1] (cf. also [15, Theorem 4.1]), which, apart from the existence
of a unique P -invariant measure, also assures the geometric ergodicity of P in the Fortet–Mourier distance
on Mprob(X) (see e.g. [20] or [18] for the equivalent Dudley metric).

Assuming that X = Y × I is equipped with the metric of the form

ρc((u, i), (v, j)) = ∥u− v∥ + cd(i, j) for (u, i), (v, j) ∈ X, (4.1)

where c is a given positive constant, the Forter–Mourier distance can be defined by

dF M (µ, ν) := sup
{⏐⏐⏐⏐∫

X

f d(µ− ν)
⏐⏐⏐⏐ : f ∈ FF M (X)

}
for µ, ν ∈ Mprob(X), (4.2)

where

FF M (X) :=
{
f : X → [0, 1] : sup

x ̸=y

|f(x) − f(y)|
ρc(x, y) ≤ 1

}
.

It is well-known (see e.g. [7, Theorem 8.3.2]) that the topology induced on Mprob(X) by dF M is equal to
he topology of weak convergence of probability measures (whenever X is a Polish space, which is the case

here).
Before we formulate the above-mentioned stability result, let us emphasize that it holds with a sufficiently

large constant c, whose magnitude depends on the quantities occurring in the hypotheses to be imposed on
the component functions of the model (see [11, Section 6]). Let us also note that, although we have assumed
that the metric on Y is induced by a norm, just to stay with the framework introduced in Section 3 (wherein
Y is a closed subset of Rd), the result remains valid for any Polish metric space (cf. [15]).
18
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Theorem 4.1 ([11, Theorem 4.1]). Suppose that there exist α ∈ R, L > 0 and Lw > 0 satisfying

LLw + α

λ
< 1, (4.3)

s well as constants Lp, Lπ, cπ, cp > 0, a point y∗ ∈ Y and two Borel measurable functions: L : Y → R+,
which is bounded on bounded sets, and φ : R+ → R+ satisfying∫

R+

φ(t)e−λt dt < ∞,

such that, for any u, v ∈ Y , the following conditions hold:

∥Si(t, u) − Si(t, v)∥ ≤ Leαt∥u− v∥ for all i ∈ I, t ≥ 0; (4.4)
∥Si(t, u) − Sj(t, u)∥ ≤ φ(t)L(u) for all i, j ∈ I, t ≥ 0; (4.5)

sup
y∈Y

∫
Θ

∫ ∞

0
e−λt∥wθ(Si(t, y∗)) − y∗∥ pθ(Si(t, y)) dt ϑ(dθ) < ∞ for every i ∈ I; (4.6)∫

Θ

∥wθ(u) − wθ(v)∥ pθ(u)ϑ(dθ) ≤ Lw ∥u− v∥ ; (4.7)∫
Θ

|pθ(u) − pθ(v)|ϑ(dθ) ≤ Lp ∥u− v∥ ; (4.8)∑
k∈I

min{πik(u), πjk(u)} ≥ cπ for i, j ∈ I, and
∫
Θ(u,v)

min{pθ(u), pθ(v)}ϑ(dθ) ≥ cp, (4.9)

here
Θ(u, v) := {θ ∈ Θ : ∥wθ(u) − wθ(v)∥ ≤ Lw ∥u− v∥}.

hen the Markov operator P generated by (2.2) admits a unique invariant distribution µ∗ such that µ∗ ∈
M1

prob(X). Moreover, there exists β ∈ (0, 1) such that, for each µ ∈ M1
prob(X) and some constant C(µ) ∈ R,

we have
dF M (Pnµ, µ∗) ≤ C(µ)βn for every n ∈ N. (4.10)

In particular, P is then also asymptotically stable (cf. Remark 1.1).

Obviously, due to Theorem 2.1, the hypotheses of Theorem 4.1 also guarantee the existence and
uniqueness of an invariant probability measure for the semigroup {Pt}t≥0, generated by (2.4).

Remark 4.1. In paper [11], the above-stated theorem is proved under the assumption that (4.4) holds
with φ(t) = t. It is, however, easy to check that the same proof works without any significant changes if
φ : R+ → R+ is an arbitrary function such that t ↦→ φ(t) exp(−λt) is integrable over R+.

Remark 4.2. It is easy to verify (cf. [11, Corollary 3.4]) that, if Θ is compact, and there exist a Borel
measurable function ψ : R+ → R+ and y∗ ∈ Y such that∫

R+

ψ(t)e−λt dt < ∞ and ∥Sj(t, y∗) − y∗∥ ≤ ψ(t) for all t ≥ 0, j ∈ I,

then (4.6) holds under each of the following two conditions:

(i) The map y ↦→ pθ(y) is constant for every θ ∈ Θ and (4.7) is fulfilled.
ii) There exists Lw > 0 such that all wθ, θ ∈ Θ , are Lipschitz continuous with the same constant Lw.
19



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 213 (2021) 112522

f

(

T

P
n

t

(

5. Examples

In this section, we shall illustrate the applicability of Theorem 3.2 by analysing a simple example, inspired
by [4, Example 5.2], wherein also the hypotheses of Theorem 4.1 are fulfilled. Furthermore, we will provide
two examples showing the necessity of some of the conditions imposed in Theorem 3.2. However, before that,
let us discuss some special cases wherein condition (A), introduced prior to Lemma 3.4, is fulfilled for some
identifiable point of X.

Proposition 5.1. Suppose that there exist θ̄ ∈ Θ , z ∈ Y and i ∈ I such that the following statements are
ulfilled:

(i) wθ̄ is a contraction satisfying wθ̄(z) = z;
(ii) pθ̄ (y) > 0 for all y ∈ Y ;
iii) for every n ∈ N, there is (j1, . . . , jn) ∈ In with jn = i such that

πjk−1jk
(y) > 0 for all k ∈ {1, . . . , n} and y ∈ wθ̄(Y ) with each j0 ∈ I. (5.1)

hen condition (A) holds with ŷ = z and the given i.

roof. Fix (y, j) ∈ X and ε > 0. Letting K < 1 denote a Lipschitz constant of wθ̄, we can choose n ∈ N,
> 1, so that Kn ∥y − z∥ < ε. According to (iii), for this n, we may find (j1, . . . , jn) ∈ In with jn = i such

hat (5.1) is satisfied. Taking jn−1 := (j1, . . . , jn−1), 0 := (0, . . . , 0) ∈ Rn
+ and θn := (θ̄, . . . , θ̄) ∈ Θn, we now

see that
∥Wn(y, (j, jn−1),0,θn) − z∥ =

wn
θ̄

(y) − wn
θ̄

(z)
 ≤ Kn ∥y − z∥ < ε,

and Pn(y, (j, jn−1),0,θn)Πn(y, (j, jn−1, i),0,θn) > 0, due to (ii) and (5.1). □

Proposition 5.2. Suppose that condition (4.4) holds with α < 0, and that (4.7) is satisfied. Further, assume
that there exist z ∈ Y , k ∈ I, θ̄ ∈ Θ and i ∈ I such that the following statements are fulfilled:

(i) Sk(t, z) = z for all t ≥ 0;
(ii) wθ̄ is Lipschitz continuous;
iii) pθ̄ (y) > 0 for all y ∈ Y ;
(iv) πjk(y)πki(y) > 0 for every j ∈ I and each y ∈ wθ̄(Y ).

Then condition (A) holds with ŷ = wθ̄(z) and the given i.

Proof. Let (y, j) ∈ X and ε > 0. Further, choose t > 0 so that Lθ̄Le
αt ∥wθ̄(y) − z∥ < ε, where Lθ̄ stands

for a Lipschitz constant of wθ̄. Now, keeping in mind that Sj(0, u) = u for all u ∈ Y , and applying (ii), (i),
(4.4), sequentially, we infer thatW2(y, (j, k), (0, t), (θ̄, θ̄)) − wθ̄(z)

 = ∥wθ̄(Sk(t, wθ̄(y))) − wθ̄(z)∥ ≤ Lθ̄ ∥Sk(t, wθ̄(y)) − z∥
= Lθ̄ ∥Sk(t, wθ̄(y)) − Sk(t, z)∥
≤ Lθ̄Le

αt ∥wθ̄(y) − z∥ < ε.

Moreover, from (iii) and (iv) it follows that

P2(y, (j, k), (0, t), (θ̄, θ̄)) = pθ̄(y)pθ̄(Sk(t, wθ̄(y))) > 0,

Π2(y, (j, k, i), (0, t), (θ̄, θ̄)) = πjk(wθ̄(y))πki(wθ̄(Sk(t, wθ̄(y)))) > 0. □
20
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Remark 5.1. Note, that in the case where Θ is finite (and ϑ is the counting measure), condition (ii) of
Proposition 5.2 can be guaranteed by assuming condition (4.7) and a strengthened version of (iii), namely
p := infy∈Y pθ̄(y) > 0. Under these settings, wθ̄ is Lipschitz continuous with Lθ̄ = p−1Lw. To see this, it
suffices to write

p ∥wθ̄(u) − wθ̄(v)∥ ≤
∑
θ∈Θ

∥wθ(u) − wθ(v)∥ pθ(u) ≤ Lw ∥u− v∥ for u, v ∈ Y.

Proposition 5.2, together with the observation recorded in Remark 5.1, prove to be useful in analysing
he example given below.

xample 5.1. Let α < 0 and a ∈ R\{0}. Consider an instance of the dynamical system introduced in
ection 2, with Θ satisfying the assumptions of Section 3.2, Y := R, I := {1, 2}, and two semiflows S1, S2
nduced by the initial value problems (in R+) associated with the equations u′ = αu and u′ = α(u − a),
espectively. Clearly, the semiflows are of the form

S1(t, y) := eαty and S2(t, y) := eαt(y − a) + a for t ≥ 0, y ∈ R.

urthermore, assume that conditions (4.6)–(4.8) hold for the transformations wθ, θ ∈ Θ , and the densities
↦→ pθ(y), y ∈ R, with Lw = 1 and some Lp > 0, as well as that

inf
y∈R

πij(y) > 0 and inf
y∈R

pθ(y) > 0 for all i, j ∈ I, θ ∈ Θ . (5.2)

bviously, the foregoing requirement is just a strengthened form of condition (4.9). It is also worth noting
hat (4.6) holds, for example, if Θ is compact, and at least one of conditions (i) or (ii) from Remark 4.2 is
atisfied.

Clearly, the semiflows S1, S2 satisfy conditions (4.4), (4.5) with α < 0, L = 1, L ≡ 1, φ(t) = |a|(1 − eαt),
nd inequality (4.3) is then trivially fulfilled as well. Hence, due to Theorem 4.1, the Markov operator P ,
orresponding to the chain given by the post-jump locations, possesses a unique invariant probability
easure µ∗. What is more, due to Theorem 2.1, ν∗ := Gµ∗ is the unique invariant probability measure

f the transition semigroup {Pt}t≥0, associated with the corresponding PDMP.
Suppose now that all the transformations y ↦→ wθ(y), θ ∈ Θ , and, if Θ is an interval, also θ ↦→ wθ(y),

∈ R, are continuously differentiable and non-singular with respect to ℓ1. Furthermore, assume that, for at
east one θ̄ ∈ Θ , wθ̄(a)w′

θ̄
(wθ̄(a)) ̸= 0, and that the transformation wθ̄ is Lipschitz continuous. Plainly, in

he case where Θ is finite, assuming the latter is unnecessary, since the Lipschitz continuity is assured by
4.7) and (5.2) (due to Remark 5.1). Under the aforesaid conditions, both the invariant measures µ∗ and ν∗

re absolutely continuous with respect to ℓ̄1. To see this, first observe that S2(t, a) = a for all t ≥ 0. Then,
ue to Proposition 5.2, condition (A) holds for (ŷ, i) := (wθ̄(a), 1). Moreover, we have

∂

∂t
W1(ŷ, i, t, θ̄) = d

dt
wθ̄(S1(t, wθ̄(a))) = d

dt
wθ̄

(
eαtwθ̄(a)

)
= αeαtwθ̄(a)w′

θ̄
(eαtwθ̄(a)) ̸= 0

for small enough t > 0, which ensures that (3.5) is satisfied with n = 1, ŷ = wθ̄(a), i = 1, θ̂1 = θ̄ and some
sufficiently small t̂1 > 0. Obviously, (3.4) is also fulfilled, due to (5.2). Consequently, in view of Corollary 3.2,
the measures µ∗ and ν∗ are absolutely continuous with respect to ℓ̄1.

It is worth noting that the assumptions of non-singularity of the transformations Sk(t, ·), wθ, and the
existence of a point (ŷ, i) for which (A) holds are not yet sufficient for the absolute continuity of the unique
P -invariant measure, even though the hypotheses of Theorem 4.1 are fulfilled. In other words, conditions
(3.5) and (3.4) in Theorem 3.2 cannot be omitted. The following simple example justifies this assertion:
21
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Example 5.2. Let Y := R, I := {1}, Θ := {1}, and suppose that S1(t, y) := e−ty, w1(y) := y for t ≥ 0
nd y ∈ R. In such a case, the state space X = R × {1} of our dynamical system can be identified with R,
nd the transition law of {Φn}n∈N0 , given by (2.2), takes the form

P (y,A) =
∫ ∞

0
λe−λt1A(ye−t) dt for y ∈ R, A ∈ B(R).

bviously, conditions (4.3)–(4.9) hold in this setup ((4.6) follows directly from Remark 4.2), and thus, due
o Theorem 4.1, there exists a unique invariant measure for P . Moreover, note that S1(t, ·), t ≥ 0, and w1

re non-singular with respect to ℓ1, and that condition (A) is fulfilled for (ŷ, i) := (0, 1), since S1(t, 0) = 0
nd w1(0) = 0 (cf. Proposition 5.2). On the other hand, it is easily seen that the unique P -invariant measure

is δ0, which is singular with respect to ℓ1.

The last example demonstrates that, under the assumptions of Theorem 3.2, there may exist a singular
invariant probability measure for P . This means that the assertion of our result is not valid for non-ergodic
invariant measures, and, simultaneously, shows that the conditions of Theorem 3.2 do not guarantee the
uniqueness of invariant distributions.

Example 5.3. Let Y := R+, I := {1, 2}, X := Y ×I and Θ := {1}. Consider the semiflows S1, S2 generated
y the initial value problems (in R+) associated with u′ = u and u′ = u(1 − u), respectively, that is

S1(t, y) := ety and S2(t, y) := ety

1 + (et − 1)y for t, y ∈ R+.

Further, put w1(y) := y, and take πij(y) := 1/2 for all y ∈ R+, i, j ∈ {1, 2}. Under this setting, the transition
law P of {Φn}n∈N0 is given by

P ((y, k), A) = 1
2

∫ ∞

0
λe−λt (1A(Sk(t, y), 1) + 1A(Sk(t, y), 2)) dt for (y, k) ∈ X, A ∈ B(X).

Obviously, all the transformations S1(t, ·), S2(t, ·), t ≥ 0, and w1 are non-singular with respect to ℓ1.
oreover, since S2(t, 1) = 1 for every t ≥ 0, and πj2(y)π21(y) > 0 for all y ∈ R+, j ∈ {1, 2}, it follows from
roposition 5.2 that condition (A) is fulfilled with (ŷ, i) := (1, 1), and we also get

∂

∂t
W1(ŷ, i, t, 1) = d

dt
S1(t, 1) = et ̸= 0 for every t > 0,

hich shows that (3.5) holds (with n = 1) as well. Condition (3.4) is trivially satisfied, since πij(y) > 0 for
ll y ∈ R+ and i, j ∈ {1, 2}. Hence, all the hypotheses of Theorem 3.2 are fulfilled.

On the other hand, we see that S1(t, 0) = S2(t, 0) = 0 for every t ≥ 0, which implies that

1
2

(
δ(0,1) + δ(0,2)

)
is an invariant probability measure for the operator P . According to Theorem 3.2 such a measure cannot be
ergodic (since it is singular with respect to ℓ̄d), and, in turn, it cannot be the unique P -invariant measure
too.
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Appendix

As announced in Section 1, for the self-containedness of the paper, we give here a proof of Lemma 1.1.
However, prior to that, note a simple consequence of [1, Theorem 19.25], which says that P -ergodic measures
re the extreme points of the set of P -invariant probability measures.

If µ∗ ∈ Mprob(E) is an ergodic invariant measure of a Markov operator P : Mfin(E) → Mfin(E), then
t cannot be a sum of two distinct non-zero P -invariant measures. To see this, suppose that µ∗ = µ1 +µ2 for
ertain non-trivial invariant measures µ1, µ2 ∈ Mfin(E), and let αi := µi(E) for i = 1, 2. Then α1 +α2 = 1,
nd µ̃i := µi/αi, i = 1, 2, are invariant probability measures for P . Since µ∗ = α1µ̃1 + α2µ̃2, and µ∗ is an
xtreme point of the set of P -invariant probability measures, it follows that µ1 = µ2.

roof of Lemma 1.1. Let µ∗ ∈ Mprob(E) be an ergodic P -invariant measure. By virtue of the Lebesgue
ecomposition theorem we can write

µ∗ = µac + µsin,

here µac ∈ Mac(E,m) and µsin ∈ Msin(E,m) are uniquely determined by µ∗. Consequently, it now
ollows that

Pµ∗ = Pµac + Pµsin.

rom the principal assumption of the lemma we know that Pµac ∈ Mac(E,m). Further, using the invariance
f µ∗, we also get µ∗ = Pµac + Pµsin. If we now take the absolutely continuous part of each side of this
quality, then we get

µac = Pµac + (Pµsin)ac,

hich, in particular, implies that

µac(E) = µac(E) + (Pµsin)ac(E).

ence (Pµsin)ac ≡ 0, and thus Pµsin ∈ Msin(E,m). From the identity

µac + µsin = µ∗ = Pµac + Pµsin

nd the uniqueness of the Lebesgue decomposition it now follows that both measures µac and µsin are
invariant for the operator P . Finally, taking into account the aforementioned consequence of [1, Theorem
9.25] and the fact that µac ̸= µsin, we can apply the above remark to conclude that at least one of the

measures µac, µsin must be trivial, which gives the desired conclusion. □

In the remainder of this section, we provide the proofs of Lemmas 3.1 and 3.2, referring to the Markov
operators P , G and W , induced by the kernels (2.2), (2.5) and (2.6), respectively.

Proof of Lemma 3.1. For any θ ∈ Θ , j ∈ I and t ≥ 0, let us define Tθ,j,t : X → X by

Tθ,j,t(y, i) := (wθ(Si(t, y)), j) for (y, i) ∈ X.

Obviously, each of the transformations Tθ,j,t is then Borel measurable and non-singular with respect to ℓ̄d.
Consequently, for any θ ∈ Θ , j ∈ I and t ≥ 0, we can consider the Frobenius–Perron operator associated
with Tθ,j,t, say Pθ,j,t, which satisfies

∫
1A(Tθ,j,t(y, i))f(y, i) ℓ̄d(dy, di) =

∫
Pθ,j,tf(y, i) ℓ̄d(dy, di) for A ∈ B(X), f ∈ L1(X, ℓ̄d). (A.1)
X A
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Let µ ∈ Mac(X, ℓ̄d), and, for each (θ, j, t) ∈ Θ × I × R+, define

fµ
θ,j,t(y, i) := πij(wθ(Si(t, y)))pθ(Si(t, y)) dµ

dℓ̄d

(y, i), (y, i) ∈ X.

Note that fµ
θ,j,t ∈ L1(X, ℓ̄d) for all j ∈ I and ϑ⊗ ℓ1 - a.e. (θ, t) ∈ R+ ×Θ . To justify this, observe that, for

every i ∈ I, the map (θ, t, y) ↦→ e−λtpθ(Si(t, y)) is measurable with respect to B(Θ) ⊗ B(R+) ⊗ B(Y ), since
the functions (θ, y) ↦→ pθ(y) and (t, y) ↦→ Si(t, y) are continuous. Moreover, since θ ↦→ pθ(y) is a density for
each y ∈ Y , we have∫

Y

∫ ∞

0

∫
Θ

e−λtpθ(Si(t, y))ϑ(dθ) dt µ(dy × {i}) = λ−1µ(Y × {i}) < ∞,

which (by [7, Theorem 3.4.5]) guarantees that the function (θ, t, y) ↦→ e−λtpθ(Si(t, y)) is ϑ⊗ ℓ1 ⊗ µ(· × {i})-
ntegrable for every i ∈ I. From Fubini’s theorem ([7, Theorem 3.4.4]) it now follows that, for each i ∈ I, the
ap y ↦→ e−λtpθ(Si(t, y)) is µ(· × {i})-integrable for ϑ⊗ ℓ1-a.e. (θ, t) ∈ Θ × R+, and so is y ↦→ pθ(Si(t, y)).
his obviously implies that such a function is also µ-integrable for ϑ⊗ ℓ1-a.e. (θ, t) ∈ Θ ×R+, which finally
ives ∫

X

fµ
θ,j,t(y, i) ℓ̄d(dy, di) ≤

∫
X

pθ(Si(t, y))µ(dy, di) < ∞ for ϑ⊗ ℓ1 − a.e. (θ, t) ∈ Θ × R+, j ∈ I.

In view of the above, there exists a set N ∈ B(Θ) ⊗ B(R+), with (ϑ ⊗ ℓ1)(N) = 0, such that
µ
θ,j,t ∈ L1(X, ℓ̄d) for all (θ, t) ∈ (Θ × R+)\N and j ∈ I. Hence we can now use (A.1) to conclude that,
or every A ∈ B(X),

Pµ(A) =
∑
j∈I

∫ ∞

0

∫
Θ

λe−λt

∫
X

1A(wθ(Si(t, y)), j)πij(wθ(Si(t, y))) pθ(Si(t, y))µ(dy, di)ϑ(dθ) dt

=
∑
j∈I

∫
(Θ×R+)\N

λe−λt

(∫
X

1A(Tθ,j,t(y, i))fµ
θ,j,t(y, i) ℓ̄d(dy, di)

)
(ϑ⊗ ℓ1)(dθ × dt)

=
∑
j∈I

∫
(Θ×R+)\N

λe−λt

(∫
A

Pθ,j,t

(
fµ

θ,j,t

)
(y, i) ℓ̄d(dy, di)

)
(ϑ⊗ ℓ1)(dθ × dt)

=
∫

A

⎛⎝∑
j∈I

∫
(Θ×R+)\N

λe−λtPθ,j,t

(
fµ

θ,j,t

)
(y, i) (ϑ⊗ ℓ1)(dθ × dt)

⎞⎠ ℓ̄d(dy, di).

e have therefore shown that the map

X ∋ (y, i) ↦→
∑
j∈I

∫
(Θ×R+)\N

λe−λtPθ,j,t

(
fµ

θ,j,t

)
(y, i) (ϑ⊗ ℓ1)(dθ × dt)

s a Radon–Nikodym derivative of Pµ with respect to ℓ̄d, whence Pµ ∈ Mac(X, ℓ̄d) and the proof is
omplete. □

roof of Lemma 3.2. To prove the first inclusion, for every t ≥ 0, we define Ht : X → X by setting

Ht(y, i) := (Si(t, y), i) for (y, i) ∈ X.

uch a transformation is then Borel measurable and non-singular with respect to ℓ̄d. Hence, we can consider
he Frobenius–Perron operator associated with Ht, say Pt, which satisfies∫

1A(Ht(y, i))f(y, i) ℓ̄d(dy, di) =
∫

Ptf(y, i) ℓ̄d(dy, di) for all A ∈ B(X), f ∈ L1(X, ℓ̄d).

X A
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Letting µ ∈ Mac(X, ℓ̄d) and putting hµ := dµ/dℓ̄d ∈ L1(X, ℓ̄d), we then see that, for any A ∈ B(X),

Gµ(A) =
∫ ∞

0

∫
X

λe−λt1A(Si(t, y), i)µ(dy, di) dt

=
∫ ∞

0
λe−λt

(∫
X

1A(Ht(y, i))hµ(y, i) ℓ̄d(dy, di)
)
dt

=
∫ ∞

0
λe−λt

(∫
A

Pth
µ(y, i) ℓ̄d(dy, di)

)
dt =

∫
A

(∫ ∞

0
λe−λtPth

µ(y, i) dt
)
ℓ̄d(dy, di).

his shows that
(y, i) ↦→

∫ ∞

0
λe−λtPth

µ(y, i) dt

s a Radon–Nikodym derivative of Gµ with respect to ℓ̄d, which means that Gµ ∈ Mac(X, ℓ̄d) and, therefore,
hows the first inclusion in the assertion of the lemma.

The proof of the second inclusion goes similarly. In this case, for every θ ∈ Θ and each j ∈ I, we consider
θ,j : X → X given by

Rθ,j(y, i) = (wθ(y), j) for (y, i) ∈ X.

bviously, all the transformations Rθ,j are Borel measurable and non-singular with respect to ℓ̄d. This
bservation, as before, enables us to introduce the Frobenius–Perron operator associated with Rθ,j , say
θ,j , which satisfies∫

X

1A(Rθ,j(y, i))f(y, i) ℓ̄d(dy, di) =
∫

A

Pθ,jf(y, i) ℓ̄d(dy, di) for A ∈ B(X), f ∈ L1(X, ℓ̄d). (A.2)

et µ ∈ Mac(X, ℓ̄d) and define

rµ
θ,j(y, i) := πij(wθ(y))pθ(y) dµ

dℓ̄d

(y, i) for (y, i) ∈ X.

Proceeding analogously as in the proof of Lemma 3.1, one can show that there exists N ∈ B(θ) satisfying
ϑ(N) = 0 such that rµ

θ,j ∈ L1(X, ℓ̄d) for all θ ∈ Θ\N and j ∈ I. Hence, taking into account (A.2), we infer
that, for every A ∈ B(X),

Wµ(A) =
∑
j∈I

∫
Θ

∫
X

1A(wθ(y), j)πij(wθ(y))pθ(y)µ(dy, di)ϑ(dθ)

=
∑
j∈I

∫
Θ

(∫
X

1A(wθ(y), j)πij(wθ(y))pθ(y)µ(dy, di)
)
ϑ(dθ)

=
∑
j∈I

∫
Θ\N

(∫
X

1A(Rθ,j(y, i))rµ
θ,j(y, i) ℓ̄d(dy, di)

)
ϑ(dθ)

=
∑
j∈I

∫
Θ\N

(∫
A

Pθ,j(rµ
θ,j)(y, i) ℓ̄d(dy, di)

)
ϑ(dθ)

=
∫

A

⎛⎝∑
j∈I

∫
Θ\N

Pθ,j(rµ
θ,j)(y, i)ϑ(dθ)

⎞⎠ ℓ̄d(dy, di).

onsequently, we now see that the map

X ∋ (y, i) ↦→
∑
j∈I

∫
Θ\N

Pθ,j(rµ
θ,j)(y, i)ϑ(dθ)

s a Radon–Nikodym derivative of Wµ with respect to ℓ̄d, which, in turn, yields that Wµ ∈ Mac(X, ℓ̄d) and
ompletes the proof of the lemma. □
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