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ABSTRACT: GaN wurtzite crystal is commonly regarded as
eminently brittle. However, our research demonstrates that
nanodeconfined GaN compressed along the M direction begins
to exhibit room-temperature plasticity, yielding a dislocation-free
structure despite the occurrence of considerable, irreversible
deformation. Our interest in M-oriented, strained GaN nano-
objects was sparked by the results of first-principles bandgap
calculations, whereas subsequent nanomechanical tests and
ultrahigh-voltage (1250 kV) transmission electron microscopy
observations confirmed the authenticity of the phenomenon.
Moreover, identical experiments along the C direction produced
only a quasi-brittle response. Precisely how this happens is
demonstrated by molecular dynamics simulations of the deformation of the C- and M-oriented GaN frustum, which mirror our
nanopillar crystals.

KEYWORDS: GaN nanocrystals, nanoscale compression, plasticity, ultrahigh voltage electron microscopy, ab initio calculations,
MD-simulations

Semiconductors have been the life blood of technology ever
since the first contact-point transistor was invented in

1947.1 It would seem therefore that every aspect of
semiconducting materials has been thoroughly investigated,2

yet their mechanical properties have received significantly less
attention than the optoelectronic ones. The majority of
inorganic semiconductors are stiff, barely deformable solids
with powerful interatomic bonding reflected by high melting
temperatures Tm.

3 However, more recent research has
challenged that idea with the synthesis of a first ever plastic
Ag2S inorganic semiconductor4 or the discovery of plasticity of
ZnS crystals under complete darkness,5 whereas the high-
temperature mechanical behavior of ceramic and semi-
conductor nano-objects has been attracting increasing
attention of the scientific world.6 Our own findings show
that even a brittle semiconductor such as GaN can, under
appropriate conditions (a nanodeconfined state7,8 and
straining in a particular direction), display distinct plasticity
even at room temperature (RT). At the same time, Kamimura,
Kirchner, and Suzuki9 have estimated that GaN’s transition
from brittle to ductile would require a temperature of 800 °C,
suggesting that any talk of GaN’s plastic behavior would be
possible only in the context of high temperatures. It is little
wonder then that GaN’s plastic deformation at room
temperature is utterly expected. This is also a reason why
GaN plasticity has previously been methodically examined
exclusively in high temperatures.10,11

GaN crystal has a well-established place in modern
technology.12,13 In bulk mode and room temperature, GaN

has long been known to display considerable strength,
hardness, and brittleness.14−17 The same applies to GaN
nano-objects that Huang et al.18 characterized as displaying
only limited local plasticity in contrast to the “global” one
exhibited by metallic micro-objects (cf. studies by Nix,19

Minor,20 or Schuh21 and their research teams). Despite wide-
ranging testing conditions,18,22−26 no such “global GaN plastic
behavior” has been detected, yet our Letter proposes that it is
real. We turn therefore to GaN crystal, whose structure
unlike that of other semiconductors, e.g., GaAs27,28 or Si29
has been shown to remain stable until the pressure reaches
47−60 GPa.30−33

We began by performing density functional theory (DFT)
calculations of the bandgap Eg in a stressed GaN structure
(Supporting Information A-1), using the Quantum Espresso
software package.34,35 The exchange-correlation energy was
determined according to the Perdew−Burke−Ernzerhof func-
tional.36 The ultrasoft Ga and N pseudopotentials were
selected from the PSLibrary database.37 The energy cutoff of
60 Ry was established as the threshold for the wave function
expansion, whereas the first Brillouin zone was sampled by
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applying the 11 × 11 × 11 Monkhorst−Pack k-point mesh38

(Supporting Information A-1 and Figure S1).

The obtained quasi-linear rise of Eg with increasing
hydrostatic pressure p (Figure 1) agreed with earlier
experimental observations,39−42 lending credibility to our
calculations (see Supporting Information B). However, the
declining Eg−ε relationship found for GaN when compressed
along the M[101̅0] direction (marked in red) was quite
unexpected, diverging both from the hydrostatic (marked in
black) and the C[0001]-axis stressing (marked in green). It
implies a stark contrast in GaN’s mechanical response
depending on whether it is stressed along the M- or C-axis
(Figure 1), where earlier reports13,30,43 have considered its
elastic anisotropy as insignificant.
Topical experiments by Porowski et al.44 show the GaN

bandgap commensurate with its melting temperature, and an
increasing Tm−p dependence. Because the Tm value reflects
crystal cohesion (Supporting Information B), it is reasonable
to expect crystal “weakening” during straining along the M
direction (Figure 1). This significant loss of strength in GaN
persuaded us to undertake an experimental assessment of its
nanoscale deformation along the M direction, which, to the
best of our knowledge, had never been attempted before.
Consequently, GaN wafers (5 × 5 × 0.4 mm) with the

C(0001) and M[101̅0] oriented surfaces were cut from a larger
crystal grown by hydride vapor phase epitaxy in a way to avoid
defect generation. An initial cathode luminescence examination
of the materials confirmed their high quality: the threading
dislocation density in C- and M-oriented wafers equaled 1
×1010 and 4 × 109 m−2, respectively. A set of virtually identical
GaN nanopillars was carved in each of the prepared wafers
using a two-stage focused ion beam (FIB) milling (Supporting
Information A-2 and Figure S2), taking every precaution the
FIB did not introduce dislocations in the fabricated items.
The RT nanocompression tests followed the approach

developed by Schuh and his team21 as well as the updated
standards for GaN nano-objects reviewed by Fatahilah et al.45

The experiments were carried out using a nanoindenter with
precise test-geometry (Figure 2a), by compressing each pillar
to a different force-limit in an effort to elicit a single strain-
burst response (Supporting Information A-3 and Figure S6).
This strategy proved successful, revealing an entire, irreversible
deformation of certain C-GaN and M-GaN nanopillars
accomplished under constant nominal stress σmax (Figure
2b). The recorded stress−strain curves display a disparity
between the M-GaN and C-GaN nano-objects, with displace-
ment bursts occurring at different stress levels, namely, σmax =
7.7 (red curve) and 12.7 GPa (green curve), respectively. The
latter conforms to the RT hardness of GaN thick-films of H ≈
12 GPa,13,14 leading to the conclusion that the C-GaN case
represents the commonly recognized mechanical properties of

Figure 1. Stress-dependent changes of GaN bandgap deduced from
ab initio calculations. The black dotted line (the upper pressure scale)
concerns hydrostatic compression of GaN structure; the red and
green data relate to the crystal compression (red scale refers to
uniaxial strain) along the M[101̅0] and C[0001] directions,
respectively.

Figure 2. Results of nanocompression experiments carried out on the
C- and M-oriented GaN nanopillars: (a) a schematic of the performed
test, (b) the stress−strain σ−ϵ curves determined for the C-GaN and
M-GaN nanopillars, the general SEM views of the postdeformed (c)
C-GaN and (d) M-GaN crystals. Also included are bright-field see-
though views of the entire (e) C-GaN and (f) M-GaN pillar structure
that remains after the single strain-burst deformation. (e) The C-
oriented GaN reveals a significant accumulation of stacked
dislocations as against the M-GaN, which manifests a defect-free
crystalline structure. The displayed quasi-brittle response of C-GaN
with (c, e) a vertical crack formation contrasts with the plasticity
evident in (d, f) the M-GaN. (See also the structure observed for
inclined nanopillars in Figures S7 and S8.)
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GaN crystal,13−17,25,26 whereas the M-GaN one corroborates
the “unexpectedly weak behavior” foreseen by ab initio
calculations (Figure 1). Our claim is strengthened further by
an inspection of nanopillars deformed according to a single
strain-excursion pattern using scanning electron microscopy
(SEM), which exposed the difference between a brittle-ceramic
manner of the C-GaN deformation (Figure 2c) and plastic
performance by the M-GaN (Figure 2d). Credible proof of this
idiosyncrasy came from ultrahigh-voltage (1250 kV) trans-
mission electron microscopy (UHV-TEM), which enabled
first-hand observation of GaN structure in our 500 nm thick
nano-objects (Supporting Information C-1 and C-3 and Figure
S7). The deformed C-GaN nanopillar contains a huge number
of accumulated dislocations (Figure 2e) and a vertical crack,
which confirms its quasi-brittle response. This is similar to the
effect found for GaN nanowires by Huang et al.18 and the
conventional view of GaN properties.13−17 Like the majority of
earlier works on compressed GaN micropillars, they report a
vertical crack, which is due to their exclusive concentration on
C-oriented objects.22−24

By contrast, our results concern a defect-free M-GaN
structure obtained after severe (εM‑GaN = 8%) irreversible
deformation (Figure 2b). As it happened, thorough micro-
scopic observations of the whole volume of the M-oriented
pillars variously inclined to the incident electron beam (see
Figure S8) failed to detect a single dislocation. There is no
doubt that, if any such defects in the nano-object structure
existed, they would have left a trace in bright-field UHV-TEM
images (Figure 2f), similarly to the defects arrested within the
C-GaN (Figure 2e). The absence of dislocations in the M-GaN
pillar on the one hand, and their existence in the confined root-
substrate (Figure 2f and Figure S8) on the other, is ample
proof that dislocation activity did indeed occur, causing the
hard GaN crystal to deform through slip. It bears emphasizing
that the phenomenon we are dealing with differs from

“dislocation starvation” or “mechanical annealing” reported
for metallic nano-objects,19,20,46 concerning as it does a strong
solid with considerable resistance to dislocations motion.16

We have tried to account for the experimental data using
MD simulations. Our computations were performed with the
LAMMPS code47 for two frustum (Φtop × H × Φbottom)
objects: C-GaN (14.7 × 29.8 × 17.9 nm) and M-GaN (14.9 ×
29.9 × 17.7 nm) placed on a GaN wafer, which reflect the
geometry of the examined samples. The interactions among
the atoms within the wurtzite structure were described using

Figure 3. Contact pressure−strain pc−ε relationships for the C- and
M-oriented GaN frustums compressed at 300 K show a difference in
mechanical response of nano-objects. The abrupt pressure-drops in
pc−ε graphs that correspond to a single-burst deformation (Figure
2b) confirm considerably stiffer behavior of the C-GaN, whereas the
M-oriented frustum starts to deform under significantly lower stress. A
visualization of structure evolution under increasing strain ε (selected
stages of compression marked by yellow points) is presented in Figure
4.

Figure 4. Contrasting structure evolution during compression of the
(a−c) C- and (d−f) M-oriented GaN frustums derived from our MD
simulations. The sequence of selected strain values complies with the
yellow points in pc−ε curves for both objects (Figure 3), whereas the
depicted structural changes are exposed in the vertical, diameter cross-
section of a modeled pillar. The atoms are marked in colors according
to the atomic shear stress level determined in their actual location.
(a−c) Massive accumulation of defects in the C-GaN frustum and
(d−f) loss of its integrity due to crystal-block sliding and the extrusion
of stressed material are in marked contrast to the plasticity of the M-
GaN realized by multiple M slips.
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the Stillinger−Weber48 potential created by Beŕe ́ and Serra,49

who demonstrated its accuracy in modeling GaN lattice
parameters and elastic constants (refer to Supporting
Information A-4). The deformation path of each object was
induced at 300 K by applying a load to the rigid, horizontal
plate while in contact with the upper frustum surface. To
achieve a quasi-static deformation, we relaxed the plate shift
increments of 0.3 Å within 2 ps time intervals (details in
Supporting Information A-4).
The MD-simulated deformation history of C-GaN frustum

displayed in the contact pressure-strain (pc−ε) curves (Figure
3) conforms qualitatively with the experimental data obtained

for compressed GaN microprisms by Wheeler et al.,24 or those
by Huang et al.18 for GaN nanowires squeezed along their
C[0001] axis. This agrees with a common perception of GaN
objects as stiff and brittle materials in a range of testing
temperatures.13,17 However, the simulated pc(ε) characteristics
unveiled a noticeable difference in the mechanical conduct of
the C- and M-oriented frustums quite unlike the moderate
directionality registered in our earlier nanoindentation experi-
ments on bulk GaN crystal.25,26

The abrupt stress-drop recorded in both pc(ε) relationships
(Figure 3) corresponds to the strain bursts (Figure 2b and
Figure S6), as MD simulations commonly apply depth-

Figure 5. DXA visualization of dislocations in the M-GaN frustum (a, e) strained up to ε = 0.127 and (b−h) after unloading. Panels a and e
concern the pillar viewed along two different, perpendicular directions. Similarly, in the M-GaN frustum (i, m) prestrained up to ε = 0.129 and (j−
p) unloaded. (a−h) Significantly, the dislocation induced during loading disappears on reaching the lateral surface during unloading. However, in
the larger prestrained frustum (i) and (m), (i−p) the relaxation process results in the annihilation of defects except for a single one (l and p) that
extends into the M-oriented root substrate. The additional description of unloading stages for differently strained M-GaN is provided in Supporting
Information D and Figure S5.
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controlled compression, whereas nanomechanical testing is
load-controlled.7,50 It turns out that the C-GaN requires a
significantly higher contact pressure than the M-GaN to
initiate irreversible deformation (Figure 3), which accords with
our experiments (Figure 2b). However, neither the simulated
nor measured mechanical characteristics of C- and M-oriented
nano-objects (Figure 2b and 3) appear to resolve the dilemma
we are in, namely, of a sizable plastic M-GaN deformation with
a resulting intact crystalline structure on the one hand, and a
quasi-brittle response of the C-GaN with arrested dislocations
(Figure 2) on the other.
The answer was provided by a visualization of the evolution

of a strained atomic GaN structure recently made available
with OVITO (Open Visualization Tool) and the dislocation
extraction algorithm (DXA).51 In particular, our employment
of the atomic shear strain modifier enabled us to envision the
shear strains that atoms are subjected to and determine active
slip planes, existing dislocations, and their Burgers vectors52

(see Supporting Information D-1). We found that the onset of
an irreversible C-GaN deformation (Figure 3) concerns defect
activity at the lower end of the modeled pillar (refer to Figure
4a). It involves limited local, quasi-elastic movement of
dislocation lines on the C planes (DXA-details in Supporting
Information D and Figure S3) that leads to accumulation of
defects inside the crystal. The irreversible deformation starts
with dislocation generation at the base of the frustum (Figure
S3) despite the inevitable presence of higher stress close to its
upper end (smaller cross-section area). We contend that the
loading of a significantly strong and stiff C-GaN nanopillar
results in a moderate stress concentration along the perimeter
of the bottom contact and local change in the GaN lattice
orientation.
As deformation proceeds, the R slip operates in the upper

part of the nano-object and forms a typical “mushroom profile”
of extruded material close to the contact (Figures 4b, c),
similarly to the observations by Huang et al.18 In reality, stress
relaxation is realized by outward movement of the material
immediately below the squeezing tool (with only a limited
contribution from the C and R slip) and by vertical cracking of
the C-GaN pillar which both we (Figure 2c, e) and other
authors22−24 have observed. The lion’s share of the
dislocations generated in the C-GaN frustum is stacked in
the crystal volume, as demonstrated by our simulations (Figure
4a−c) and UHV-TEM observations (Figure 2e), because they
are unable to escape the pillar volume or slip either during
deformation or unloading (Supporting Information Figure S4).
The visualization highlights the plastic response of the M-

GaN (Figures 4d−f and 3) in marked contrast to the vast
defect accumulation in the compressed C-GaN (Figure 4a−c).
This kind of C-GaN’s “quasi-brittle” behavior is consistent with
the common perception of the mechanical properties of our
nitride.13−17,30,43 Particularly revealing, however, is the
unobstructed, well-defined, multiple dislocation slip on the
M planes right across the M-GaN crystal (Figure 4d, e), with
some of it entering the substrate area (Figure 4f), which our
TEM experiments had detected (Figure 2f). Indeed, the
Peierls−Nabarro stress for the GaN prismatic M⟨112̅0⟩{11̅00}
slip, claimed by Kamimura et al.53 as well as Yonenaga and
Motoki54 to be lower than the Peierls barrier for other slip
systems, indicates the possibility of the M slip.
One final piece of the puzzle was missing: why should the

above mechanism result in a dislocation-free M-GaN structure
(Figure 2f) despite the sizable plastic deformation (Figure 2b)?

Our MD simulations of the loading path (Figure 4) showed
that, similarly to the C-GaN, the M-oriented frustum initially
also contains dislocations, although to a much lesser degree
(compare Figure 4d−f and Figure 4a−c). In search for the
answer, we investigated the evolution of defects during the
unloading of the M-GaN. The DXA revealed that the
generated dislocations (Figure 4d−f) did not in fact contract
during unloading (Figure 5). Instead, they expand and
annihilate themselves on the lateral surface (Figure 5b, c, f,
g), leaving behind a perfect GaN structure (details in
Supporting Information D-2 and Figure S5), in full
confirmation of our UHV-TEM observations (Figure 2f).
Some other dislocations located close to the bottom of the
frustum (Figure 5i, m) enter the substrate (Figure 5j−l and
Figure 5n−p) during unloading, again in accordance with our
experiments (Figure 2f). Taken together, both our experiments
and simulations stipulate that a specifically oriented GaN
nanopillar will not perform like a brittle material.
Contemporary developments in GaN fabrication55 are

opening the way to appliances capable of outperforming Si-
based products. They include nanocolumn LEDs,13 the next
generation of power-electronic devices, or wirelessly powered
systems in autonomous cars.56,57 Consequently, we are
witnessing increased demand for all-embracing knowledge of
the mechanical properties of GaN nanovolumes.58 The plastic
response of M-oriented GaN nano-objects goes some way
toward meeting that demand.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00773.

Details of the numerical and experimental methods;
discussion on a stress-dependent bendgap-melting
temperature Eg−Tm relationship for GaN; additional
experimental particulars; (D) MD-based analysis
(Figures S3−S5) of GaN nanoscale deformation; (E)
supplementary references; and Figures S1−S8 (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Masaki Fujikane − Applied Materials Technology Center,
Technology Division, Panasonic Corporation, Kyoto 619-
0237, Japan; Email: fujikane.masaki@jp.panasonic.com

Roman Nowak − Institute of Scientific and Industrial
Research, Osaka University, Osaka 567-0047, Japan;
Extreme Energy-Density Research Institute, Nagaoka
University of Technology, Nagaoka, Niigata 940-2188,
Japan; Nordic Hysitron Laboratory, School of Chemical
Engineering, Aalto University, Aalto 00076, Finland;
orcid.org/0000-0002-2708-7375;

Email: roman.nowak@aalto.fi

Authors
Shijo Nagao − Institute of Scientific and Industrial Research,
Osaka University, Osaka 567-0047, Japan

Dariusz Chrobak − Extreme Energy-Density Research
Institute, Nagaoka University of Technology, Nagaoka,
Niigata 940-2188, Japan; Present Address: Institute of
Materials Engineering, University of Silesia in Katowice,
40-500 Chorzoẃ, Poland
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