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Abstract
Given the reported increasing trends in high Asian streamflow and rapidly increasing water
demand in the Indian subcontinent, it is necessary to understand the long-term changes and
mechanisms of snow- and glacier-melt-driven streamflow in this area. Thus, we have developed a
June–July streamflow reconstruction for the upper Indus River watershed located in northern
Pakistan. This reconstruction used a temperature-sensitive tree-ring width chronology of Pinus
wallichiana, and explained 40.9% of the actual June–July streamflow variance during the common
period 1970–2008. The high level of streamflow (1990–2017) exceeds that of any other time and is
concurrent with the impact of recent climate warming that has resulted in accelerated glacier
retreats across high Asia. The streamflow reconstruction indicated a pronounced reduction in
streamflow in the upper Indus River basin during solar minima (Maunder, Dalton, and Damon).
Shorter periods (years) of low streamflow in the reconstruction corresponded to major volcanic
eruptions. Extreme low and high streamflows were also linked with sea surface temperature. The
streamflow reconstruction also provides a long-term context for recent high Asian streamflow
variability resulting from seasonal snow and glaciers that is critically needed for water resources
management and assessment.

1. Introduction

As a result of fast-growing populations and socio-
economic development, demand for water resources
in South Asian countries is increasing rapidly, and
water disputes are escalating in the South Asian sub-
continent (Zawahri 2009, Qiu 2016, Li et al 2016,
Zhang 2016, Reddy et al 2017, Vinke et al 2017,

Biemans et al 2019). The uncertainty of the impact
of climate change and human activities is one of
the most important environmental challenges facing
water supply assessment, with far-reaching implica-
tions on regional sustainable development (Wu et al
2017, Kundzewicz et al 2018). Thus, many studies
have focused on the availability of water resources in
various climate scenarios (Gosling and Arnell 2016,
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Tramblay et al 2018, Yao et al 2019, Zhai et al 2020,
Liu et al 2020). Although the South Asian mon-
soon generally brings abundant rainfall, the water
resources of the Indian subcontinent, which is one
of the most densely populated areas in the world,
are unevenly distributed due to monsoon failure; as
a result, South Asian countries are currently facing
differing degrees of water scarcity (Cook et al 2010,
Chen et al 2017, Mishra et al 2019, Zhai et al 2020).
Increased meltwater from high Asian glaciers result-
ing from global warming has raised doubts about the
capacity of freshwater supplies to meet the growing
water demands of South Asia (Bolch 2017, Gao et al
2019, Pan et al 2019). South Asian socio-economic
development has been greatly affected, either dir-
ectly or indirectly, by the climate-driven changes in
water resources. Thus, long-term river streamflow
records are needed for proper water resource plan-
ning. Nevertheless, the brevity of the span of instru-
mental streamflow records available in South Asia
has greatly hampered the development of appropri-
ate water resource management policies and severely
limited our understanding of South Asian water
resources from a long-term perspective.

Moisture-sensitive tree-ring width series from
high Asian river basins provide reliable high-
resolution streamflow records dating back several
centuries or even millennia (Yuan et al 2007, Gou
et al 2010, Liu et al 2010, Yang et al 2012, Cook et al
2013, Singh andYadav 2013, Shah et al 2014, Xiao et al
2017, Panyushkina et al 2018, Rao et al 2018, Chen
et al 2019a, 2019b, Zhang et al 2020). Tree-ring width
chronologies of conifers from the Indus River basin,
which is one of the most important irrigation water
sources in South Asia, have been used to develop
streamflow reconstructions (Cook et al 2013, Rao
et al 2018). By using a network of tree-ring sites from
the upper Indus basin, including a large number of
climate-sensitive tree-ringwidth series, precipitation-
and temperature-related mixed streamflow data have
been reconstructed, and thus can effectively reveal
the history of the Indus River in terms of water
resources (Rao et al 2018). Both the South Asian
summer monsoon and glacial changes have signi-
ficant effects on the streamflow of the Indus River
(Koppes et al 2015, Mukhopadhyay and Khan 2015,
Minallah and Ivanov 2019), but the effects of these
factors on the streamflowhave not been quantitatively
established.

In this study, we develop a new tree-ring width
chronology of the Himalayan white pine (Pinus
wallichiana) from an upper-treeline site in Northern
Pakistan, and apply the reliable period of this chrono-
logy to reconstruct June–July streamflow variations
in the Indus River since 1350 CE. We use this recon-
struction to investigate high Asian streamflow vari-
ability resulting from seasonal snow and glacier ice.
We also explore the streamflow variations in relation

to natural forcings. In particular, we focus on the
relationship between streamflow changes and the his-
torical process in South Asia.

2. Materials andmethods

2.1. Study area
The sampling site (AST, 74◦48′ E, 35◦20′ N, 3450–
3500 m a.s.l.) is located in arid and semi-arid regions
in Northern Pakistan (figure 1), lies in the path of the
westerly and South Asian monsoon is often affected
by water vapour transport anomalies (Latif et al 2017,
Bibi et al 2020). These characteristics make the region
sensitive to climate change (e.g. Anjum et al 2019).
Precipitation may exceed 1000 mm at the windward
slopes near the upper treeline (Ahmed et al 2017);
the region surrounding Astore (and the sampling site
from which tree-ring cores were collected) was actu-
ally more similar to the sub-humid plateau mon-
soon regions based on variations in precipitation and
temperature. As a result, high-altitude areas in the
regions are characterised by cold, snowy winters and
warm, wet summers, and covered by widespread gla-
ciers and a wide variety of coniferous forests. Mean
annual temperature and precipitation values equal
approximately 486.2 mm and 9.9 ◦C, respectively
(figure 2(A)). Average May–June precipitation and
temperature range from 7.9 to 150.1 mm and from
16.7 ◦C to 21.8 ◦C, respectively. The Indus River val-
leys in the study area are characterised by arid and
semi-arid climates (with 139 mm of precipitation in
Gilgit). Seasonal distributions of streamflow and pre-
cipitation differ somewhat, and streamflow increase
rapidly from June to August because of the influence
of snow/glacier meltwater (figure 2(B)). High cor-
relations among the instrumental streamflow records
indicated that the streamflow of different rivers at the
upper Indus River basin was responding to common
factors (figure 2(C)).

2.2. Tree-ring data
One tree-ring site (AST) was sampled in the Astore
region (figure 1). Increment cores were collected from
living Himalayan white pine trees at breast height,
using 10 mm-diameter increment borers. In total, 75
increment cores were collected from 37 trees from
the AST site at the upper treeline near the glaciers
in the Astore region. The biophysical environment
implies that the growth of Himalayan white pine
is limited by temperature at the timberline in the
Karakoram (Asad et al 2017). All increment cores
were mounted and polished with 400 grit sandpa-
per; annual ring widths were measured to the nearest
0.01 mm using a LINTABmeasuring system.We used
the COFECHA program to assess the cross-matching
quality of all tree-ring width series (Holmes 1983).
Next, we standardised all individual tree-ring width
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Figure 1. (A) Map showing major rivers originating on the Tibetan Plateau, the black rectangle indicates the area of detailed
research in the upper Indus River, northern Pakistan. (B) Locations of the sample site, hydrological stations and climate stations
in the upper Indus River.

Figure 2. (A) Monthly mean temperature and monthly total precipitation at the Astore meteorological station (1972–2017 CE).
(B) The average monthly streamflow from 1970 to 2008 at the Kachura hydrologic station. (C) The annual streamflow records
from the Partab Bridge (Indus River, 1962–1996), Kachura (Indus River, 1970–2008), Yogo (Shyok River, 1973–2008) and Alam
Bridge (Gilgit River, 1969–1998).

series, using the ARSTAN program, by conservat-
ive de-trending methods (negative exponential and
straight-line curve fits) to remove non-climatic trends
due to tree age and tree size while minimizing the
removal of the climatic variance (Cook 1985). The
detrended series were combined into the site chro-
nology using a biweight robust mean (Cook 1985).
We chose to use the standard version of the tree-ring
width chronology (AST), ranging from low- to high-
frequency common signals, which includes envir-
onmental and climatic signals. A minimum sample
depth (number of trees ⩾ 3) was adopted to ensure
that strong climate or hydrological signals were based
on years when the expressed population signal (EPS)
was higher than 0.85 (Wigley et al 1984). The AST
chronology used in the streamflow reconstruction
below was therefore truncated prior to 1350 CE, based
on the threshold values.

2.3. Instrumental data and statistical methods
Monthly instrumental climate data from 1972 to
2017, included monthly mean temperature and
total monthly precipitation, were obtained for the
Astore climate station (74◦20′ E, 35◦55′ N, 1454 m

a.s.l.) from the Pakistan meteorological department
(figure 2(A)). Monthly mean streamflow data of the
upper Indus River were obtained from the Kach-
ura hydrological station, located at 75◦25′ E, 35◦27′

N, 2341 m a.s.l. (table 1). The streamflow records
date from 1970 to 2008. Figure 2(B) shows the
average monthly streamflow from 1970 to 2008 at
the Kachura hydrologic station. Other instrumental
streamflow data were also obtained from three hydro-
logical stations, Partab Bridge (Indus River, 1962–
1996), Yogo (Shyok River, 1973–2008), and Alam
Bridge (Gilgit River, 1969–1998), showing the exist-
ence of some strong signals common to several hydro-
logical stations (figure 2(C)). Bootstrapped correla-
tion analysis was performed for initial indication of
the relationship between tree growth and monthly
streamflow/climate using the DENDROCLIM2002
program (Biondi and Waikul 2004), for which data
were available without gaps. As seasonally averaged
climate and streamflow is more representative than
just one single month (Fritts 1976), we also screened
the AST chronology in simple correlation analysis
(Pearson’s correlation) with the seasonal climate and
streamflow subsets to find the most appropriate
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seasonal predictand for the streamflow reconstruc-
tion. To examine the lagged effects of prior-year cli-
mate/streamflow on subsequent ring formation, the
analysis window was extended from previous July to
September of the current year.

Considering the importance of understanding
historical summer streamflow in Indus River and
the highest correlation coefficient, standard tree-ring
methods were used to reconstruct June–July stream-
flow for the upper Indus River basin (Fritts 1976).
The linear regression model between the predictors
(the AST chronology) and the predictand (stream-
flow) was then developed, retrodicting streamflow
data during the pre-instrumental period. Because the
instrumental streamflow record is not long enough to
be divided into the verification and calibration peri-
ods, we used the ‘leave-one-out’ method (Michaelsen
1987) to assess the statistical fidelity of our recon-
struction equation. The statistics include the Pear-
son’s correlation coefficient, reduction of error, sign
test and product mean test (Fritts 1976). To verify
whether the reconstruction is subjected to over-fitting
due to trend distortion, we also calibrated the first dif-
ferences (year-to-year changes) of the tree-ring series
with actual streamflow data. A temperature-sensitive
streamflow reconstruction of Kara Darya River in
the Pamir-Alai Mountains, Kyrgyzstan (Zhang et al
2020), provides a reference to validate our streamflow
reconstruction.

In order to establish whether our streamflow
reconstruction exhibited links with large-scale tem-
perature and snow cover, we correlated our stream-
flow reconstruction with the June–July snow cover
dataset (1966–2017) (https://climate.rutgers.edu/
snowcover) and HadCRUT4/HadSST4 (Cowtan and
Way 2014) June–July temperature (1960−2017).
Finally, in order to investigate teleconnections of
regional streamflow to remote oceans, the two com-
posite sea surface temperature (SST) anomaly maps
of the 10 highest and the 10 lowest streamflow years
during the period 1948–2017 were created using the
gridded SST dataset (Smith and Reynolds 2003) to
indicate the different spatial SST pattern.

In order to indicate the periodicities of our
streamflow reconstruction, we performed a multi-
taper method (MTM) analysis (Mann and Lees 1996)
with a 5 × 3 π taper and a red noise background.
MTM is an good method for investigating period-
icities of the time sequence because it requires very
few a priori assumptions concerning the structure
of the time sequence, and provides a robust average
values for separating the signal and noise compon-
ents of the time sequence. To reveal possible influ-
ence of solar activity on regional streamflow, we
compared with the streamflow reconstruction, using
solar activity reconstruction (Muscheler et al 2007),
sunspot numbers (www.sidc.be/silso/datafiles) and

Northern Hemisphere summer temperature recon-
struction (Wilson et al 2016, Guillet et al 2017).

To determine the impact of volcanic-induced
cooling on the high Asian seasonal snow and glacier-
derived streamflow, we also applied a superposed
epoch analysis (SEA, Haurwitz and Brier 1981). A
total of 48 primarily volcanic eruption events with
high volcanic eruption indexes (VEI⩾ 5) prior to the
1990s was downloaded from the Smithsonian Institu-
tion (http://volcano.si.edu/search_eruption.cfm). In
SEA each year in a list of primarily volcanic erup-
tion events is taken as the zero window year.
Streamflow values for the volcanic event years and
for windows of years, in this case 6 years before
and 4 years after the volcanic event years, are
expressed as departures from the average values for
the 11 years in each case. The departures for all
the 11 years windows are averaged and superposed.
The Monte Carlo simulation technique was used to
evaluate the statistical significance of autocorrelation
of the streamflow reconstruction with the random
sampling method (Adams et al 2003). SEA was con-
ducted using the EVENT software (version 6.02P)
(www.ltrr.arizona.edu/software.html).

3. Results

Comparison between the AST chronology and
monthly streamflow indicate the existence of sig-
nificant positive correlations during early summer
(from June to July) (figure 3(A)). Further analysis
showed that the tree-ring width chronology is more
significantly correlated with temperature, and con-
versely, that there is no significant correlation with
precipitation (figure 3(B)). A significant correlation
(r= 0.47, P < 0.01) was found between the AST chro-
nology and the mean temperature from the previous
October to the current July; the highest correlation
(r = 0.64, P < 0.01) occurred between the tree-ring
width chronology and the June–July period, implying
that the temperature-sensitive tree-ring width chro-
nology could be used as an indicator of temperature-
dominated ice-snowmeltwater signals (Starheim et al
2013, Zhang et al 2020).

TheAST chronology explains 40.9%of the instru-
mental June–July streamflow variance during the
period 1972–2008. Thus, the AST chronology was
used in the regression model to reconstruct the June–
July streamflow of the upper Indus River. The final
connection between this streamflow as a transfer
function of tree-ring widths designed by regression
analysis is shown below:

Y= − 368.24 + 3097.965X (1)

where Y is the June–July streamflow of the upper
Indus River (m3 s−1) and X is the AST chronology
(non-dimensional values).
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Figure 3. (A) Bootstrapped correlations of the AST chronology with monthly streamflow values of the hydrologic stations from
the upper Indus River basin. ∗ Significant at P < 0.05; ∗∗ significant at P < 0.01. (B) Bootstrapped correlations between the AST
chronology and climate factors: the monthly total precipitation (blue) and monthly mean temperature (red) from the previous
July to September during the common period 1972–2017. Dashed lines indicate the 0.05 significance level.

Figure 4. (A) Comparison between the observed and reconstructed June–July streamflow of the upper Indus River for the
common period 1970–2008. (B) Comparison between the first differences of observed and reconstructed June–July streamflow of
the upper Indus River for the common period 1970–2008. (C) June–July streamflow reconstruction of the upper Indus River since
1350 CE. The dashed horizontal line represents the long-term mean. The thick line emphasizes the long-term fluctuations of the
streamflow reconstruction with a 21 year low-pass filter.

For the instrumental period (1970–2008) of the
final streamflow reconstruction, the adjusted r2 value
was 0.396; the correlation between the initial differ-
ences of the tree-ring series and instrumental stream-
flow was 0.62 (P < 0.01) (figures 4(A) and (B)).
The standard error of the estimate was 439.8; the F
value was 25.65. The reduction of error (0.35) was
strongly positive, using leave-one-out method val-
idation, indicating the reconstructed equation was
stable. For additional verification, the product means

test statistics (5.49) and sign test (9–/30+) were both
found to be significant at a 99% confidence level.
These tests indicated the validity of the regression
model and can be used to show the June–July stream-
flow variations of the upper Indus River during the
period 1350–2017 CE.

The June–July streamflow reconstruction and
its 21 year low-pass filtered values for the upper
Indus River in the northern Pakistan are shown in
figure 4(C). The streamflow reconstruction included
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Figure 5. Composite maps of SST for the 10 highest streamflow (A) and 10 lowest streamflow (B) years. (C) Spatial correlation
map of the streamflow reconstruction with the June–July snow cover dataset (https://climate.rutgers.edu/snowcover) from 1966
to 2017. (D) Spatial correlation map of the streamflow reconstruction with HadCRUT4/HadSST4 (Cowtan and Way 2014)
June–July temperatures from 1960 to 2017.

a considerable number of low-frequency signals over
the past 668 years. The long-term average of the
streamflow reconstruction was 2716.0 m3 s−1, with a
standard deviation of 454.4 m3 s−1. The streamflow
reconstruction indicated relatively high streamflow
from the mid-fourteenth to mid-sixteenth centur-
ies, followed by two centuries, centred around 1650,
of relatively low streamflow and pronounced high
streamflow from 1750 to 1800. Streamflow over the
past 200 years has generally shown a slow upward
trend, with some short-term fluctuation in peri-
ods such as the 1810s through the 1850s, the 1870
through the 1890s, and the 1960s through the 1980s.
The reconstructed streamflow showed an accelerating
upward trend during the recent warming period.

The list of the highest and lowest streamflows
reconstructed for the upper Indus River watershed
since 1350 CE showed that seven of the ten low-
est streamflows occurred during the seventeenth and
nineteenth centuries, with the two lowest values in
1647 and 1651. Three of the ten highest stream-
flows occurred during the last 10 years, particularly
in 2016–17. The composite map of the 10 highest
streamflow years were characterised by a pattern of
Tropical Eastern Pacific and mid-high latitudes SST
above the average (1981–2010, 2000), resembling

the pattern of El Niño years. During the 10 low-
est streamflow years, the opposite pattern occurred
(figures 5(A) and (B)). As shown in figure 5(C), some
significant negative areas of correlation with the Rut-
gers snow cover dataset (https://climate.rutgers.edu/
snowcover) were found in the Karakoram region.
Conversely, the streamflow reconstruction was signi-
ficantly positively correlated with June–July temper-
atures in high Asia (figure 5(D)).

The MTM of spectral analysis revealed 334 year
(99%), 51.2 year (99%), 5.1 year (95%), 3.3 year
(99%), and 2.2 year (99%) cycles in the reconstructed
streamflow data for the upper Indus River basin. Cor-
relations between this study and August–September
Kara Darya River streamflow reconstruction (Zhang
et al 2020), computed over the 1411–2016 common
period, equalled 0.21 (P < 0.01), increasing to 0.32
following 40 year smoothing. Analysis of correlations
between our streamflow reconstruction and solar
activity revealed no systematic connection; this is
likely related to the complex forcing data and regional
hydroclimatic variation. Detailed comparison, how-
ever, revealed some primarily low streamflow periods
(relatively low temperatures) following prominent
solar minima (Maunder, Dalton and Damon) with
an observed sunspot number sequence (Stuiver and
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Figure 6. Comparison among streamflow reconstruction of the upper Indus River (this study), solar activity (Muscheler et al
2007), sunspot numbers (www.sidc.be/silso/datafiles) and Northern Hemisphere summer temperature reconstruction (Wilson
et al 2016, Guillet et al 2017). All series were smoothed with a 21 year low-pass filter to emphasize long-term fluctuations. Red
boxes represent low streamflow conditions during during solar minimum periods, and blue box represent out-of-phase
relationship between streamflow and sunspot number during the recent warm period.

Figure 7. Results of the SEA using the significance tests
(random sampling).

Braziunas 1989; figure 6). Mean streamflow during
the three solarminimumperiodswas 6.4% lower than
the long-term average of the streamflow reconstruc-
tion during the period 1350–2017. Figure 7 shows the
SEA results based on a list of 48 volcano years. A stat-
istically significant (P < 0.01) reduction in June–July
streamflowbegan in the same year as the eruption and
lasted for 2–4 more years. We estimated mean peak

streamflow decline due to these large volcanic erup-
tions at 134–141 m3 s−1.

4. Discussion

4.1. Tree growth/streamflow relationships
Most previous dendroclimatic reconstructions of
river streamflows have been based on precipitation/
moisture-sensitive tree-ring-width series (Yuan et al
2007, Akkemik et al 2008, Gou et al 2010, Liu et al
2010, Urrutia et al 2011, Yang et al 2012, Singh
and Yadav 2013, Shah et al 2014, Woodhouse and
Pederson 2018, Chen et al 2019a, 2019b). Due tomul-
tiple streamflow contributions caused by the com-
plex mountain terrain of Karakorum, the develop-
ment of streamflow reconstructions for the upper
Indus River basin requires a dense multi-species
tree-ring network which is related to both precip-
itation and temperature, and the highest positive
correlation between tree-ring widths and monthly
streamflow were found in the current growing season
(May–September) (Cook et al 2013, Rao et al 2018).
The dissimilar responses of tree rings to stream-
flow indicate that multi-species tree-ring networks
from different environments can be used to cap-
ture multiple-season streamflow signals (Cook et al

8
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2013), whereas site chronology captures mostly the
link between hydrological information and a single
climatic element (the present study). Due to the
scarcity of summer precipitation, the streamflow in
this period originates mainly from winter precipit-
ation and glaciers (figure 2(A)). These streamflow
reconstructions provided us with accurate hydrolo-
gical information for the upper Indus River basin
(Cook et al 2013, Rao et al 2018); however, this
information cannot, due to the positive linkages
between precipitation and tree-ring-width series,
reflect temperature-dominated ice-snow meltwater
signals (Rao et al 2018). Hydrologic information con-
cerning temperature-related ice-snow meltwater is of
great significance for revealing the mechanism gov-
erning high Asian Alpine glacier water resources in
the context of global warming (Smith and Bookha-
gen 2018, Armstrong et al 2019, Farinotti et al 2020),
especially for the Indian subcontinent, with its severe
water shortage.

In the past decade, some warm-season stream-
flow reconstructions have been developed using
temperature-sensitive tree-ring sequences (Hart et al
2010, Starheim et al 2013, Zhang et al 2020).
We extended previously indicated complex link-
ages between tree-ring widths and climate/stream-
flow; additionally, although the AST chronology
has no significant correlation with precipitation, we
confirmed its relationship with ice-snow meltwater
based on high sensitivity to temperature, includ-
ing SST (figures 5(A) and (B)). From these rela-
tionships, we developed our reconstruction model
of the upper Indus River June–July streamflow. Our
models demonstrate that temperature-sensitive tree-
ring sequences can be used to reconstruct warm-
season streamflow in high Asia. Although responses
of tree rings to streamflow and climate are inconsist-
ent, a close correlation (r = 0.47, P < 0.01) between
this study and that of Rao et al (2018) was found
for the period 1394–2005 CE. The significant negat-
ive correlation with the Rutgers snow cover dataset
(Kunkel et al 2016) also indicates that the streamflow
reconstruction may reflect temperature-dominated
ice-snow meltwater, and an increase in June–July
streamflow was often accompanied by a reduction
in snow cover. However, due to the complex geo-
graphical environment of high Asia and the influ-
ence of the Asian summer monsoon, linkage between
temperature-sensitive tree-ring series and streamflow
appears to exist in thewestern part of highAsia, where
summer rainfall is scarce.

4.2. Natural forcings
Solar activity and its associated energy transfer not
only affect the earth’s biology and climate, but
also exert an important impact on water cycles
(Friis-Christensen and Lassen 1991, Messerotti and
Chela-Flores 2009, Al-Tameemi and Chukin 2016,
Le Mouël et al 2019). As shown in figure 6, close

synchronism exists between periods of significantly
low streamflow and solar minima (Maunder, Dalton,
and Damon). Our streamflow reconstruction exhib-
its a downward trend from the late Mediaeval Warm
Period to the Little Ice Age (Lamb 1965). In particular,
streamflow decreased by about 16.1% under the cold
conditions during the Maunder Minimum (1645–
1715), implying that the output of high Asian Alpine
glaciers in terms of water output was governed by
solar activity during past centuries, notwithstanding
the dramatic changes in this relationship in the recent
warm period. In addition to providing tree-ring evid-
ence for decreases in meltwater due to low temperat-
ure during the three solar minima, we also found that
the solar maximum was synchronised with the high
streamflow stage, with a lag of 20–40 years. This lag
effectmay be linkedwith unexplained variance in tree
rings and other forcing factors, such as volcanic erup-
tions. The out-of-phase relationship since the 1980s
likely refers to anthropogenic warming (Cook et al
2016, Santer et al 2019), although the issue of human
contributions to recent warming is an open question
(Hoegh-Guldberg et al 2019, Connolly et al 2020).
The interaction between solar activity and anthro-
pogenic warming complicates high Asian streamflow
variability.

Many studies have revealed that large volcanic
eruptions have had important effects on summer
temperatures (Anchukaitis et al 2012, D’Arrigo et al
2013, Duan et al 2018, Liang et al 2019); meanwhile,
volcanic-induced cooling may cause changes in gla-
cier mass balance and water cycles (Rampino and Self
1992, Iles and Hegerl 2015, Van Der Bilt et al 2019,
Huston et al 2021). Our streamflow reconstruction
revealed that large volcanic eruption events may have
resulted in reduced streamflow in the upper Indus
River basin (figure 7). A previous study had shown
that volcanic eruptions caused a reduction in pre-
monsoonprecipitation in highAsia (Liang et al 2019);
our study further confirmed that volcanic-induced
cooling also led to a corresponding reduction inmelt-
water in subsequent months. The combination of the
two effects may lead to a reduction in the annual
streamflow output of high Asia. For the upper Indus
River basin, the most pronounced volcanic radiative
forcing arose from a series of large volcanic erup-
tions between the 1800s and 1810s (Sigurdsson and
Carey 1989, Oppenheimer 2003), including the 1815
eruption of Tambora (Chenoweth 2001, Raible et al
2016). This low streamflow period likely resulted in
a volcanic-induced cooling effect, along with lower
temperatures due to a low level of solar activity in the
Dalton Minimum (Russell et al 2010). Large volcanic
eruptions also correspond to the delayed emergence
of high streamflow during the sunspot maximum,
including Huaynaputina (1600, VEI = 6; De Silva
and Zielinski 1998), Laki (1783, VEI = 5; Thordar-
son and Self 2003), and Tambora (1815, VEI = 7;
Raible et al 2016). Overall, low-frequency signals
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of streamflow reconstruction appear to mimic solar
activity; moreover, the timing of large volcanic erup-
tions matches certain low streamflow events, pos-
sibly exacerbating Indian subcontinent water scarcity.
Interestingly, large volcanic eruptions may delay the
appearance of high streamflow during solar maxima,
and the irregular nature of large-scale volcanic erup-
tions may have led to some errors in the streamflow
project. Recent anthropogenic warming has not only
further diminished the influence of natural forcing
during the modern warm period (Park et al 2018,
Marvel et al 2019), but also changed the high Asian
water cycle.

4.3. Interaction between streamflow and human
activities
Although summer streamflow in this region and
in Central Asia are in close agreement, drought
and low streamflow events occurred in Central Asia
from the late fifteenth to the early sixteenth cen-
tury (Opała-Owczarek and Niedźwiedź 2019, Zhang
et al 2020). This dry condition forced Central Asian
peoples to migrate outwards, while the neighbour-
ing Indian subcontinent, including the Indus basin,
was relatively humid and attracted conquerors from
Central Asia (Yadava et al 2016). It is interesting to
note the low streamflow phase during the Maunder
Minimum (1645–1715). Famine and the economic
hardships caused by bad climate during the Maun-
der Minimum forced the Mughal emperors to under-
take the conquests to relieve the Empire’s ruling crisis
(Panhwar 2004, Uberoi 2012, Parwez and Khan 2017)
The Mughal Empire, although it reached its max-
imum extent under Aurangzeb, was slowly weakened
by prolonged low streamflow and frequent warfare
(Truschke 2017). Despite high streamflows during
the eighteenth century due to relatively high tem-
peratures (Yadav et al 2011), the Indian subcontin-
ent was conquered completely only after the early-
nineteenth-century low streamflow (Clingingsmith
and Williamson 2008). We must admit that stream-
flow is not the decisive factor in the historical pro-
cess; nevertheless, it has affected regional social and
economic development to a certain extent. Based
on our tree-ring record, streamflow, unusually, has
increased by 18.3% over the past 20 years. Stream-
flow in the Indian subcontinent may have benefit-
ted from recent anthropogenic warming (Lutz et al
2014, Armstrong et al 2019); however, this increase
was based on the rapid melting of glaciers, and this
area is marked by great uncertainty (Luo et al 2018,
Biemans et al 2019). Correlations between this study
and temperature under the CMIP6 SSP-585 scen-
ario (CESM2, Eyring et al 2019), computed over the
1850–2017 common period are 0.36, and increase
to 0.59 after 21 year smoothing. Since the stream-
flow is mainly controlled by temperature, accord-
ing to the linear model, the averaged streamflow will
risen bymore than 35%during the period 2018–2100.

However, if anthropogenic warming continues and
glaciers disappear, a significant reduction in stream-
flow (Kraaijenbrink et al 2017, Pritchard 2019) may
occur; this may have a negative impact on the Indian
subcontinent (Biemans et al 2019), which is densely
populated and depends heavily on snow and ice melt
for irrigation agriculture.

5. Conclusions

In this paper, a new tree-ring chronology of Pinus
wallichiana was developed from the upper Indus
River basin in Northern Pakistan. The tree-ring chro-
nology is sensitive to October–July temperature vari-
ations, and has a strong association with stream-
flow changes. Based on this temperature-sensitive
chronology, we have presented a well-calibrated and
verified June–July streamflow reconstruction of the
upper Indus River basin. This streamflow reconstruc-
tion placed the unusual and unprecedented most
recent upward trend of snow- and glacier-melt-driven
streamflow since the 1990s in a long-term context
and enabled evaluation of potential impacts of water
resources on historical societal changes on the Indian
subcontinent. This streamflow reconstruction also
enabled an assessment of the possible effect of solar
activity and large volcanic eruptions on the variabil-
ity of high Asian streamflow from seasonal snow and
glacier ice.
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