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Abstract: A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared
by multi-step synthesis and characterized. All the final compounds were tested for their ability to
inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity
index (SI) was determined. Except for three compounds, all compounds showed strong preferential
inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine.
Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-
chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-
methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM,
respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity
against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In
addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process
of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The
detailed information about the mode of binding of these compounds to the active site of both BChE
and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking,
molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations)
were employed.

Keywords: bioassays; carbamates; cholinesterase inhibitors; molecular modeling; sulfonamides;
synthesis

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disorder with characteristic
clinical and pathological symptoms [1–3]. It represents the leading cause of dementia
and affects almost 50 million people worldwide [4]. The exact pathology of AD is still
unknown; however, several hypotheses of AD pathogenesis have been suggested, such as
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deficits in cholinergic neurotransmission, accumulation of β-amyloid outside the neurons
and τ-protein inside the neurons, oxidative stress, and inflammation [5–10]. Early studies
performed on patients suffering from AD found an altered cholinergic activity, which
resulted in cognitive and functional symptoms. AD is connected with the decreased
concentration of the neurotransmitter acetylcholine (ACh), which is caused by its excessive
degradation [5,6]. At the neuronal level, ACh is hydrolyzed by cholinesterases (ChEs) to
choline and acetic acid. There are two types of ChEs in vertebrates: acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE). AChE plays a crucial role in ACh hydrolysis in
cholinergic brain synapses and neuromuscular junctions [11]. BChE is able to hydrolyze
ACh as well as other esters and plays probably only a supportive role [12–14]. These two
enzymes display diverse kinetic characteristics depending on ACh concentrations. AChE
is very effective in hydrolysis at low ACh concentrations, while BChE is more efficient in
the hydrolysis at high ACh concentrations [15].

In patients with AD, the role of BChE in ACh hydrolysis progressively increases, while
AChE activity remains unchanged; its concentration drops down to 90% compared to the
healthy brain [14,16]. Clinical studies are in accordance with the lack of effectiveness of
AChE inhibitors in the latest stages of AD. Moreover, experiments performed on mouse
models demonstrated the role of BChE to maintain the cholinesterase function even in the
absence of AChE [17]. This finding is in agreement with earlier reports that showed an in-
version of AChE and BChE relative expressions during AD progression [18,19]. In vivo data
supporting this hypothesis include the observation that specific BChE inhibitors are able
to restore ACh levels in mice [20] and improve the cognitive performance of mice treated
with the amyloid-β peptide [21,22] yet without peripheral (parasympathomimetic) adverse
effects, [13,20,23] which are known to limit the dosing of AChE inhibitors [13,24–28].

Recently, the treatment of AD has been based on the inhibition of ChEs in order to
maintain the proper level of ACh. So far, the U.S. Food and Drug Administration (FDA) has
approved four cholinesterase inhibitors for therapy of AD, but tacrine was discontinued
due to the aforementioned adverse effects and liver toxicity [29]. Since 2003, no new drugs
and even those currently available in clinical practice have been approved. Therefore,
the selective inhibition of BChE might well constitute a therapeutic target for clinical use
in progressed AD [12,13,29], where AChE inhibitors fail. Due to a number of failures in
clinical trials of new candidates for the treatment of AD, ChE inhibitors remain a time-
tested therapeutic option for palliative treatment of AD with the aim to improve patients’
cognitive functions [28].

Additionally, the selective inhibition of BChE might be of clinical interest not only
for the latest stages of AD. It was found that BChE is involved in the regulation of the
serum metabolism in the context of cardiovascular risk factor [30,31], insulin resistance
and diabetes mellitus [32,33], and obesity [32,34].

AChE and BChE share 65% amino acid sequence homology [30,31,35]. Their structure
is overall similar, although their catalytic active sites (CAS), where the hydrolysis of
AChE and BChE is mediated, are quite similar and their active sites, composed of a
catalytic triad and a choline binding pocket, are both buried at the bottom of a ~20 Å
deep gorge. Two enzymes show differences in the space they provide for a substrate
or inhibitor. These differences are notably seen in the amino acids forming the gorge
of the binding site and the acyl binding pocket (detailed comparison can be found in
ref. [36]). However, selective inhibition of BChE can be achieved by targeting the CAS with
carbamate-based inhibitors. These inhibitors generally feature a carrier scaffold guiding
a carbamate moiety into the correct position in the enzyme, successively followed by the
transfer of the carbamate moiety onto the serine of the CAS under the release of the carrier
scaffold. Several carbamate-based selective BChE inhibitors were described [37–42].

The inhibitors may cause reversible, irreversible or pseudo-reversible inhibition of
the enzyme. It is possible to distinguish between the individual types by monitoring the
effect of the inhibitor on the active enzyme over time. The reversible inhibitor reduces the
activity of the enzyme immediately. However, because it binds to the enzyme only by weak
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binding, it is released in a short time and the enzyme activity is restored. In the case of
irreversible inhibition, the reaction between the enzyme and the inhibitor is not immediate
and instead there is a time-dependent decrease in enzymatic activity. The inhibitor binds
permanently to the enzyme, and there is no spontaneous restoration of enzyme activity.
Pseudo-irreversible inhibitors (e.g., carbamates) bind to the enzyme for a longer period, but
unlike irreversible inhibitors, they do not block the enzyme permanently. After some time,
they are released from binding, but significantly slower compared to reversible inhibitors.
Reactivation of the enzyme inhibited by pseudo-reversible inhibitor can be achieved by
dilution or dialysis in buffer [43,44] [A,B]. Wilson and co-workers demonstrated that
carbamates serve as slow substrates of AChE, with rapid carbamylation being followed by
much slower decarbamylation [45,46] [C,D]. Carbamates form a carbamylated complex
with the serine residue of the catalytic triad of AChE. This complex is hydrolysed at slower
rate than the acylated form resulting from the interaction between enzyme and substrate
(i.e., acetylcholine). The reaction scheme of carbamylation and decarbamylation of AChE
is shown in Scheme 1.
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Scheme 1. Carbamylation and decarbamylation of AChE [47,48] (EOH is the free enzyme, CX
is the carbamate, EOH—CX is the non-covalent complex of enzyme and carbamate, EOC is the
carbamoylated enzyme, k1 is the rate constant for the formation of Michaelis complex (reversible
complex), k-1 is the rate constant for dissociation of Michaelis complex, k2 is the carbamylation
rate constant, k3 is dissociation constant, ki is the apparent bimolecular rate constant governing the
overall rate of inhibition and neglecting the formation of the reversible complex.

A number of recent studies have investigated various modifications of sulfonamides,
for example, multitarget agents for the inhibition of AChE enzyme [49], multifunctional
agents for Alzheimer’s disease [50], and/or an in vivo active reversible BChE inhibitor [51].
Based on these published data and our previous knowledge (e.g., [41,42,52,53]), we decided
to modify chiral sulfonyl chlorides to their benzyl or phenyl derivatives of carbamate-based
inhibitors of ChEs. In order to better understand at the molecular level the mode of binding
of the compounds reported here to their molecular targets, a molecular modeling study was
carried out. In this study, we used different combined techniques such as molecular docking
and molecular dynamics simulations using analysis per residue. In addition, in order to
evaluate in more details the molecular interactions of different molecular complexes we
used quantum theory of atoms in molecules (QTAIM) calculations [54].

2. Results and Discussion
2.1. Chemistry

N-Benzyloxycarbonyl (Cbz)-protected chiral benzyl and phenyl sulfonamides were
synthesized as outlined in Scheme 2. The Cbz-protected amino acid starting materials
were transformed into appropriate alcohols (Cbz-L-alaninol, Cbz-L-phenylalaninol, Cbz-L-
leucinol) according to the known procedure [55]. The mesylation of the obtained alcohols
with methanesulfonyl chloride in the presence of triethylamine gave methansulfonates 3a–c,
which were further transformed using thioacetic acid into thioacetates 4a–c in the presence
of cesium carbonate in DMF. N-Protected thioacetates reacted with NCS under acidic con-
ditions and provided sulfonyl chlorides 5a–n. This approach was successfully applied for
similar compounds, as evidenced by the literature [56]. Chlorides 5a–n were used for the
last step of the synthesis of targeted sulfonylamides in the presence of a base and a chosen
aniline or benzylamine in DCM. The isolated yields of targeted chiral sulfonylamides were
approx. 65%.
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In the series of 14 derivatives, 11 were shown to be more effective in the inhibition of 

BChE than of AChE (see SI indexes in Table 1). Focusing on inhibition of BChE, IC50 values 
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RIV – 56.10 ± 1.41 38.40 ± 1.97 1.46
* SI (selectivity index) = IC50 (AChE)/IC50 (BChE). AChE and BChE inhibition are expressed as the mean ± SD
(n = three independent experiments). The best results of IC50 and SI are indicated in bold.

In the series of 14 derivatives, 11 were shown to be more effective in the inhibition
of BChE than of AChE (see SI indexes in Table 1). Focusing on inhibition of BChE, IC50
values were found in a range from 4.33 µM (5k) to 112.21 µM (5i). Table 1 shows that nine
derivatives (compounds 5c–f, 5g, 5h, 5j, 5k, 5m, 5n) are more effective in inhibiting BChE
than the standard RIV. Derivatives 5c and 5j show approximately 5-fold higher inhibitory
activity against BChE than RIV and 5k is even 9-fold more effective than RIV (IC50 = 4.33
vs. 38.40 µM) under the given conditions. Derivatives 5c, 5f, 5j, 5k, and 5n show significant
selectivity for BChE. Specifically, derivative 5k has a very high SI value (33.71).

In contrast, when comparing the IC50 values of the studied derivatives and the stan-
dard RIV, it is obvious that only three derivatives (compounds 5d, 5h, 5i) are approxi-
mately as effective as RIV in inhibiting AChE. The IC50 values were found in a range from
55.64 µM (5d) to 150.29 µM (5k). Only three derivatives (compounds 5a, 5b, 5i) show a
slight selectivity to AChE, however their inhibitory activity is rather weak.

The differences in the inhibitory activity of several inhibitors against AChE and BChE
can be explained on the basis of slightly different molecular structure of both enzymes.
The different structure of the binding site and the amino acid sequence within the binding
site [36] are certainly of great importance. These facts are discussed in detail in the following
section.

2.3. Evaluation of Carbamylation and Reactivation of BChE

The inhibition process by carbamates is determined by two distinct species: the
transient Michaelis complex and the carbamylated enzyme. These two species determine
the rate of carbamylation and decarbamylation, respectively, and therefore, both contribute
to the efficacy of the carbamate as drug [59]

Two derivatives (compounds 5k, 5j) were used for evaluation of carbamylation and
decarbamylation of BChE from equine serum. The procedure is described in Section 3.4.

The evaluation of BChE carbamylation was performed on the basis of the measured
dependences % residual activity vs. time in the presence of appropriate concentration
of inhibitor. Figures showing these dependencies (Figures S2 and S3) are presented in
the Supplementary Materials. The obtained dependences % residual activity vs. time
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in the presence of 5k (5j) show very similar course. Initially the enzymatic activity de-
creased, but after some time the decrease stopped and a longer incubation time did not
lead to any further decrease of the activity. On the contrary, after about 30 h, the activity
began to rise slowly again. These dependences were evaluated by non-linear regres-
sion and the pseudo-first-order rate constants kobs for progressive inhibition at several
inhibitor concentrations were obtained. Subsequently, the dependence of kobs vs. con-
centration of inhibitor was plotted and the apparent bimolecular rate constant (ki) was
determined: 92.67 ± 5.62 M−1min−1 for 5k and 65.04 ± 3.21 M−1min−1 for 5j. The depen-
dences kobs vs. concentration of inhibitor are presented in the Supplementary Materials as
Figures S4 and S5. Bar-On et al. [48] studied the carbamylation of several different enzymes
by several inhibitors. The bimolecular rate constant for the carbamylation of human BChE
by rivastigmine was 9 × 104 M−1min−1, so 1000-fold higher than the results we have
achieved.

Further, the reactivation of BChE from equine serum inhibited by derivatives 5k
(5j) was studied. The procedure is described in Section 3.4. The dependence % restored
activity vs. time is shown in Figure S6 presented in the Supplementary Materials. From the
obtained results it is evident that the reactivation of BChE from equine serum inhibited
by 5k is about 30% after 24 h, while upon inhibition by 5j 37% reactivation was achieved
after 24 h. Bar-On et al. [48] studied spontaneous decarbamylation of several enzymes
inhibited by rivastigmine or N,N-ethylmethylcarbaryl chloride (EMCC). According them
the reactivation of human BChE inhibited by rivastigmine is very slow (<10% after 24 h).
In comparison, upon dilution complete and rapid reactivation of human BChE inhibited
by EMCC was observed.

2.4. Molecular Modeling Studies

In order to explain the experimental results, we performed a molecular modeling
study. Calculations were carried out in three stages and led us to the identification of
intermolecular interactions involved in the formation of different complexes. In this regard,
successive docking calculations, molecular dynamics (MD) simulations, and a per-residue
free energy decomposion analysis of each enzyme-ligand complex of both AChE and
BChE were carried out. In order to evaluate in more details the molecular interactions of
different molecular complexes, in the last stage of our study we carried out QTAIM calcula-
tions. This methodology was successfully applied in previous works [60–65]. Indeed, we
have formerly reported and described the molecular interactions established in the active
site of AChE and BChE when complexed with the well-known cholinesterase inhibitors
RIV [66,67] and galantamine [68–71] and other ligands with great structural variability,
including alkaloids [69,70], carbamates [67], 4-[(alkoxycarbonyl)amino]benzoates [66], and
N-benzyl-2-phenylethanamine derivatives [72].

From Table 1, it is noticeable that most sulfonamide derivatives studied here displayed
a strong BChE inhibitory activity. In fact, some of them showed lower IC50 values than
those obtained for RIV, the reference compound. However, some differences should be
noted considering the molecular structure of these compounds. As can be seen, inhibitory
activity increases as the substituent at R1 position varies from 5a to 5c. It appears that the
presence of an isobutyl substituent at R1 (5c, IC50 = 8.52 µM) has a significant importance
for biological effects. Notice that IC50 increases in compounds 5a and 5b (IC50 = 100.25 and
86.12 µM, respectively), bearing methyl and benzyl substituents, respectively. Nevertheless,
these considerations might not be sufficient to explain the inhibitory activity, since similar
IC50 values were obtained for compounds 5g and 5n (with a benzyl and an isobutyl group
at R1, respectively). Accordingly, substituents at R2 are worth discussing. The most active
compounds, 5c, 5j and 5k (IC50 < 10 µM), bear a benzyl or a monosubstituted benzyl ring
at R2. On the other hand, the presence of a phenyl (5d, 5g and 5n), a ethylphenyl (5f), a
benzo[1,3]dioxol (5h), or a furanyl (5m) substituent at R2, leads to a slightly lower inhibitory
activity than that of the previous compounds. Note that these derivatives displayed lower
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IC50 values than RIV as well. Lastly, either non-aromatic substituents (5e and 5i) or
disubstituted benzyl rings (5l) led to a loss of the inhibitory effects (IC50 > 58 µM).

From docking studies, we could infer that, while active compounds adopt an extended
molecular conformation within the BChE active site, derivatives with high IC50 values
are folded adopting a V-shaped conformation (Figure 1). This conformation would favor
the formation of intramolecular bonds, while reducing the possibility of establishing
intermolecular interactions with residues from the active site of the enzyme. Consequently,
either stronger or larger interactions could be expected for active compounds.

 

 

 

Figure 1. View of spatial configuration adopted by 5j (violet) and 5l (green) within the active site of 

BChE. Notice the extended conformation of 5j (IC50 = 6.57 µM) and the V-shaped conformation of 5l 

(IC50 = 55.64 µM). 

From MD simulations, the root mean square deviations (RMSDs) of backbone atoms 

of protein and ligand atoms in BChE-5k and BChE-RIV complexes are illustrated in Figure 

S1A,B (both in the Supplementary Materials), respectively. For all systems, the low devia-

tions of RMSD revealed the stabilities of the ligand-BChE complexes throughout the entire 

trajectory. Moreover, the RMSDs were distributed around 1.3–1.8 Å  for backbone atoms of 

BChE and 1.7–2.7 Å  for ligand atoms. These stable trajectories were then used to calculate 

the root mean square fluctuation (RMSF) for BChE Cα atoms (Figure S1C). The RMSF pat-

terns were similar for both systems. Notice that residues with large fluctuations are located 

in loop regions, whereas residues from the CAS were found to be stable. Both RMSD and 

RMSF results suggested the stabilities of the studied systems. 

Our calculations suggest that sulfonamide derivatives studied here and the commer-

cial drug RIV interact at the same region of the BChE active site (Figure 2A), which can be 

described as a narrow, 20 Å  long pocket. On the base of this pocket, the triad Ser226, Glu353, 

and His466, termed catalytic anionic site (CAS), is located. towards the reactive Ser226. Sim-

ilar results were obtained for all active ligands. Catalytic sites of cholinesterases have been 

studied in detail and it is well known that this serine residue plays a key role in the inhibition 

of cholinesterases mediated by carbamate-type inhibitors [48,73–75]. 

 

Figure 2. (A) Spatial view of BChE-5c (green), BChE-5k (pink) and BChE-RIV (orange) overimposed 

for comparison; (B) Active site of Equus caballus BChE when complexed with compound 5k (pink). 
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Figure 1. View of spatial configuration adopted by 5j (violet) and 5l (green) within the active site of
BChE. Notice the extended conformation of 5j (IC50 = 6.57 µM) and the V-shaped conformation of 5l
(IC50 = 55.64 µM).

From MD simulations, the root mean square deviations (RMSDs) of backbone atoms
of protein and ligand atoms in BChE-5k and BChE-RIV complexes are illustrated in Fig-
ure S1A,B (both in the Supplementary Materials), respectively. For all systems, the low
deviations of RMSD revealed the stabilities of the ligand-BChE complexes throughout the
entire trajectory. Moreover, the RMSDs were distributed around 1.3–1.8 Å for backbone
atoms of BChE and 1.7–2.7 Å for ligand atoms. These stable trajectories were then used to
calculate the root mean square fluctuation (RMSF) for BChE Cα atoms (Figure S1C). The
RMSF patterns were similar for both systems. Notice that residues with large fluctuations
are located in loop regions, whereas residues from the CAS were found to be stable. Both
RMSD and RMSF results suggested the stabilities of the studied systems.

Our calculations suggest that sulfonamide derivatives studied here and the commer-
cial drug RIV interact at the same region of the BChE active site (Figure 2A), which can
be described as a narrow, 20 Å long pocket. On the base of this pocket, the triad Ser226,
Glu353, and His466, termed catalytic anionic site (CAS), is located. towards the reactive
Ser226. Similar results were obtained for all active ligands. Catalytic sites of cholinesterases
have been studied in detail and it is well known that this serine residue plays a key role in
the inhibition of cholinesterases mediated by carbamate-type inhibitors [48,73–75].
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Figure 2. (A) Spatial view of BChE-5c (green), BChE-5k (pink) and BChE-RIV (orange) overimposed for comparison; (B)
Active site of Equus caballus BChE when complexed with compound 5k (pink).

From Figure 2B, it is possible to observe that active compound 5k is deeply buried
into the active site gorge. It is important to note that the carbamate moiety is favorably
oriented.

Figure 3 shows the histogram of the interaction energies obtained for BchE-5c, BChE-5j,
and BChE-5k complexes. The histogram obtained for BChE-RIV is also included for
comparison. As it can be seen, the main interactions stabilizing these complexes are
with the following amino acid residues: Trp110, Gly144, Thr148, Glu225, Ser226, Trp259,
Ser315, Phe357, Asn425, and His466. These interactions have been previously reported
by our group for other carbamate derivatives showing butyrylcholinesterase inhibitory
activity [67,72]. Notice that interactions that contribute to the BChE complexes formation of
the most active ligands are identical to those established by RIV at the active site of BChE.
In fact, 5c, 5j, and 5k displayed interaction energy values with Ser226 ranging from −2.5 to
−2 Kcal/mol. These values are comparable to that obtained for BChE-RIV complex.

Conversely, less active compounds established weaker interactions with BChE than
those discussed above. This behavior can be evaluated in Figure 4, which shows the
histograms of compounds 5c (IC50 = 8.52 µM) and 5e (IC50 = 58.94 µM) overlaid for
comparison. Remarkable differences can be observed for interaction with Trp110, Thr148,
Glu225, Ser226, and Ser315, some of the most important interactions displayed by active
compounds. In addition, interactions with Trp259 and Phe357, located near the surface
of the pocket, increased in the case of compound 5e. An interesting detail that appears
from the analysis of the partitioned free energy is that inactive compound 5e interacts
with residues Met109, Ala356, and Tyr360 that are not present in BChE-5c. Analogously,
interactions with Thr148, Gly149, Thr150, and Leu153 from BChE-5c may either have higher
values or be absent in BChE-5e. The lack of the last interactions might be related to the
V-shaped conformation adopted by inactive compounds, which causes interactions of the
sulfonamide moiety of these derivatives (R2) with different regions of the enzyme active
site. Similar results were obtained for the rest of the ligands with IC50 values higher than
those of rivastigmine.

Considering AChE inhibition, all ligands displayed higher IC50 values than RIV and
only compound 5d exhibited a comparable inhibition. These results could be expected,
because large compounds, bearing bulky substituents and exhibiting inhibitory activity
against BChE, usually do not display biological effects on AChE. This could be explained,
since, although both enzymes share almost 60% of their amino acid sequence, their active
sites differ in some key residues [48]. Particularly, the bulkier aromatic residues Tyr121 and
Phe330 in AChE are playing a similar role as Gln147 and Ala356 of the BChE active site.
These two aromatic amino acids constitute the bottleneck region of the AChE active site,
resulting in a very narrow area in the gorge that limits the size of ligands that can access the
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bottom of the active site. As a result, since the BChE active site presents a lower number of
aromatic residues in its binding pocket, this enzyme possesses a larger accessible area than
AChE. This explains, at least in part, why despite the fact that cholinesterases show similar
responses to classical inhibitors, in cases of bulkier compounds, selectivity for BChE over
AChE generally appears.
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when complexed with compounds 5c (A), 5j (B), 5k (C), and RIV (D). The X-axis denotes the residue
number of BChE, and the Y-axis denotes the interaction energy between the compound and a specific
residue. Negative and positive values are favorable or unfavorable for binding, respectively.
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Figure 4. Histogram of interaction energies partitioned with respect to BChE amino acid sequence
when complexed with compounds 5c (blue) and 5e (red) overlaid for comparison. The X-axis denotes
the residue number of BChE, and the Y-axis denotes the interaction energy between the compound
and a specific residue. Negative and positive values are favorable or unfavorable for binding,
respectively.

In Figure 5, the spatial view of compounds 5d and 5k within the active site of AChE is
shown. These derivatives represent the most and the least active compounds of the whole
series. For comparison, we have also included a spatial view of RIV in this figure; the data
for the coordinates of this molecule were taken from our previously reported article [66]. It
is evident that compound 5d interacts with active site residues in a completely different
manner than 5k. Similarly to the results obtained for BChE, active compound 5d adopts an
extended conformation, being able to reach the bottom of the active site thus efficiently
interacting with the catalytic triad. As can be seen, even though the spatial conformations
of 5d and RIV are not exactly the same, the carbamate group is located in the same region.
Thus, the carbamate group of 5d is properly positioned to generate an interaction with
the catalytic serine residue, Ser200. On the contrary, 5k adopts a V-shape conformation as
discussed for BChE inactive ligands. Furthermore, 5k is shifted towards the surface of the
pocket and, therefore, it interacts with residues from the peripheral anionic site and the
bottleneck region.
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This behavior might be better evaluated in Figure 6. The histogram of the interac-
tion energy of compound 5d shows an interaction pattern similar to that of the refer-
ence compound. In particular, interactions with Trp84, Gly118, Ser200, Phe290, Phe330,
and His440 are the main interactions observed in AChE-5d and AChE-RIV complexes
(compare Figure 6A,B). In contrast, the histogram of 5k demonstrates that no interaction
with Ser200 takes place in the active site (Figure 6C). Furthermore, the main stabilizing
interactions in AChE-5k complex are those with Asp72, Trp279, Tyr334 (peripheral anionic
site), Tyr121, and Phe330 (bottleneck region). Identical results were obtained for the rest of
the compounds.
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Figure 6. Histogram of interaction energies partitioned with respect to AChE amino acid sequence
when complexed with compound 5d (A), RIV (B), and compound 5k (C). The X-axis denotes the
residue number of BChE, and the Y-axis denotes the interaction energy between the compound and a
specific residue. Negative and positive values are favorable or unfavorable for binding, respectively.

One of the major differences between the histograms in Figure 6A,B is the presence of
a strong interaction of residue Phe75 with the sulfonamide derivative, which is notably
weaker for AChE-RIV (−3.19 Kcal/mol vs. −0.13 Kcal/mol). This interaction might
be of significant importance for the sulfonamide compounds studied here and could be
associated to a π-stacking interaction between the aromatic ring of Phe75 and the phenyl
substituent at R2 in 5d (Figure 7). This interaction might be crucial for the ligands to
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adopt a biologically active conformation within the active site. This could explain the
dissimilar IC50 value obtained for compound 5e. Notice that this compound, despite
being structurally much smaller, is about twice less active than 5d. Furthermore, the N-
phenylsulfonamide moiety is located in a spatial region with very limited available space
due to steric factors (Figure 7). Consequently, any substituent that increases the size of this
portion of the ligand molecule will cause the inability of the aromatic ring to interact on
this hindered zone, especially with Phe75. In this way, a decrease in the inhibitory activity
would occur. This might be the case of compound 5k, bearing an o-methoxybenzyl ring
at R2.
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Figure 7. Two different representations of the active site of Torpedo californica AChE when complexed with compound 5d
(green). The gorge of the enzyme is depicted by its molecular surface in (semi-transparent) gray. The Phe75 residue is
depicted in yellow. The amino acid residues from the catalytic triad are also shown.

QTAIM Calculations

Previously we have used QTAIM calculations as a complementary technique for
dynamic approaches. We have proved that QTAIM calculations are a useful tool in the
study of enzyme-ligand complexes with different structural complexity, since they provide
accurate information of molecular interactions that take part in complexes formation [62].
In addition, we have recently applied this technique to the study of different complexes of
both AChE and BChE [66,67]. Based on those results, we carried out a QTAIM study for
compounds 5c and 5k, both with high inhibitory effect against BChE.

The active site of cholinesterases has two binding sites: the catalytic anionic site
(CAS, at the bottom of the gorge) and the peripheral anionic site (PAS, near the surface).
Furthermore, CAS can be sub-divided into two regions termed esteratic and anionic
subsites. As reaction occurs, the substrate interacts with residues that form the esteratic
subsite (CAS-esteratic), where the catalytic triad is located. At the same time, interactions
with the anionic subsite (CAS-anionic), which borders the gorge leading to the active site,
are also formed. In a recent article [67], we proposed that a combination of both interactions
with the catalytic site and strong interactions with the peripheral anionic site might be
beneficial for the inhibitory effect of carbamate-type ligands. In this regard, the stacked
bars in Figure 8 show a dissected view of the anchoring of sulfonamide derivatives to the
different sites within the BChE pocket. In both cases, it is possible to observe that the main
stabilizing interactions are with amino acids from the CAS-esteratic. In turn, interactions
with the CAS-anionic residues resulted in similar Σρ values. On the contrary, 5k displayed
stronger interactions with residues from the PAS than 5c. This behaviour might be related
to the higher inhibitory effect displayed by 5k. Although a slightly higher total Σρ value
was obtained for 5c, the molecular structure of 5k and its conformation within the complex
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would lead to more effective interactions, since a considerable anchoring to both CAS and
PAS is possible. 
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Figure 8. Sum of charge density values at intermolecular bond critical points between BChE and
the selected compound. The total height of stacked bars indicates the overall anchoring strength
of compounds within the active site. The CAS is devided into the catalytic esteratic subsite (CAS-
esteratic) and the catalytic anionic subsite (CAS-anionic).

Charge density molecular graphs of 5c and 5k complexed with BChE are shown in
Figure 9. As can be seen, both ligands are capable of reaching the bottom of the gorge, thus
interacting within the active site of BChE in a similar manner. The benzyl carbamate moiety
is located at the bottom of the gorge. Therefore, this aromatic ring establishes several
hydrophobic interactions with neighbouring residues, such as Gly145, Leu314, Ser315,
Val316, Phe357, and Asn425. Additionally, a strong π-stacking interaction with Trp259 is
formed. Simultaneously, the second aromatic ring from the sulfonamide moiety (R2) is
surrounded by Trp110, Tyr142, Gly144, Thr148, Leu153, Tyr156, and Glu225. Consequently,
several hydrophobic O···H and S···H interactions with non-polar hydrogen atoms can
be observed. Considering the isobutyl chain at R1, similar hydrophobic interactions are
established with Ala356, Phe357, Trp458, and Met465.
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Figure 9. Charge density molecular graph of compounds 5c (A, pink) and 5k (B, green) at the gorge of BChE. Residues
from active site are shown in grey. Topological elements of charge density associated with intermolecular interactions are
depicted with yellow lines (bond paths) and small red spheres (bond critical points).
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All these interactions lead to anchoring of compounds 5c and 5k within the active site
of the enzyme. Furthermore, it should be pointed out that this conformation results in the
favourable orientation of the carbamate group, which faces the catalytic Ser226. Notice that
carbamoyl oxygen atom is H-bonded to the serine residue. Moreover, a second H-bond
is formed between the NH of the carbamate group and the N atom of the imidazole ring
from His466. Our calculations agree with cholinesterase inhibition data, which enable us
to explain the biological activity of compounds considered in this work.

2.5. Cytotoxicity Evaluation and ADME Predictions

To evaluate the general safety of the tested compounds, the cytotoxic effect on human
monocytic leukemia THP-1 cell line was measured. Although this cell line is relatively sen-
sitive to different types of xenobiotics, used AChE and BChE inhibitors did not significantly
influence the relative cell viability at the concentration of 20 µM. At this concentration, the
relative cell viability was still above 85%. It indicates that the most potent BChE inhibitors
with IC50 < 10 µM could be safe for further cell-based in vitro and in vivo analysis.

The ADME (the abbreviation for absorption, distribution, metabolism, and excre-
tion) properties of compounds characterizing pharmacokinetics are as important as the
biological effect of a drug [76–79]. Physicochemical properties affecting permeability, bioac-
cumulation in cells, binding to the target site, and biotransformation belong to the area
of quantitative structure–property relationships (QSPR) and are influenced by chemical
composition [78–82]. In this context, it is necessary to mention Lipinsky’s rule of five (Ro5),
which has become one of the most important rules used in the design of bioactive agents,
and the parameters listed in it are among the recognized criteria affecting ADME and
bioactivity [78,79,82–84].

Ro5 contains the limits of specific molecular descriptors (see Table 2) determined on
the basis of experimentally and statistically obtained results [83,84]. A biologically active
compound that meets these criteria has a higher chance of becoming a drug (it meets the
concept of druglikeness). Table 2 lists the Ro5 parameters of selected most pronounced
BChE inhibitors 5c, 5f, 5j, 5k, and 5n as well as some other most used criteria. All the
parameters were predicted using ACD/Percepta (Advanced Chemistry Development. Inc.,
Toronto, ON, Canada, 2012) and are compared with those of rivastigmine and galantamine.

Based on the predicted in silico data presented in Table 2, it can be stated that all
the investigated compounds meet the Ro5 requirements. Compared to both drugs, the
investigated compounds contain a greater number of heretoatoms, which is reflected in
the significantly higher polar surface area (TPCA). On the other hand, they have a higher
predicted lipophilicity (logP) than both drugs, so they are expected to show sufficient
intestinal permeability when administered orally. RIV is a strong base, and drugs of this
type are mostly bound to α1-acid glycoprotein in plasma; but some also interact with
human serum albumin. Galantamine is a zwitterionic compound, and such molecules bind
to most plasma proteins. On the other hand, all the investigated compounds are acidic
compounds; in plasma, this type of molecules binds predominantly to albumin, which
corresponds to the values of logKa

HSA (the parameter represents the binding constant
between the compound and human serum albumin (HSA)) and %PPB. It should be noted
that the calculated data suggest that the studied compounds may bind to plasma proteins
with a high binding ratio. As is known, serum protein prefers the binding of weakly acidic
compounds. These compounds are hydrophobic in nature, so they are expected to bind
mainly to fat-soluble proteins but would not interact well with serum albumin. According
to the predicted indicators of permeation through the blood-brain barrier (logPS, logBB), it
is assumed that the penetration of the tested compounds into the brain will be sufficient
for the CNS activity.
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Table 2. Values of parameters predicted using ACD/Percepta ver. 2012 and characterizing the properties of selected most
pronounced BChE inhibitors in comparison with rivastigmine and galantamine in relation to Lipinski’s Rule of Five (Ro5)
and some other selected criteria.
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3. Materials and Methods
3.1. General

All reagents and solvents were purchased from commercial sources (TCI Europe,
Sigma-Aldrich, Acros Organics, Fluorochem, Merck, Lach-Ner). Commercial grade reagents
were used without further purification. Reactions were monitored by thin layer chromatog-
raphy plates coated with 0.2 mm silica gel 60 F254 (Merck). TLC plates were visualized by
UV irradiation (254 nm) or in a 5% solution of phosphomolybdic acid in ethanol. Melting
points were determined on a Melting Point B-540 apparatus (Büchi, Switzerland) and are
uncorrected. The IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer (Thermo
Fisher Scientific, Wal-tham, MA, USA) over the range of 400-4000 cm-1 using the ATR
technique. The NMR spectra were measured in CDCl3 solutions at ambient temperature
on a Bruker AvanceTM III 400 spectrometer at frequencies of 1H (400 MHz) and 13C
(100.26 MHz) or Bruker AscendTM 500 spectrometer at frequencies 1H (500.13 MHz), 13C
(125.76 MHz). The chemical shifts, δ, are given in ppm, related to the residual solvent peak
CDCl3 - 7.27. The coupling constants (J) are reported in [Hz]. Elemental analyses (C, H, N)
were performed on an automatic microanalyser Flash 2000 Organic elemental analyser.
High-resolution mass spectrometry was performed by the “dried droplet” method using
an LTQ Orbitrap XL MALDI mass spectrometer (Thermo Fisher Scientific) equipped with a
nitrogen UV laser (337 nm, 60 Hz). Spectra were measured in positive ion mode and in
regular mass extent with a resolution of 100 000 at m/z = 400. 2,5-Dihydrobenzoic acid
(DBH) was used as the matrix.



Int. J. Mol. Sci. 2021, 22, 9447 17 of 30

3.2. Chemistry
3.2.1. General Experimental Procedure for the Synthesis of N-Cbz Alcohols 2a–c

To a solution of N-Cbz α-amino acid 1 (2 g, 6.68 mmol) in 1,2-dimethoxyethane
(10 mL), N-methyl morpholine (0.68 g, 6.68 mmol) and isobutylchloroformate (0.913 g,
6.68 mmol) were added at −15 ◦C. After some time, a white precipitate was generated,
which was removed by vacuum filtration and washed with DME (5 × 2 mL). The filtrate
and washings were combined in a large beaker in an ice salt bath. A solution of NaBH4
(0.379 g, 10.02 mmol) in 5 mL water was added in one portion to the beaker, which produced
a strong evolution of gas, and immediately water (250 mL) was added. After some time, a
white precipitate occurred and was collected by vacuum filtration and washed with water
and n-hexane to afford the product 2a in 96% yield. In other cases (compounds 2b, 3b), the
compound was extracted with ethyl acetate and purified by a classical aqueous work-up
to afford 91% and 88% yields, respectively. Benzyl (S)-(1-hydroxypropan-2-yl)carbamate (2a):
White solid; yield 96%; mp 93–95 ◦C; Rf (hex/EtOAc–1/1) = 0.53. IR (ATR): 3347, 3035,
2956, 2879, 1690, 1533, 1464, 1454, 1311, 1251, 1215, 1140, 1012, 741, 698 cm−1. 1H-NMR
(400 MHz, CDCl3): δ 7.44–7.34 (7H, m, Ar-H), 7.29 (3H, q, J = 7.2 Hz, Ar-H), 5.32–5.14 (3H,
ABq, J = 8.8 Hz, O-CH2-Ph, NH-CH-CH2-Ph), 4.02 (1H, s, NH-CH-CH2-Ph), 3.73 (1H, d,
J = 8.8 Hz, CHH-OH), 3.63 (1H, d, J = 9.6 Hz, CHH-OH), 2.92 (2H, d, J = 6.8 Hz, NH-CH-
CH2-Ph), 2.44 (1H, s, CH2-OH). 13C-NMR (100 MHz, CDCl3): δ 156.7, 137.8, 136.5, 129.5,
128.8, 128.7, 128.4, 128.3, 126.8, 67.0, 64.1, 54.3, 37.5. CHN analysis: Calc. for C17H19NO3
(285.34): C, 71.56; H, 6.71; N, 4.91. Found: C, 71.87 ± 0.03; H, 6.82 ± 0.02; N, 4.73 ± 0.02.
HRMS: m/z calc. C17H19NO3: 286.14377 [M + H]+; 308.12571 [M + Na]+; found: 286.14440
[M + H]+; 308.12640 [M + Na]+.

Benzyl (S)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (2b): Colorless oil; yield 91%; Rf (hex/
EtOAc–1/1) = 0.58. IR (ATR): 3329, 3065, 3035, 2952, 2871, 1686, 1586, 1530, 1466, 1453, 1384,
1333, 1288, 1263, 1225, 1172, 1079, 1007, 966, 750, 695 cm−1. 1H-NMR (400 MHz, CDCl3): δ
7.34–7.29 (5H, m, Ar-H), 5.11–5.02 (2H, ABq, J = 12 Hz, O-CH2-Ph), 4.89 (1H, s, NH-CH-
CH2-CH-(CH3)2), 3.78–3.73 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.64 (1H, dd, J = 3.6 Hz, J
= 11.2, CHH-OH), 3.49 (1H, dd, J = 5.6 Hz, J = 10.8 Hz, CHH-OH), 2.64 (1H, t, J = 36 Hz,
CH2-OH), 1.68–1.58 (1H, m, CH3-CH-CH3), 1.37–1.24 (2H, m, NH-CH-CH2-CH-(CH3)2),
0.90 (6H, d, J = 6.8 Hz, CH3-CH-CH3 ). 13C-NMR (100 MHz, CDCl3): δ 157.0, 136.5, 128.7,
128.4, 128.3, 67.1, 66.2, 51.7, 40.7, 24.9, 23.2, 22.3. CHN analysis: Calc. for C14H21NO3
(251.32): C, 66.91; H, 8.42; N, 5.57. Found: C, 66.77 ± 0.04; H, 8.56 ± 0.01; N, 5.77 ± 0.01.
HRMS: m/z calc. C14H21NO3: 252.15942 [M + H]+; 274.14136 [M + Na]+; found: 252.15975
[M + H]+; 274.14171 [M + Na]+.

Benzyl (S)-(1-hydroxy-4-methylpentan-2-yl)carbamate (2c): Faint yellow solid; yield 88%; mp
80–82 ◦C; Rf (hex/EtOAc–1/1) = 0.53. IR (ATR): 3451, 3322, 2978, 2960, 2906, 1726, 1691,
1658, 1540, 1499, 1473, 1332, 1251, 1131, 1083, 965, 748, 692 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.35–7.27 (5H, m, Ar-H), 5.06 (3H, t, J = 12.4 Hz, O-CH2-Ph, NH-CH-CH3),
3.83–3.76 (1H, m, NH-CH-CH3), 3.61 (1H, dd, J = 3.2 Hz, J = 11.2 Hz, CHH-OH), 3.47 (1H,
dd, J = 5.6 Hz, J = 10.4 Hz, CHH-OH), 2.79 (1H, ABs, CH2-OH), 1.12 (3H, d, J = 6.8 Hz,
NH-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 156.8, 136.5, 128.8, 128.7, 128.3, 67.0, 66.9,
49.2, 17.4. CHN analysis: Calc. for C11H15NO3 (209.24): C, 63.14; H, 7.23; N, 6.69. Found:
C, 62.75 ± 1.85; H, 7.18 ± 0.24; N, 6.40 ± 0.20. HRMS: m/z calc. C11H15NO3: 210.11247
[M + H]+; 232.09441 [M + Na]+; found: 210.11275 [M + H]+; 332.09474 [M + Na]+.

3.2.2. General Experimental Procedure for the Synthesis of Mesylates 3a–c

To the solution of compound 2 (1.6 g, 5.60 mmol) in DCM, Et3N (0.680 g, 6.72 mmol)
was added. The reaction mixture was cooled down to 0 ◦C; then methane sulfonyl chloride
(0.770 g, 6.72 mmol) was added dropwise; and the reaction mixture was stirred at room
temperature for 24 h. The solution was washed successively with 5% citric acid (10 mL),
water (10 mL) and brine (10 mL). The organic layer was dried over Na2SO4 and concen-
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trated. The crude product was purified by column chromatography using n-hexane:ethyl
acetate (3:1) as eluent to obtain the products in 81–90% yield.

(S)-2-{[(benzyloxy)carbonyl]amino}propyl methanesulfonate (3a): White solid; yield 90%;
mp 120–123 ◦C; Rf (hex/EtOAc–1/1) = 0.58. IR (ATR): 3339, 3063, 3026, 2943, 1692, 1602,
1533, 1494, 1452, 1440, 1346, 1270, 1241, 1182, 985, 850, 745, 698 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.32–7.26 (7H, m, Ar-H), 7.22–7.20 (1H, m, Ar-H), 7.15 (2H, d, J = 7.2 Hz, Ar-H),
5.03 (3H, s, O-CH2-Ph, NH-CH-CH2-Ph), 4.22–4.19 (1H, m, NH-CH-CH2-Ph), 4.12–4.06
(2H, m, CH2-O-SO2-CH3), 2.89 (3H, s, SO2-CH3), 2.87–2.79 (2H, m, NH-CH-CH2-Ph). 13C-
NMR (100 MHz, CDCl3): δ 155.9, 136.5, 136.4, 129.4, 129.0, 128.8, 128.5, 128.3, 128.3, 69.7,
67.1, 51.6, 37.4, 37.3. CHN analysis: Calc. for C18H21NO5S (363.43): C, 59.49; H, 5.82; N,
3.85, S, 8.82. Found: C, 60.16 ± 0.04; H, 6.04 ± 0.02; N, 4.78 ± 0.07, S, 8.41 ± 0.29. HRMS:
m/z calc. C18H21NO5S: 364.12132 [M + H]+; 386.10326 [M + Na]+; found: 364.12232 [M +
H]+; 386.10433 [M + Na]+.

(S)-2-{[(benzyloxy)carbonyl]amino}-3-phenylpropyl methanesulfonate (3b): Colorless oil;
yield 86%; Rf (hex/EtOAc–1/1) = 0.23. IR (ATR): 3027, 2957, 2934, 2871, 1723, 1511, 1468,
1452, 1356, 1332, 1251, 1168, 1065, 1027, 976, 896, 762, 669 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.34–7.28 (5H, m, Ar-H), 5.11–5.04 (2H, ABq, J = 12 Hz, O-CH2-Ph), 4.86 (1H, d, J
= 8 Hz, NH-CH-CH2-CH-(CH3)2), 4.25 (1H, dd, J = 3.6 Hz, J = 10 Hz, CHH-O-SO2CH3),
4.13 (1H, dd, J = 4.4 Hz, J = 10.4 HZ, CHH-O-SO2-CH3), 4.01–3.94 (1H, s, NH-CH-CH2-
CH-(CH3)2), 2.92 (3H, s, SO2-CH3), 1.69–1.61 (1H, m, CH3-CH-CH3), 1.47–1.40 (1H, m,
NH-CH-CHH-CH-(CH3)2), 1.37–1.30 (1H, m, NH-CH-CHH-CH-(CH3)2), 0.91 (6H, d, J =
6.4 Hz, CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 156.1, 136.5, 128.8, 128.4, 128.3, 71.5,
67.1, 48.7, 40.2, 37.4, 24.8, 23.1, 22.1. CHN analysis: Calc. for C15H23NO5S (329.41): C, 54.69;
H, 7.04; N, 4.25, S, 9.73. Found: C, 55.00 ± 0.03; H, 7.14 ± 0.03; N, 4.02 ± 0.01, S, 8.94 ±
0.35. HRMS: m/z calc. C15H23NO5S: 330.13697 [M + H]+; 352.11891 [M + Na]+; 368.09285
[M + K]+; found: 330.13762 [M + H]+; 352.11966 [M + Na]+; 368.09367 [M + K]+.

(S)-2-{[(benzyloxy)carbonyl]amino}-4-methylpentyl methanesulfonate (3c): Faint yellow solid;
yield 81%; mp 98–100 ◦C; Rf (hex/EtOAc–1/1) = 0.44. IR (ATR): 3370, 3034, 2991, 2942,
2849, 1689, 1655, 1519, 1469, 1452, 1342, 1243, 1169, 1081, 1055, 961, 931, 836, 750, 696
cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.36–7.29 (5H, m, Ar-H), 5.07 (2H, s, O-CH2-
Ph), 4.95 (1H, d, J = 6 Hz, NH-CH-CH3), 4.24–4.19 (1H, m, NH-CH-CH3), 4.13 (1H, dd,
J = 4 Hz, J = 9.6 Hz, CHH-O-SO2-CH3), 4.02 (1H, d, J = 3.2 Hz, CHH-O-SO2-CH3), 2.94 (3H,
s, SO2-CH3), 1.22 (3H, d, J = 6.8 Hz, NH-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 150.5,
131.1, 123.5, 123.2, 123.1, 66.6, 61.8, 41.0, 32.2, 12.0. CHN analysis: Calc. for C12H17NO5S
(287.33): C, 50.16; H, 5.96; N, 4.87, S, 11.16. Found: C, 50.79 ± 0.11; H, 6.04 ± 0.01; N,
4.61 ± 0.07, S, 10.38 ± 0.05. HRMS: m/z calc. C17H19NO3: 310.07196 [M + Na]+; 326.04560
[M + K]+; found: 310.07250 [M + Na]+; 326.04649 [M + K]+.

3.2.3. General Experimental Procedure for the Synthesis of Thioacetates 4a–c

To a suspension of Cs2CO3 (0.550 g, 1.68 mmol) in DMF, thioacetic acid (0.232 g,
3.0 mmol) was added under an argon atmosphere; after some time, compound 3 (0.920 g,
2.53 mmol) was added in one portion to the reaction mixture. The mixture was stirred for
overnight, during which the reaction flask was covered with aluminum foil. The reaction
mixture was poured into distilled water and extracted with ethyl acetate (3 × 50 mL). The
combined organic layers were washed with water (60 mL), NaHCO3(5% w/w 60 mL), and
brine (30 mL) and dried over sodium sulfate. The crude product was purified using column
chromatography (silica gel eluted with 25% ethyl acetate in n-hexane) to give compounds
4a–c (yields: 75–90%).
(S)-SO-(2-{[(benzyloxy)carbonyl]amino}propyl) ethane(thioperoxoate) (4a): White solid; yield
87%; mp 86–89 ◦C; Rf (hex/EtOAc–1/1) = 0.46. IR (ATR): 3361, 3061, 2989, 2913, 1690,
1686, 1524, 1461, 1422, 1349, 1270, 1243, 1054, 959, 752, 698 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.35–7.25 (7H, m, Ar-H), 7.23–7.15 (3H, m, Ar-H), 5.05 (2H, s, O-CH2-Ph),
4.89 (1H, d, J = 8 Hz, NH-CH-CH2-Ph), 4.11–3.99 (1H, m, NH-CH-CH2-Ph), 3.06 (1H,
dd, J = 4.8 Hz, J = 14 Hz, CHH-S), 2.98–2.89 (2H, m, NH-CH-CH2-Ph), 2.78 (1H, dd,
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J = 7.2 Hz, J = 13.6, CHH-S), 2.30 (3H, s, S-CO-CH3). 13C-NMR (100 MHz, CDCl3): δ

196.0, 156.0, 146.5, 137.3, 129.5, 128.8, 128.7, 128.3, 128.2, 127.0, 66.8, 52.7, 40.6, 32.9, 30.8.
CHN analysis: Calc. for C19H21NO3S (343.44): C, 66.45; H, 6.16; N, 4.08, S, 9.34. Found: C,
66.38 ± 0.13; H, 6.39 ± 0.04; N, 3.72 ± 0.01, S, 9.00 ± 0.13. HRMS: m/z calc. C19H21NO3S:
344.13149 [M + H]+; 366.11344 [M + Na]+; 382.08737 [M + K]+; found: 344.13237 [M + H]+;
366.11438 [M + Na]+; 382.08841 [M + K]+.

(S)-SO-(2-{[(benzyloxy)carbonyl]amino}-3-phenylpropyl) ethane(thioperoxoate) (4b): Brown solid;
yield 90%; mp 56–58 ◦C; Rf (hex/EtOAc–1/1) = 0.62. IR (ATR): 3347, 3063, 2958, 2912,
2843, 1683, 1650, 1530, 1466, 1330, 1289, 1272, 1249, 1123, 1100, 1032, 952, 744, 696
cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.33–7.28 (5H, m, Ar-H), 5.11–5.02 (2H, ABq,
J = 12.4, Hz, O-CH2-Ph), 4.64 (1H, d, J = 8.4 Hz, NH-CH-CH2-CH-(CH3)2), 3.92–3.84
(1H, m, NH-CH-CH2-CH-(CH3)2), 3.09 (1H, dd, J = 4.8 Hz, J = 14 Hz, CHH-S), 2.96 (1H, dd,
J = 7.2 Hz, J = 13.6 Hz, CHH-S), 2.28 (3H, s, S- CO-CH3), 1.68–1.58 (1H, m, CH3-CH-CH3),
1.39–1.23 (2H, m, NH-CH-CH2-CH-(CH3)2), 0.89 (6H, d, J = 6.4 Hz, CH3-CH-CH3). 13C-
NMR (100 MHz, CDCl3): δ 196.0, 156.2, 136.7, 128.7, 128.3, 128.2, 66.8, 49.5, 43.8, 34.4, 30.8,
25.1, 23.2, 22.3. CHN analysis: Calc. for C16H23NO3S (309.42): C, 62.11; H, 7.49; N, 4.53, S,
10.36. Found: C, 62.54 ± 0.12; H, 7.79 ± 0.03; N, 4.50 ± 0.02, S, 9.53 ± 0.13. HRMS: m/z
calc. C16H23NO3S: 310.14714 [M + H]+; 332.12909 [M + Na]+; 348.10302 [M + K]+; found:
310.14768 [M + H]+; 332.12966 [M + Na]+; 348.10358 [M + K]+.

(S)-SO-(2-{[(benzyloxy)carbonyl]amino}-4-methylpentyl) ethane(thioperoxoate) (4c): Dark brown
solid; yield 75%; mp 64–65 ◦C; Rf (hex/EtOAc–1/1) = 0.38. IR (ATR): 3311, 3056, 3035, 2977,
2926, 1679, 1532, 1466, 1453, 1327, 1262, 1117, 1075, 964, 775, 696 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.36–7.28 (5H, m, Ar-H), 5.10 (2H, s, O-CH2-Ph), 4.90 (1H, s, NH-CH-CH3), 3.93
(1H, d, J = 6 Hz, NH-CH-CH3), 3.06 (2H, s, CH2-S), 2.34 (3H, s, S-CO-CH3), 1.21 (3H, d, J
= 6.4 Hz, NH-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 195.9, 155.9, 136.7, 128.7, 128.3,
128.3, 66.8, 47.3, 35.1, 30.8, 20.3. CHN analysis: Calc. for C13H17NO3S (267.34): C, 58.40; H,
6.41; N, 5.24, S, 11.99. Found: C, 58.49 ± 0.01; H, 6.54 ± 0.02; N, 4.14 ± 0.03; S, 13.61 ± 0.05.
HRMS: m/z calc. C13H17NO3S: 290.08214 [M + Na]+; found: 290.08253 [M + Na]+.

3.2.4. General Experimental Procedure for the Synthesis of the Investigated Sulfonates
5a–5n

NCS (2.5 g, 19.3 mmol) was dissolved in a cooled (0 ◦C) mixture of HCl (2 M solution,
1.2 mL) and ACN (20 mL) and stirred for 30 min. Thioacetate 4 (1.5 g, 4.84 mmol) was
dissolved in can, added to the reaction mixture, and stirred for 60 min at room temperature.
ACN was evaporated, and crude product was dissolved in ethyl acetate, extracted with
sat. NaHCO3 and brine and dried over sodium sulfate. The crude product was utilized
immediately in the next step without purification.

Under an argon atmosphere, DIPEA (0.805 g, 6.23 mmol) and the primary amine (1.1
eq) were dissolved in DCM at 0 ◦C and stirred for 1 h. Sulfonyl chloride (1.6 g, 4.79 mmol)
was dissolved in DCM and added to the reaction mixture flask at 0 ◦C. The reaction mixture
was stirred for 24 h at room temperature and then extracted with water (3 × 50 mL). The
collected organic phase was washed with brine and dried over sodium sulfate. The crude
product was purified by column chromatography using n-hexane: ethyl acetate (3:1). Yields:
79–87%.

Benzyl [(2S)-1-(benzylsulfamoyl)propan-2-yl]carbamate (5a): White solid; yield 82%; mp 127–
128 ◦C; Rf (hex/EtOAc–1/1) = 0.35. IR (ATR): 3288, 3066, 3031, 2987, 2932, 2874, 1722,
1687, 1659, 1606, 1575, 1541, 1495, 1472, 1461, 1359, 1334, 1301, 1257, 1134, 1100, 1072, 1052,
961, 894, 867, 748, 692 cm−1. 1H-NMR (500 MHz, CDCl3): δ 7.28–7.19 (10H, m, Ar-H),
5.47 (1H, s, NH-SO2), 5.08 (1H, d, J = 8 Hz, NH-CH-CH3), 5.03–4.97 (2H, ABq, J = 13 Hz,
O-CH2-Ph), 4.20 (2H, d, J = 4.5 Hz, NH-CH2-Ph), 4.02–3.97 (1H, m, NH-CH-CH3), 3.05
(1H, dd, J = 8 Hz, J = 14.5 Hz, CHH-SO2), 2.83 (1H, dd, J = 4 Hz, J = 14 Hz, CHH-SO2),
1.12 (3H, d, J = 7 Hz, NH-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 156.3, 137.1, 136.3,
129.1, 129.0, 128.8, 128.4, 128.3, 128.3, 67.2, 58.0, 47.4, 43.8, 20.9. CHN analysis: Calc.
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for C18H22N2O4S (362.44): C, 59.65; H, 6.12; N, 7.73, S, 8.85. Found: C, 60.02 ± 0.73; H,
6.16 ± 0.03; N, 7.19 ± 0.04; S, 7.60 ± 0.18. HRMS: m/z calc. C18H22N2O4S: 385.11925
[M + Na]+; found: 385.12011 [M + Na]+.

Benzyl [(2S)-1-(benzylsulfamoyl)-3-phenylpropan-2-yl]carbamate (5b): White solid; yield 84%;
mp 157–158 ◦C; Rf (hex/EtOAc–1/1) = 0.42. IR (ATR): 3304, 3063, 2927, 2855, 1692, 1662,
1602, 1586, 1539, 1495, 1453, 1353, 1321, 1299, 1261, 1131, 1082, 1044, 907, 867, 846, 746,
694 cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.48–7.26 (15H, m, Ar-H), 5.65 (1H, t, J = 7.2
Hz, NH-SO2), 5.33 (1H, d, J = 8.4 Hz, NH-CH-CH2-Ph), 5.17 (2H, t, J = 6.8 Hz, O-CH2-
Ph,), 4.39–4.31 (3H, m, NH-CH-CH2-Ph, NH-CH2-Ph), 3.27 (1H, dd, J = 7.6 Hz, J = 14 Hz,
CHH-SO2), 3.13 (1H, dd, J = 3.6 Hz, J = 14 Hz, CHH-SO2), 2.95 (2H, dd, J = 7.2 Hz, J =
13.2 Hz, NH-CH-CH2-Ph). 13C-NMR (100 MHz, CDCl3): δ 156.6, 137.1, 136.5, 136.4, 129.5,
129.1, 129.0, 128.7, 128.4, 128.3, 128.3, 128.2, 127.3, 67.2, 55.5, 49.0, 47.4, 40.4. CHN analysis:
Calc. for C24H26N2O4S (438.54): C, 65.73; H, 5.98; N, 6.39, S, 7.31. Found: C, 66.14 ± 0.15;
H, 6.04 ± 0.02; N, 6.21 ± 0.01, S, 6.72 ± 0.03. HRMS: m/z calc. C24H26N2O4S: 461.15055
[M + Na]+; 477.12449 [M + K]+; found: 461.15168 [M + Na]+; 477.12564 [M + K]+.

Benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c): White solid; yield 86%;
mp 74–76 ◦C; Rf (hex/EtOAc–1/1) = 0.51. IR (ATR): 3336, 3286, 3064, 3033, 2958, 2874, 1693,
1662, 1586, 1532, 1465, 1434, 1400, 1353, 1318, 1266, 1244, 1132, 1045, 1026, 967, 906, 838, 774,
695 cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.34–7.27 (10H, m, Ar-H), 5.65 (1H, t, J = 6 Hz, NH-
SO2), 5.05 (2H, t, J = 14 Hz, O-CH2-Ph), 4.98 (1H, d, J = 9.6 Hz, NH-CH-CH2-CH-(CH3)2),
4.25 (2H, d, J = 5.6 Hz, NH-CH2-Ph), 4.01–3.95 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.04 (1H,
dd, J = 8.8 Hz, J = 14.8 Hz, CHH-SO2), 2.84 (1H, dd, J = 3.2 Hz, J = 14.4 Hz, CHH-SO2),
1.60–1.53 (1H, m, CH3-CH-CH3), 1.42–1.35 (1H, m, NH-CH-CHH-CH-(CH3)2), 1.14–1.08
(1H, m, NH-CH-CHH-CH-(CH3)2), 0.82 (6H, dd, J = 6.4 Hz, J = 10.4 Hz, CH3-CH-CH3).
13C-NMR (100 MHz, CDCl3): δ 157.0, 137.2, 136.4, 129.1, 128.9, 128.7, 128.4, 128.2, 128.2,
67.2, 57.4, 47.5, 46.2, 43.6, 24.7, 23.1. CHN analysis: Calc. for C21H28N2O4S (404.52): C,
62.35; H, 6.98; N, 6.93, S, 7.93. Found: C, 62.23 ± 0.02; H, 7.12 ± 0.01; N, 6.57 ± 0.04, S, 6.76
± 0.13. HRMS: m/z calc. C21H28N2O4S: 427.16620 [M + Na]+; 443.14014 [M + K]+; found:
427.16733 [M + Na]+; 443.14136 [M + K]+.

Benzyl [(2S)-4-methyl-1-(phenylsulfamoyl)pentan-2-yl]carbamate (5d): Thick yellow oil; yield
86%; Rf (hex/EtOAc–1/1) = 0.55. IR (ATR): 3378, 3206, 3087, 3028, 2963, 2921, 2865, 1687,
1647, 1598, 1522, 1495, 1411, 1334, 1296, 1233, 1148, 1055, 1029, 952, 911, 751, 694 cm−1.
1H-NMR (400 MHz, CDCl3): δ 7.74 (1H, s, NH-SO2), 7.34–7.12 (10H, m, Ar-H), 5.17–4.097
(3H, m, O-CH2-Ph, NH-CH-CH2-CH-(CH3)2), 4.23–4.17 (1H, m, NH-CH-CH2-CH-(CH3)2),
3.14 (2H, dd, J = 11.6 Hz, J = 14.4 Hz, CH2-SO2), 1.58–1.52 (1H, m, CH3-CH-CH3), 1.44–1.36
(1H, m, NH-CH-CHH-CH-(CH3)2), 1.21–1.15 (1H, m, NH-CH-CHH-CH-(CH3)2), 0.78 (6H,
dd, J = 6.4 Hz, J = 24.4 Hz, CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 157.5, 137.4,
136.2, 129.8, 128.8, 128.5, 128.3, 125.2, 120.4, 67.5, 55.2, 45.9, 43.9, 24.7, 22.6, 21.9. CHN
analysis: Calc. for C20H26N2O4S (390.5): C, 61.52; H, 6.71; N, 7.17, S, 8.21. Found: C, 61.32
± 0.04; H, 6.86 ± 0.01; N, 6.53 ± 0.02; S, 7.39 ± 0.36. HRMS: m/z calc. C20H26N2O4S:
413.15055 [M + Na]+; 429.12449 [M + K]+; found: 413.15153 [M + Na]+; 429.12554 [M + K]+.

Benzyl [(2S)-4-methyl-1-(propylsulfamoyl)pentan-2-yl]carbamate (5e): Faint yellow solid; yield
87%; mp 58–60 ◦C; Rf (hex/EtOAc–1/1) = 0.53. IR (ATR): 3333, 3278, 3064, 2960, 2873, 1689,
1662, 1537, 1455, 1402, 1318, 1267, 1246, 1129, 1024, 907, 733, 696 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 7.33–7.27 (5H, m, Ar-H), 5.20–5.05 (4H, m, O-CH2-Ph, NH-CH-CH2-CH-(CH3)2,
NH-SO2), 4.16–4.10 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.19–3.07 (2H, m, CH2-SO2), 2.99
(2H, t, J = 6.4 Hz, CH2-CH2-CH3), 1.69–1.61 (1H, m, CH3-CH-CH3).1,57–1.50 (3H, m, CH2-
CH2-CH3, NH-CH-CHH-CH-(CH3)2), 1.42–1.35 (1H, m, NH-CH-CHH-CH-(CH3)2), 0.91
(9H, t, J = 6.4 Hz, CH3-CH-CH3, CH2-CH2-CH3). 13C- NMR (100 MHz, CDCl3): δ 156.8,
136.4, 128.7, 128.4, 128.2, 67.2, 56.3, 46.4, 45.2, 43.8, 24.9, 23.7, 23.0, 21.9, 11.3. CHN analysis:
Calc. for C17H28N2O4S (356.48): C, 57.28; H, 7.92; N, 7.86, S, 8.99. Found: C, 57.35 ± 0.12;
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H, 8.04 ± 0.03; N, 7.47 ± 0.01, S, 7.19 ± 0.25. HRMS: m/z calc. C17H28N2O4S: 379.16620 [M
+ Na]+; 395.14014 [M + K]+; found: 379.16703 [M + Na]+; 395.14105 [M + K]+.

Benzyl {(2S)-4-methyl-1-[(2-phenylethyl)sulfamoyl]pentan-2-yl}carbamate (5f): White solid; yield
86%; mp 59–60 ◦C; Rf (hex/EtOAc–1/1) = 0.57. IR (ATR): 3378, 3271, 3065, 3031, 2959, 2931,
2876, 1698, 1603, 1584, 1519, 1452, 1438, 1399, 1358, 1344, 1316, 1266, 1245, 1133, 1113, 1067,
1054, 1021, 970, 903, 829, 804, 745, 695 cm−1. 1H-NMR (500 MHz, CDCl3): δ 7.27 (7H, t, J = 7
Hz, Ar-H), 7.20–7.14 (3H, m, Ar-H), 5.06–4.98 (4H, m, O-CH2-Ph, NH-CH-CH2-CH-(CH3)2),
NH-SO2), 4.05–4.01 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.28 (2H, q, J = 7 Hz, NH-CH2-CH2-
Ph), 3.07 (1H, dd, J = 8 Hz, J = 14 Hz, CHH-SO2), 2.96 (1H, d, J = 12 Hz, CHH-SO2), 2.79
(2H, t, J = 6.5 Hz, NH-CH2-CH2-Ph), 1.62–1.57 (1H, m, CH3-CH-CH3), 1.49–1.43 (1H, m,
NH-CH-CHH-CH-(CH3)2), 1.34–1.29 (1H, m, NH-CH-CHH-CH-(CH3)2), 0.85 (6H, d, J = 6
Hz, CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 156.6, 138.1, 136.4, 129.1, 128.9, 128.8,
128.4, 128.2, 127.0, 67.2, 56.5, 46.4, 44.6, 43.5, 36.9, 24.9, 23.1, 21.9. CHN analysis: Calc. for
C22H30N2O4S (418.55): C, 63.13; H, 7.22; N, 6.69, S, 7.66. Found: C, 63.30 ± 0.03; H, 7.25 ±
0.02; N, 6.51 ± 0.01, S, 7.09 ± 0.07. HRMS: m/z calc. C22H30N2O4S: 441.18185 [M + Na]+;
found: 441.18306 [M + Na]+.

Benzyl {(2S)-1-[(3,4-dichlorophenyl)sulfamoyl]-3-phenylpropan-2-yl}carbamate (5g): Faint yellow
solid; yield 83%; mp 154–156 ◦C; Rf (hex/EtOAc–1/1) = 0.48. IR (ATR): 3332, 3224, 3030,
2931, 1691, 1689, 1591, 1531, 1495, 1454, 1380, 1318, 1260, 1252, 1148, 1081, 1043, 958, 888,
738, 695 cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.89 (1H, s, NH-SO2), 7.32 (7H, t, J = 6.8 Hz,
Ar-H), 7.20 (3H, s, Ar-H), 7.05 (1H, d, J = 7.6 Hz, Ar-H), 6.97 (2H, d, J = 2.4 Hz, Ar-H), 5.16
(1H, d, J = 8.8 Hz, NH-CH-CH2-Ph), 5.09 (2H, s, O-CH2-Ph,), 4.37–4.31 (1H, m, NH-CH-
CH2-Ph), 3.14 (2H, dd, J = 9.2 Hz, J = 14.4 Hz, CH2-SO2), 2.90 (1H, dd, J = 5.6 Hz, J = 13.6
Hz, NH-CH-CHH-Ph), 2.69 (1H, dd, J = 8 Hz, J = 13.6 Hz, NH-CH-CHH-Ph). 13C- NMR
(100 MHz, CDCl3): δ 157.3, 136.8, 136.0, 135.9, 135.7, 133.6, 131.4, 129.1, 129.1, 128.8, 128.6,
128.3, 127.5, 121.6, 119.3, 67.7, 53.9, 48.7, 40.9. CHN analysis: Calc. for C23H22Cl2N2O4S
(493.4): C, 55.99; H, 4.49; N, 5.68, S, 6.50. Found: C, 55.99 ± 0.44; H, 4.50 ± 0.02; N, 5.52
± 0.02, S, 6.03 ± 0.20. HRMS: m/z calc. C23H22Cl2N2O4S: 515.05695 [M + Na]+; found:
515.05836 [M + Na]+.

Benzyl [(2S)-1-(1,3-benzodioxol-5-ylsulfamoyl)-3-phenylpropan-2-yl]carbamate (5h): Dark brown
solid; yield 79%; mp 110–112 ◦C; Rf (hex/EtOAc–1/1) = 0.44. IR (ATR): 3366, 3171, 3087,
3061, 2928, 2895, 1688, 1635, 1586, 1528, 1500, 1484, 1416, 1340, 1315, 1257, 1238, 1146,
1079, 1038, 953, 935, 847, 832, 745, 697 cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.37 (1H,
s, NH-SO2), 7.33–7.27 (5H, m, Ar-H), 7.20 (3H, t, J = 7.2 Hz, Ar-H), 7.04 (2H, d, J = 6.4
Hz, Ar-H), 6.81 (1H, s, Ar-H), 6.66 (2H, d, J = 8 Hz, Ar-H), 5.95 (2H, s, O-CH2-O), 5.24
(1H, d, J = 8.8 Hz, NH-CH-CH2-Ph), 5.08 (2H, t, J = 12.8 Hz, O-CH2-Ph), 4.44–4.37 (1H,
m, NH-CH-CH2-Ph), 3.14 (2H, dd, J = 10.8 Hz, J = 18.8, CH2-SO2), 2.92 (1H, dd, J = 6.4
Hz, J = 13.6 Hz, NH-CH-CHH-Ph), 2.77 (1H, dd, J = 7.6 Hz, J = 14 Hz, NH-CH-CHH-Ph).
13C- NMR (100 MHz, CDCl3): δ 157.0, 148.5, 145.8, 136.2, 130.8, 129.3, 129.0, 128.8, 128.4,
128.2, 127.3, 115.2, 108.6, 104.3, 101.7, 67.4, 53.5, 48.7, 40.7, 14.4. CHN analysis: Calc. for
C24H24N2O6S (468.52): C, 61.52; H, 5.16; N, 5.98, S, 6.84. Found: C, 61.79 ± 0.15; H, 5.29 ±
0.03; N, 5.80 ± 0.01, S, 6.43 ± 0.02. HRMS: m/z calc. C24H24N2O6S: 491.12473 [M + Na]+;
507.09867 [M + K]+; found: 491.12597 [M + Na]+; 507.10023 [M + K]+.

Benzyl {(2S)-1-phenyl-3-[(2S)-tetrahydrofuran-2-ylsulfamoyl]propan-2-yl}carbamate (5i): White
solid; yield 80%; mp 132–134 ◦C; Rf (hex/EtOAc–1/1) = 0.23. IR (ATR): 3347, 3288, 3058,
2975, 2861, 1689, 1658, 1587, 1530, 1448, 1327, 1308, 1292, 1145, 1120, 1051, 1040, 924,
906, 745, 629 cm−1. 1H-NMR (400 MHz, CDCl3): δ 7.23–7.15 (8H, m, Ar-H), 7.10 (2H, d,
J = 6.8 Hz, Ar-H), 5.28 (2H, t, J = 7.6 Hz, NH-CH-CH2-Ph, NH-SO2) 5.00 (2H, s, O-CH2-Ph),
4.25–4.20 (1H, m, NH-CH-CH2-Ph), 3.82 (2H, dd, J = 7.2 Hz, J = 16 Hz, THF-CH, CHH-SO2),
3.64 (2H, t, J = 6 Hz, THF), 3.51 (1H, d, J = 7.2 Hz, CHH-SO2), 3.17 (1H, dd, J = 8 Hz,
J = 14 Hz, NH-CH-CHH-Ph), 3.06 (1H, d, J = 12 Hz, NH-CH-CHH-Ph), 2.95 (1H, q,
J = 5.2 Hz, THF), 2.83 (1H, q, J = 6.8 Hz, THF), 2.11–2.02 (1H, m, THF), 1.79–1.78(1H, m,
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THF). 13C-NMR (100 MHz, CDCl3): δ 156.4, 136.6, 136.3, 129.5, 129.1, 128.8, 128.4, 128.2,
127.4, 73.5, 67.2, 66.8, 55.6, 54.1, 49.4, 40.5, 33.7. CHN analysis: Calc. for C21H26N2O5S
(418.51): C, 60.27; H, 6.26; N, 6.69, S, 7.66. Found: C, 60.53 ± 0.26; H, 6.38 ± 0.02; N,
6.54 ± 0.02, S, 7.33 ± 0.40. HRMS: m/z calc. C21H26N2O5S: 441.14546 [M + Na]+; 457.11940
[M + K]+; found: 441.14682 [M + Na]+; 457.12082 [M + K]+.

Benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j): White solid;
yield 84%; mp 104–106 ◦C; Rf (hex/EtOAc–1/1) = 0.57. IR (ATR): 3346, 3287, 3064, 3036,
2962, 2919, 2871, 1688, 1577, 1532, 1489, 1453, 1403, 1340, 1318, 1276, 1247, 1129, 1122,
1106, 1094, 1039, 1027, 996, 948, 870, 860, 734, 694 cm−1. 1H-NMR (500 MHz, CDCl3): δ
7.37–7.28 (9H, m, Ar-H), 5.76 (1H, t, J = 6.5 Hz, NH-SO2), 5.12–5.05 (3H, m, O-CH2-Ph,
NH-CH-CH2-CH-(CH3)2), 4.24 (2H, d, J = 5.5 Hz, NH-CH2-(4-Cl)-Ph), 4.05–3.99 (1H, m,
NH-CH-CH2-CH-(CH3)2), 3.11 (1H, dd, J = 9 Hz, J = 14.5 Hz, CHH-SO2), 2.92 (1H, d,
J = 14.5 Hz, CHH-SO2), 1.66–1.58 (1H, m, NH-CH-CHH-CH-(CH3)2), 1.48–1.43 (1H, m,
NH-CH-CHH-CH-(CH3)2), 1.23–1.18 (1H, m, CH3-CH-CH3), 0.88 (6H, dd, J = 7 Hz, J =
12.5 Hz, CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 156.8, 136.1, 135.7, 133.9, 129.5,
129.0, 128.6, 128.3, 128.0, 67.1, 57.2, 46.5, 46.0, 43.5, 24.6, 22.9, 21.6. CHN analysis: Calc. for
C21H27ClN2O4S (438.97): C, 57.46; H, 6.20; N, 6.38, S, 7.30. Found: C, 57.80 ± 0.13; H, 6.20
± 0.02; N, 6.14 ± 0.01, S, 5.86 ± 0.43. HRMS: m/z calc. C21H27ClN2O4S: 461.12723 [M +
Na]+; 477.10116 [M + K]+; found: 461.12857 [M + Na]+; 477.10260 [M + K]+.

Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k): Thick oil;
yield 87%; Rf (hex/EtOAc–1/1) = 0.50. IR (ATR): 3340, 3065, 3033, 2955, 2869, 2839, 1698,
1602, 1589, 1521, 1494, 1463, 1438, 1413, 1326, 1290, 1257, 1141, 1118, 1072, 1025, 956, 936,
872, 836, 752, 696 cm−1. 1H-NMR (500 MHz, CDCl3): δ 7.32–7.25 (7H, m, Ar-H), 6.89
(2H, q, J = 7.5 Hz, Ar-H), 5.64 (1H, s, NH-SO2), 5.06 (2H, t, J = 14 Hz, O-CH2-Ph), 4.93
(1H, d, J = 9 Hz, NH-CH-CH2-CH-(CH3)2), 4.31–4.23 (2H, m, NH-CH-CH2-CH-(CH3)2,
NH-CHH-(2-O-CH3)-Ph), 3.85 (4H, s, NH-CH2-(2-O-CH3)-Ph, NH-CHH-(2-O-CH3)-Ph),
2.95 (1H, dd, J = 9 Hz, J = 14.5 Hz, CHH-SO2), 2.82 (1H, d, J = 12.5 Hz CHH-SO2), 1.58–1.50
(1H, m, CH3-CH-CH3). 1.40–1.34 (1H, m, NH-CH-CHH-CH-(CH3)2), 1.07–1.02 (1H, m,
NH-CH-CHH-CH-(CH3)2), 0.79 (6H, dd, J = 6.5 Hz, J = 20 Hz, CH3-CH-CH3). 13C-NMR
(100 MHz, CDCl3): δ 157.7, 156.6, 136.5, 130.1, 129.9, 128.7, 128.3, 128.2, 125.4, 120.9, 110.8,
67.1, 57.4, 55.6, 46.1, 43.9, 43.5, 24.7, 23.1, 21.9. CHN analysis: Calc. for C22H30N2O5S
(434.55): C, 60.81; H, 6.96; N, 6.45, S, 7.38. Found: C, 60.75 ± 0.20; H, 7.19 ± 0.02; N, 6.07 ±
0.04, S, 6.17 ± 0.09. HRMS: m/z calc. C22H30N2O5S: 457.17676 [M + Na]+; found: 457.17802
[M + Na]+.

Benzyl {(2S)-1-[(3,4-difluorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5l): White solid;
yield 86%; mp 70–72 ◦C; Rf (hex/EtOAc–1/1) = 0.47. IR (ATR): 3338, 3294, 3066, 3037,
2967, 2941, 2871, 1690, 1609, 1536, 1519, 1452, 1425, 1322, 1285, 1228, 1202, 1174, 1133, 1093,
1035, 1007, 996, 952, 894, 772.733 694 cm−1. 1H-NMR (500 MHz, CDCl3): δ 7.29 (5H, d,
J = 14.5 Hz, Ar-H), 7.18–7.04 (3H, m, Ar-H), 5.73 (1H, t, J = 8 Hz, NH-SO2), 5.09–5.01 (3H,
m, O-CH2-Ph, NH-CH-CH2-CH-(CH3)2), 4.17 (2H, d, J = 3.5 Hz, NH-CH2-(3,4-di-F)-Ph),
4.07–4.02 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.11 (1H, dd, J = 9 Hz, J = 14.5 Hz, CHH-SO2),
2.94 (1H, d, J = 13.5 Hz, CHH-SO2), 1.63–1.56 (1H, m, NH-CH-CHH-CH-(CH3)2), 1.48–1.43
(1H, m, NH-CH-CHH-CH-(CH3)2) 1.26–1.21 (1H, m, CH3-CH-CH3), 0.86 (6H, t, J = 7.5 Hz,
CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 157.0, 151.6 (dd, J = 37.8 Hz, J = 12.6 Hz),
149.1 (dd, J = 36.8, J = 12.5 Hz), 136.3, 134.5(dd, J = 8.2 Hz, J = 5.3 Hz), 128.8, 128.5, 128.2,
124.2 (dd, J = 6 Hz, J = 3.1 Hz), 117.7 (d, J = 17.2 Hz), 117.2 (d, J = 17.5 Hz), 67.3, 57.4, 46.3,
46.3, 43.8, 24.8, 23.0, 21.7. 19F NMR (377 MHz, CDCl3): −136.6 (d, J = 18.9 Hz), −138.7 (d,
J = 22.6 Hz), CHN analysis: Calc. for C21H26F2N2O4S (440.5): C, 57.26; H, 5.95; N, 6.36, S,
7.28. Found: C, 57.49 ± 0.07; H, 6.16 ± 0.02; N, 5.96 ± 0.01, S, 6.35 ± 0.43. HRMS: m/z calc.
C21H26F2N2O4S: 441.16541 [M + H]+; 463.14736 [M + Na]+; found: 441.16669 [M + H]+;
463.14872 [M + Na]+.

Benzyl {(2S)-1-[(furan-2-ylmethyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5m): Light yellow
solid; yield 80%; mp 80–82 ◦C; Rf (hex/EtOAc–1/1) = 0.55. IR (ATR): 3304, 3125, 3066, 2952,
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2931, 2871, 1686, 1656, 1540, 1503, 1452, 1429, 1313, 1296, 1265, 1230, 1189, 1136, 1116, 1058,
1043, 959, 922, 866, 809, 743, 693 cm−1. 1H-NMR (500 MHz, CDCl3): δ 7.35–7.24 (6H, m,
Ar-H), 6.29 (2H, d, J = 12 Hz, Ar-H), 5.82 (1H, t, J = 7 Hz, NH-SO2), 5.10–5.04 (2H, ABq, J
= 12 Hz, O-CH2-Ph), 4.94 (1H, d, J = 9.5 Hz, NH-CH-CH2-CH-(CH3)2), 4.34–4.22 (2H, m,
NH-CH2-furan), 4.03–3.99 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.00 (1H, dd, J = 9.5 Hz, J =
14.5 Hz, CHH-SO2), 2.88 (1H, d, J = 13.5 Hz, CHH-SO2), 1.64–1.56 (1H, m, CH3-CH-CH3),
1.42–1.36 (1H, m, NH-CH-CHH-CH-(CH3)2), 1.16–1.11 (1H, m, NH-CH-CHH-CH-(CH3)2),
0.84 (6H, dd, J = 6.5 Hz, J = 11.5 Hz, CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 157.0,
150.6, 142.8, 136.2, 128.5, 128.2, 128.0, 110.7, 108.7, 67.1, 57.5, 45.9, 43.5, 39.8, 24.5, 23.0, 21.5.
CHN analysis: Calc. for C19H26N2O5S (394.49): C, 57.85; H, 6.64; N, 7.10, S, 8.13. Found: C,
57.79 ± 0.07; H, 6.56 ± 0.05; N, 7.01 ± 0.01, S, 7.53 ± 0.29. HRMS: m/z calc. C19H26N2O5S:
417.14546 [M + Na]+; 433.11940 [M + K]+; found: 417.14653 [M + Na]+; 433.12052 [M + K]+.

Benzyl {(2S)-1-[(3,4-dichlorophenyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5n): White solid;
yield 85%; mp 117–118 ◦C; Rf (hex/EtOAc–1/1) = 0.57. IR (ATR): 3342, 3214, 3067,
2954, 2872, 1692, 1591, 1537, 1473, 1380, 1337, 1271, 1130, 1078, 1050, 955, 887, 853,
775, 693 cm−1. 1H-NMR (400 MHz, CDCl3): δ 8.05 (1H, s, NH-SO2), 7.46 (1H, s, Ar-H),
7.34 (6H, d, J = 12.4 Hz, Ar-H), 7.16 (1H, d, J = 7.6 Hz, Ar-H), 5.16–5.03 (3H, m, O-CH2-
Ph, NH-CH-CH2-CH-(CH3)2), 4.21–4.12 (1H, m, NH-CH-CH2-CH-(CH3)2), 3.13 (2H, d,
J = 6.4 Hz, CH2-SO2), 1.60–1.52 (1H, m, CH3-CH-CH3), 1.44–1.37 (1H, m, NH-CH-CHH-CH-
(CH3)2), 1.23–1.16 (1H, m, NH-CH-CHH-CH-(CH3)2), 0.81 (6H, dd, J = 6.4 Hz, J = 16 Hz,
CH3-CH-CH3). 13C-NMR (100 MHz, CDCl3): δ 157.6, 137.0, 136.0, 133.7, 131.4, 128.9, 128.8,
128.6, 128.2, 122.0, 119.7, 67.7, 55.7, 45.9, 43.8, 24.7, 22.6, 21.7. CHN analysis: Calc. for
C20H24Cl2N2O4S (459.39): C, 52.29; H, 5.27; N, 6.10, S, 6.98. Found: C, 52.87 ± 0.05; H,
5.35 ± 0.02; N, 5.88 ± 0.02, S, 7.57 ± 0.07. HRMS: m/z calc. C20H24Cl2N2O4S: 481.07260
[M + Na]+; 497.04654 [M + K]+; found: 481.07371 [M + Na]+; 497.04772 [M + K]+.

3.3. AChE and BChE Inhibition Studies

The ability of all synthesized derivatives to inhibit eeAChE (acetylcholinesterase from
electric eel, Electrophorus electricus) and eqBChE (butyrylcholinesterase from equine serum)
was determined in vitro using the modified Ellman´s method. The inhibitory activity of
the studied compounds was expressed as IC50 value representing the concentration of an
inhibitor, which is necessary for the reduction of enzyme activity (or reaction rate) to 50%.
Ellman’s method [57] is widely used for measuring cholinesterase activity and the efficiency
of cholinesterase inhibitors. The principle of this simple method is the determination of
the SH and -S-S- groups [85]. The activity of the cholinesterase is measured indirectly by
quantifying the concentration of 2-nitro-5-sulfanylbenzoic acid ion formed in the reaction
between 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) and thiocholine (i.e., the product of the
acetylthiocholine hydrolysis catalysed by cholinesterase).

All studied compounds were dissolved in DMSO (concentration 0.01 M) and diluted
in demineralized water (concentration 0.001 M). The ability of the studied compounds to
inhibit eeAChE and eqBChE was determined using modified Ellman´s method at 25 ◦C
in the presence of phosphate buffered saline (PBS, 0.1 M, pH 7.4) in a glass cuvette with 1
cm optical path. The enzyme activity in the total reaction mixture (2 mL) was 0.2 U/mL;
the concentration of acetylthiocholine (ATCh) or butyrylthiocholine (BTCh) was 40 µM;
and the concentration of DTNB was 0.1 mM for all reactions. The inhibitory activity of the
studied derivatives was evaluated based on the ratio v0/vi (v0 is the rate of ATCh or BTCh
hydrolysis in the absence of the inhibitor, vi is the rate of ATCh or BTCh hydrolysis in the
presence of the inhibitor). The IC50 value was obtained from the dependence v0/vi on the
concentration of the tested compound (inhibitor).

The determination of v0 was done as follows. Into the cuvette, PBS (0.1 M, pH 7.4),
DTNB, and ATCh (BTCh) were placed. The enzymatic reaction was started by adding the
enzyme. The dependence of absorbance (λ = 412 nm) on the time was observed for 70 s
(the reference solution contained PBS, DTNB, and ATCh or BTCh), and then the reaction
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rate (v0) was calculated (v = ∆A/∆t). The measurement was performed at least in triplicate,
and average v0 was determined.

Then, vi (for the given concentration of inhibitor) was determined. Into the cuvette,
DTNB, ATCh (BTCh), a chosen volume of the suitably diluted inhibitor (to achieve the
required concentration of inhibitor in the total reaction mixture), and a certain volume of
PBS (to achieve the total volume of the reaction mixture 2 mL after adding the enzyme)
were placed. The enzymatic reaction was started by adding the enzyme. The dependence
of absorbance (λ = 412 nm) on time was observed for 70 s (the reference solution was the
same as for the reaction in the absence of the inhibitor), and then the reaction rate (vi) was
calculated. Five different concentrations of the inhibitor were used, and each measurement
was performed at least in duplicate.

Finally, the dependence v0/vi on the concentration of the inhibitor was determined,
and IC50 was calculated from the obtained equation of the regression curve for y = 2 (based
on the definition of IC50).

3.4. Kinetic Studies

Two derivatives (compounds 5k, 5j) were used for evaluation of carbamylation and
decarbamylation of BChE from equine serum. The decrease in enzyme activity over time
due to inhibitor binding was monitored by the Ellman´s method. Pursuant the procedure
described in Carletti [86], the determination was performed subsequently: the reaction
mixture containing PBS (0.1 M, pH 7.4), BChE and chosen inhibitor in an appropriate
concentration was prepared and intensively stirred. In given times DTNB and BTCh
were added to the sample withdrawn from stirred reaction mixture, quickly mixed and
absorbance was measured. Consequently, the enzyme activity was determined. Based
on knowledge of enzyme activity in the absence of the inhibitor (i.e., 100% activity), the
percentages of residual activity in presence of the inhibitor were calculated. Then the
dependence of percentage of residual activity vs. time was constructed [87]. By nonlinear
regression of these dependences the values of kobs were obtained and subsequently rate
constants for carbamylation were calculated. All experiments were performed in duplicate
at least.

Monitoring of enzyme reactivation was performed as follows. BChE was inhibited ≥
95%. The excess inhibitor was removed by dilution into PBS. Samples were withdrawn at
successive time points and assayed to measure recovery of enzymatic activity (Ellman´s
method was used). The percentage of reactivation was determined by comparison with
that for control samples, where the BChE had been mixed only with buffer, but otherwise
treated identically. All experiments were performed in duplicate at least.

3.5. Molecular Modeling
3.5.1. Receptor Preparation and Docking Procedure

X-ray enzyme structures available at the Protein Data Bank were used as follows:
Torpedo californica AChE code 1DX6 [88] and Equus caballus BChE (UniPrtoAC Q9N1N9).
Water and ligands molecules were removed from PDB structure before calculations. Re-
ceptor structure as well as sulfonamide derivative structures were converted from pdb
to pdbqt format using AutoDockTools 1.5.4 [88]. Gasteiger charges were added for all
the compounds, and nonpolar hydrogen atoms were merged. Molecular docking studies
were performed using AutoDock4 software [88]. The receptor structure was defined as
rigid. The XYZ dimensions of a cubic grid were set to 60 × 60 × 60 points, repectively,
with a spacing resolution of 0.375 Å and centered at the catalytic site of each enzyme. All
torsions of the ligand were allowed to rotate during docking. Other parameters were set to
default values. 200 poses were collected and then clustered into families based on the root
mean square deviation (RMSD) between the Cartesian coordinates of the ligand atoms. A
representative structure from the most populated cluster was selected for further studies.
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3.5.2. Molecular Dynamic Simulations

MD simulations were performed using the Amber16 [89] software package consider-
ing ff99SB [90] and GAFF [91] force fields. Calculations were carried out in triplicate for all
complexes obtained under docking procedures. Each model was soaked in a truncated octa-
hedral periodic box of TIP3P water molecules [92] with a margin of 10.0 Å in each direction
from the solute. Na+ or Cl- ions were placed by the Leap module to neutralize the charges
of AChE and BChE complexes, respectively. The potential energy of the complexes was
then minimized using the Sander module in 5000 steps with a steepest-descent algorithm.
Subsequently, complexes were equilibrated at constant volume for 500 ps. Each system was
heated from 0 to 300 K using a Langevin thermostat [93]. The SHAKE algorithm [94] was
applied allowing for an integration time step of 2 fs. The equilibration run was followed by
three 20 ns MD runs without position restraints under periodic boundary conditions at
the target temperature 298 K. The particle mesh Ewald method (PME) [95] was employed
using a grid spacing of 1.2 Å, a spline interpolation order of 4, and a real space direct sum
cutoff of 8 Å. Post MD analysis was performed using the program CPPTRAJ [96].

3.5.3. MM-GBSA Free Energy Decomposition

The MM-GBSA free energy decomposition using the mm_pbsa module in Amber16
was employed to corroborate the amino acids from each enzyme catalytic site interacting
with the ligands. The explicit water molecules and counter ions were removed and the
equidistant snapshots extracted from the last 10 ns of the dynamics in triplicate were
considered.

3.5.4. QTAIM Analysis

In order to select the most stable or probable conformation for QTAIM analysis [49],
a clustering process using the CPPTRAJ program (AmberTools package) was carried out.
This technique is based on the RMSA of the L-R complex. An RMSD of 2 Å was considered.
The representative structure of the most populated cluster for each complex was employed
as the input structure.

Charge density topological analysis based in the QTAIM was performed on a BChE-5c
and BChE-5k reduced models to evaluate the L-R interactions. The reduced model was
constructed by considering those residues that directly interact with the ligands. All amino
acids found within a radius of 5 Å of the distance from each ligand atom were included.

The wave function for the reduced models generated at the M062X/6-31G(d) level of
theory were computed with the Gaussian16 [97] package and were subjected to quantum
theory atoms in molecules (QTAIM) analysis using the Multiwfn software [98]. Molecular
graphs were depicted with Pymol.

QTAIM calculations were performed in order to determine the ρ(r) values at the
bond critical points (BCPs). Results are summarized as the sum of the ρ(r) values of BCPs
considering the amino acid residues belonging to a particular binding site of BChE.

3.6. Cytotoxicity Evaluation

Human monocytic leukemia THP-1 cells were obtained from the European Collection
of Cell Cultures (ECACC, Salisbury, UK) and routinely cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS), 2% L-glutamine, 1% penicillin, and
1% streptomycin (all from Sigma-Aldrich) at 37 ◦C with atmosphere containing 5% CO2.
The tested compounds dissolved at DMSO were added to cells suspended at complete
cultivation medium, and the relative cell viability (the ratio between cells treated with
compounds and cells treated with DMSO only) was measured by a CCK-8 kit (Sigma-
Aldrich) after 24 h, as we described previously [99].

4. Conclusions

A series of benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was designed,
prepared by multi-step synthetic procedure, and characterized. All the target compounds
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were investigated as AChE and BChE inhibitors. While AChE inhibition was insignificant,
11 compounds showed strong preferential inhibition of BChE, and 9 of them were more
active than rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl) sulfamoyl]-4-methylpentan-2-
yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]- 4-methylpentan-2-yl}carba-
mate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4- methylpentan-2-yl]carbamate (5c)
showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), in-
dicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity
against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine.
The selectivity index of 5c and 5j was 10 and that of 5k was 34. These results show that
the compounds reported here bind to the same active site of the molecular targets as
rivastigmine. Our theoretical results are in total agreement with the experimental data,
being an additional support for such results. Furthermore, our study using QTAIM calcula-
tions gives detailed information on the molecular interactions that stabilize the molecular
complexes of the most active compounds in this series. Moreover, the tested compounds
showed low cytotoxic effect and, thus, could be worth of further evaluation. In addition,
all predicted ADME properties underline the importance of subsequent in vivo studies
of these small molecules. The molecular modeling study was performed using combined
techniques. Active ligands adopt an extended conformation leading to the interaction of
the carbamate group with the active site Ser. Conversely, less active compounds adopt a
V-shape conformation, which causes interactions of these ligands with different regions
of the enzyme active site. The selectivity displayed by these compounds towards BChE
relies on the larger accesible area of this enzyme compared to AChE. Our theoretical results
support the experimental data. Furthermore, our study using QTAIM calculations gives
detailed information on the molecular interactions that stabilize the molecular complexes
of the most active compounds in this series.
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