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Abstract

In this contribution, we analyse in details the
recently introduced definition of migrative t-
conorms [see Fuzzy implications: alpha mi-
grativity and generalised laws of importa-
tion, M. Baczyński, B. Jayaram, R. Mesiar,
2020]. We also focus on some general func-
tional equations, which might be obtained
from such a notion. We concentrate on some
particular well-known families of fuzzy im-
plications and show solutions of those equa-
tions among this kind of fuzzy implication
functions.

Keywords: Fuzzy connectives, T-conorm,
Fuzzy implication, Migrativity.

1 Introduction

A notion of α-migrativity appeared in 2007, where au-
thors dealt with the problem of a convex combination
of t-norms [8]. It is useful from an application point
of view since it shows when “proportional” change of
one of the coordinates is equivalent of such a change
for another argument. Therefore it is important which
aggregation functions can ensure this property.
Below we present the original definition of α-
migrativity, which is a starting point for further inves-
tigations.
Definition 1.1 ([6, Definition 1]). Let α ∈ (0,1).
A binary operator T : [0,1]2 → [0,1] is said to be α-
migrative if it satisfies

T (αx,y) = T (x,αy), x ∈ [0,1].

A function T is called migrative if it is α-migrative for
any α ∈ [0,1].

Although a convex combination of two t-norms is not a
t-norm, a notion of migrativity has been widely investi-
gated in a context of different fuzzy connectives ([13])

and related concepts like bimigrativity (see [11]), or
migrativity over t-norms [12]. One of the earliest pa-
pers provides the following fact.
Theorem 1.2 ([5, Corollary 2]). There are no migra-
tive t-conorms, uninorms or nullnorms (in the sense of
Definition 1.1).

The above sentence is, of course, correct but only un-
der the consideration of Definition 1.1. However, other
authors investigated migrativity for different fuzzy
connectives – with another definition. Namely, in [3]
fuzzy implications were examined. That particular def-
inition of α-migrativity is associated with the graphi-
cal interpretation of it. Moreover, the authors explored
functional equations connected with such migrativity.
The above-mentioned article was an inspiration for us
to examine t-conorms, especially when in [3] authors
formulated the desired definition.

The paper is organized as follows. Section 2 con-
tains some important definitions and theorems, while
the main results are collected in Section 3.

2 Preliminaries

To make this work more self-contained, we placed
some important definitions here.
Definition 2.1 ([9]). Let n ∈ N. An aggregation func-
tion in [0,1]n is a function A(n) : [0,1]n→ [0,1] which
is nondecreasing (in each variable) and it satisfies
A(n)(0, . . . ,0) = 0 and A(n)(1, . . . ,1) = 1.
Definition 2.2 ([4, Definition 1.9]). An aggregation
function A(n) : [0,1]n → [0,1] has disjunctive behav-
ior (or is disjunctive) if for every x = (x1, . . . ,xn) it is
bounded by

A(x)≥max(x) = max(x1, . . . ,xn).

Definition 2.3 ([7, 10]). A function T : [0,1]2→ [0,1]
is called a triangular norm (t-norm in short), if it is
associative, commutative and non-decreasing operator
with a neutral element 1.
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Definition 2.4 ([10]). A function S : [0,1]2→ [0,1] is
called a triangular conorm (t-conorm in short), if it is
associative, commutative and non-decreasing operator
with a neutral element 0.
Definition 2.5 ([15]). A function U : [0,1]2→ [0,1] is
called a uninorm, if it is an associative, commutative
and non-decreasing operator with a neutral element e∈
[0,1], i.e., such that U(x,e) = x, x ∈ [0,1]. A uninorm
U such that U(0,1) = 0 is called conjunctive and if
U(0,1) = 1, then it is called disjunctive.
Definition 2.6 ([2, 10]). A non-increasing function
N : [0,1]→ [0,1] is called a fuzzy negation, if N(0) =
1, N(1) = 0. Moreover, a fuzzy negation N is called
strict if it is strictly decreasing and continuous, and
strong if it is an involution, i.e., N(N(x)) = x, for all
x ∈ [0,1].
Theorem 2.7 ([7, Proposition 1.9]). Let T be a t-
norm and N be a strict negation. Then the function
S : [0,1]2→ [0,1] given by

S(x,y) = N−1(T (N(x),N(y))), x,y ∈ [0,1], (1)

is a t-conorm. We say that S is an N-dual t-conorm to
the t-norm T .

Definition 2.8 ([2, 7]). A function I : [0,1]2 → [0,1]
is called a fuzzy implication, if it is non-increasing
with respect to the first variable, non-decreasing with
respect to the second variable and if I(0,0) = I(1,1) =
1 and I(1,0) = 0. The family of fuzzy implications will
be denoted by FI .
Definition 2.9 ([2]). We say that a fuzzy implication I
satisfies

(i) the identity principle, if

I(x,x) = 1, x ∈ [0,1], (IP)

(ii) the left neutrality property, if

I(1,y) = y, y ∈ [0,1]. (NP)

Definition 2.10 ([2, Definition 2.4.1]). A function
I : [0,1]2 → [0,1] is called an (S,N)-implication, if
there exist a t-conorm S and a fuzzy negation N such
that

I(x,y) = S(N(x),y), x,y ∈ [0,1].

If I is generated from a t-conorm S and a fuzzy nega-
tion N, then it will be denoted by IS,N .
Definition 2.11 ([2, Definition 5.3.1]). A function
I : [0,1]→ [0,1] is called a (U,N)-operation, if there
exist a uninorm U and a fuzzy negation N such that

I(x,y) =U(N(x),y), x,y ∈ [0,1].

A (U,N)-operator IU,N ∈FI if and only if U is a dis-
junctive uninorm (see [2, Theorem 5.3.3]).

3 Main results

Here, we recall some concepts presented in [3]. The
definition of α-migrative t-conorm is based on some
particular graphical interpretation of this property (see
also Fig. 1).

Definition 3.1 ([3, Definition 4.1]). Let α ∈ (0,1) be
fixed. A t-conorm S is said to be α-migrative, if it
satisfies

S(1−α +αx,y) = S(x,1−α +αy), (2)

for all x,y ∈ [0,1]. If S is α-migrative for every α ∈
(0,1), then S is said to be migrative.

Of course, Eq. (2) is always satisfied when α = 0 or
α = 1. Indeed, for α = 0 we have

S(1,y) = 1 = S(x,1)

and for α = 1 we have

S(x,y) = S(x,y).

(x, y)
y

1

x 1

(x, 1− α+ αy)

(1− α+ αx, y)

(x, 1)

(1, y)

Figure 1: The graphical interpretation of α-migrative
t-conorm (see Definition 3.1)

First, let us formulate simple facts.

Proposition 3.2. Let T be an α-migrative t-norm for
some α ∈ (0,1) (in the sense of Definition 1.1). If S
is the NC-dual t-conorm to T , where NC(x) = 1− x,
for all x ∈ [0,1], then S is α-migrative (in the sense of
Definition 3.1).

Proof. Let T be an α-migrative t-norm for some α ∈
(0,1) and S be te NC-dual t-conorm to T . Then we
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have

S(1−α +αx,y) = 1−T (1− (1−α +αx),1− y)

= 1−T (α(1− x),1− y)

= 1−T (1− x,α(1− y))

= 1−T (1− x,1− (1−α +αy))

= S(x,1−α +αy),

for any x,y ∈ [0,1].

We can also show the reverse of Proposition 3.2; the
NC-dual t-norm to α-migrative t-conorm is also α-
migrative. Based on [5, Theorem 7] we know that the
only migrative t-norm is the product t-norm. Hence the
following fact is easy to obtain.

Corollary 3.3. SP is the only migrative t-conorm.

Furthermore, inspired by investigations done in [3], we
can consider the following functional equation, which
is nothing else but the other form of the formula from
Definition 3.1:

S(IRC(α,x),y) = S(x, IRC(α,y)), α,x,y ∈ [0,1],
(3)

where IRC is the Reichenbach implication given by
IRC(x,y) = 1− x+ xy. Hence, as the Pexider type of
the above equation, we can analyse the following func-
tional equation

S1(I1(α,x),y) = S2(x, I2(α,y)), (4)

satisfied for all α,x,y ∈ [0,1], where S1,S2 are t-
conorms (or any generalisations of the classical dis-
junction) and I1, I2 are fuzzy implications (or any gen-
eralisation of the classical implication).

Let us start with some necessary conditions for func-
tions S1,S2, I1, I2 to satisfy (4).

Proposition 3.4. Let S1,S2 be aggregation functions,
I1, I2 ∈FI . If (S1,S2, I1, I2) satisfies (4), then

(i) 1 is an annihilator of S1, S2,

(ii) if I1, I2 satisfies (NP), then S1 = S2.

Proof. (i) : Let us take x = 1 and α = 0 in (4). Then
we have

S1(I1(0,1),y) = S2(1, I2(0,y))⇐⇒ S1(1,y) = S2(1,1)
⇐⇒ S1(1,y) = 1,

for all y ∈ [0,1], so 1 is an annihilator of S1.

Now, let us put y = 1 and α = 0 in (4). Then we have

S1(I1(0,x),1) = S2(x, I2(0,1))⇐⇒ S1(1,1) = S2(x,1)
⇐⇒ 1 = S2(x,1),

for all x ∈ [0,1], so 1 is an annihilator of S2.

(ii) : Let us take α = 1 in (4). Then we obtain

S1(I1(1,x),y) = S2(x, I2(1,y))⇐⇒ S1(x,y) = S2(x,y)

for all x,y ∈ [0,1].

Next results can be obtained in a natural way.

Proposition 3.5. Let N be a fuzzy negation and U be
a uninorm. Then the quadruple (U,U, IU,N , IU,N) sat-
isfies (4).

Proposition 3.6. Let I1, I2 ∈ FI and S1 (S2) be bi-
nary functions. Next, let us assume that the quadru-
ple (S1,S2, I1, I2) satisfies (4). If S1 (S2, respectively)
is a t-conorm, then I1 (I2, respectively) is an (S2,NI2)-
implication ((S1,NI1)-implication, respectively).

After these results, it is clear that we should focus on
(U,N)-implications. Note that we can expand Defini-
tion 2.11 and talk about (A,N)-operators, where A is
just an aggregation function. Also, the following result
is obvious.

Proposition 3.7 ([14, Theorem 33]). If A is a disjunc-
tive aggregation function and N is a fuzzy negation,
then the operator I : [0,1]2 → [0,1] given by the for-
mula I(x,y) = A(N(x),y) is a fuzzy implication.

Moreover, from the above investigations, it seems that
usually in Eq. (4) we assume that I1 = I2. This does not
always have to be true. Let us analyse the following
functions.

Example 3.8. Let us take the classical fuzzy negation
NC and the following aggregation operator

A(x,y) =

{
0, x = y = 0,
1, otherwise.

Then

IA,NC(x,y) =

{
0, x = 1,y = 0,
1, otherwise.

Also, let us consider the drastic (S,N)-implication
given by the formula

ID(x,y) =

{
1, x = 0,
y, otherwise.

Then we have A(I(A,N)(α,x),y) = A(x, ID(x,y)), so the
quadruple (A,A, IA,NC , ID) satisfies (4).

Also, it is not true that always (according to the above
notation) I1 = IS1,N for some N.

Example 3.9. Again, let us take ID and any t-conorm
S. Then it can be easily shown that the quadruple
(S,S, ID, ID) satisfies (4).
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Let us go back to (A,N)-operators. If we consider that
I = IA,N in (4), then we obtain the following functional
equation:

S1(A1(N(α),x),y) = S2(x,A2(N(α),y)),

satisfied for α,x,y ∈ [0,1]. With the assumptions of
the commutativity of A1,A2 and the surjectivity of N,
it leads us to the following functional equation of gen-
eralized associativity:

S1(A1(x,z),y) = S2(x,A2(z,y)), x,y,z ∈ [0,1]. (GA)

This equation has been already investigated by Aczěl et
al. [1, Theorem 1]. However, the authors required there
functions S1,S2,A1,A2 with properties, which were en-
sured by the existence of a quasigroup. Therefore, we
should add properties that can substitute those assump-
tions for fuzzy connectives and still give a valid result.
To obtain it, we restrict our considerations to some par-
ticular aggregation functions.
Definition 3.10. We say that an aggregation function
A : [0,1]2→ [0,1] is “quasi-multiplicative” generated if
there exist continuous bijections f ,g,h : [0,1]→ [0,1]
such that

A(x,y) = h( f (x) ·g(y)), x,y ∈ [0,1], (QM)

where f ,g,h are all increasing (or all decreasing) with

h−1(0) = f (0)g(0) and h−1(1) = f (1)g(1).

Note that strict t-norms and t-conorms are subclasses
of “quasi-multiplicative” generated functions. Thus,
we have the following interesting result for the intro-
duced family of aggregation functions.
Theorem 3.11. Let S1,S2,A1,A2 be “quasi-
multiplicative” generated aggregation functions.
Then the following statements are equivalent:

(i) The quadruple (S1,S2,A1,A2) satisfies (GA).

(ii) A1(x,y) = ϕ−1(G(ξ (x),λ (y))),
S1(x,y) = G(ϕ(x),ψ(y)),
A2(x,y) = ρ−1(G(λ (x),ψ(y))),
S2(x,y) = G(ξ (x),ρ(y)),

for x,y ∈ [0,1], where ϕ,ψ,ξ ,ρ,λ : [0,1]→ [0,1]
are continuous bijections and G : [0,1]2 → [0,1]
is an associative function.

Let us finish our manuscript with the following inter-
esting examples.
Example 3.12. (i) Let

ϕ(x) = x2,

ψ(x) = ξ (x) = λ (x) = x,

ρ(x) = x3,

for x ∈ [0,1] and

G(x,y) = x+ y− xy, x,y ∈ [0,1].

Then

S1(x,y) = x2 + y− x2y,

S2(x,y) = x+ y3− xy3,

A1(x,y) =
√

x+ y− xy,

A2(x,y) = 3
√

x+ y− xy,

for x,y ∈ [0,1]. From our main new result
(Theorem 3.11) we have that the quadruple
(S1,A1,S2,A2) satisfies (GA) (in fact, this obser-
vation can be easily checked). Moreover, the
quadruple (S1,S2, IA1,NC , IA2,NC) satisfies (4).

(ii) Note, that if G is, for instance, the product t-norm,
then with the above ϕ,ψ,ξ ,ρ,λ , the Eq. (GA) is
satisfied by the quadruple (S1,A1,S2,A2), where

S1(x,y) = x2y,

S2(x,y) = xy3,

A1(x,y) =
√

xy,

A2(x,y) =
3
√

xy3,

for x,y ∈ [0,1].

4 Conclusions

In this paper, we have discussed the property of mi-
grativity of t-conorms. Also, we have shown how it
is connected with the notion of generalized associativ-
ity. Moreover, we have given some solutions to such a
functional equation.
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