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THE LAW OF THE ITERATED LOGARITHM
FOR RANDOM DYNAMICAL SYSTEM WITH JUMPS

AND STATE-DEPENDENT JUMP INTENSITY

Joanna Kubieniec

Abstract. In this paper our considerations are focused on some Markov chain
associated with certain piecewise-deterministic Markov process with a state-
dependent jump intensity for which the exponential ergodicity was obtained
in [4]. Using the results from [3] we show that the law of iterated logarithm
holds for such a model.

1. Introduction

We conduct our considerations for some subclass of piecewise-deterministic
Markov processes (PDMP). These processes are governed by deterministic
semiflows which are intermittent by jumps. PDMP’s have been introduced
by Davis in [5] and have found their application, among others, in modeling
phenomena in biology, as stochastic model for gene expression ([2, 14, 15]).

Most results on such processes are formulated in situation when the periods
between jumps have a Poisson distribution with constant parameter λ.We are
interested in the properties of these type of systems but in case when the jump
intensity depends on the trajectory of the process. The asymptotic stability
and exponential ergodicity for a model in which the intensity of jumps depends
on the state of the system was examined in [4, 11]. In this work we focus to
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prove one of the limit theorems, namely the law of the iterated logarithm
(LIL), for a such process. Limit theorems for Markov processes have recently
been the subject of intense research (see e.g. [1, 6, 9, 10, 16]). The LIL defines a
range in which, with probability 1, from a certain point the trajectories of the
stochastic process will be found. In other words the LIL examines the greatest
deviations from the mean of stochastic process. It can be located between the
strong law of large numbers and the central limit theorem. Originally it was
formulated by A. Khintchine in [7] and independently by A. Kolmogorov in [8].

The article consists of three parts. In Section 2 we introduce a notation and
formulate basic definitions and facts related to Markov operators. Section 3
contains a formal description and main assumption of the considered model.
In the last section we formulate and prove the LIL for the process described
in Section 3.

2. Preliminaries

2.1. Basic notation and definition

Let (S, d) be a Polish metric space and let BS denotes the σ-field of all
Borel subsets of S. As usual, by B(x, r) we denote the open ball in (S, d) with
center at x ∈ S and radius r > 0. We use symbol 1A and δx for indicator
function of set A ⊂ S and Dirac measure in point x ∈ S, respectively. We use
letters R and N to denote successively the set of real and natural numbers.
Additionally, R+ stands for the set of nonnegative real numbers and N0 for
N ∪ {0}.

Within the set B(S), which states for all bounded, Borel measurable func-
tions f : S → R, we specify two subsets: C(S) and Lip(S) consisting of all
continuous functions and Lipschitz-continuous functions, respectively.

Let Ms(S) be the set of all finite, countably additive functions on BS .
ByM(S) andM1(S) we denote the subsets ofMs(S) consisting of all non-
negative measures and all probability measures, respectively.

We writeML1,k(S) for the set of all µ ∈M1(S) satisfying∫
S

(L(x))k µ(dx) <∞,
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where k > 0 and L : S → R+ is a Lyapunov function i.e L is bounded on
bounded sets and for some x0 ∈ S

lim
d(x,x0)→∞

L(x) =∞,

if S is unbounded.
The set Ms(S) is considered with the Fortet-Mourier norm ||·||FM ([12,

13]), given by

||µ||FM = sup
{∣∣∣ ∫

S

f(x)µ(dx)
∣∣∣ : f ∈ FFM (S)

}
for µ ∈Ms(S),

where

FFM (S) = {f ∈ C(S) : |f(x)| ≤ 1, |f(x)− f(y)| ≤ d(x, y), x, y ∈ S}.

2.2. Markov operators

An operator P :M(S)→M(S) is called a Markov operator if
(i) P(aµ1 + bµ2) = aPµ1 + bPµ2 for a, b ∈ R+, µ1, µ2 ∈M(S),
(ii) (Pµ)(S) = µ(S) for µ ∈M(S).

If for the Markov operator P there exists a dual operator U : B(S) → B(S)
i.e

(1)
∫
S

f(x)(Pµ)(dx) =

∫
S

(Uf)(x)µ(dx) for f ∈ B(S), µ ∈M(S),

then P is called regular.
A function K : S × BS → [0, 1] is called a substochastic kernel if

(i) K(·, A) : S → [0, 1] is measurable for every A ∈ BS ,
(ii) K(x, ·) : BS → [0, 1] is a subprobability Borel measure for every x ∈ S.

If K is substochastic kernel and K(x, S) = 1 for x ∈ S then K is called
stochastic kernel.

For given stochastic kernel K we can always set two mappings P : M(S)→
M(S) and U : B(S)→ B(S) by formulas:

(2) (Pµ)(A) =

∫
S

K(x,A)µ(dx) for µ ∈M(S), A ∈ BS ,

and

(3) (Uf)(x) =

∫
S

f(y)K(x, dy) for x ∈ S, f ∈ B(S).



The law of the iterated logarithm for random dynamical system . . . 239

Then P is a Markov operator and U is its dual operator. Let us notice that
using (1) and (3) we obtain

(4)
∫
S

f(x)(Pµ)(dx) =

∫
S

∫
S

f(y)K(x, dy)µ(dx) for f ∈ B(S).

We want to emphasize that the operator P can be extended to a linear op-
erator defined on the space of all bounded below Borel functions with keeping
the duality property (1).

A regular Markov operator P is called Feller if Uf ∈ C(S) for any f ∈
C(S).

We say that the µ∗ ∈M(S) is invariant for operator P if Pµ∗ = µ∗.
The operator P is said to be exponentially ergodic if there exists invariant

measure µ∗ ∈M1(S) and constant β ∈ [0, 1) such that, for every µ ∈ML1,1(S)
and some constant Cµ ∈ R, we have

||Pnµ− µ∗||FM ≤ Cµβ
n for all n ∈ N.

2.3. Markov chains

It is well known that if we take a stochastic kernel K and a measure
µ ∈M1(S) then we can always define on relevant probability space, say
(Ω,F ,Pµ), a homogeneus Markov chain (χn)n∈N0 for which

Pµ(χ0 ∈ A) = µ(A) for A ∈ BS ,

K(x,A) = Pµ(χn+1 ∈ A|χn = x) for x ∈ S,A ∈ BS , n ∈ N0.(5)

If we consider the Markov operator P for the kernel (5) according formula (2),
then

µn+1 = Pµn for n ∈ N0

where

µn(·) := Pµ(χn ∈ ·).

In our further considerations we will use the symbol Eµ for the expectation
with respect to Pµ. If µ = δx for some fixed x ∈ S, we will write Ex instead
of Eδx .
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We say that a time-homogeneus Markov chain evolving on the space S2 is
a Markovian coupling of some stochastic kernel K : S × BS → [0, 1] whenever
its stochastic kernel J : S2 × BS2 → [0, 1] satisfies

J (x, y,A× S) = K(x,A) and J (x, y, S ×A) = K(y,A)

for all x, y ∈ S and A ∈ BS . Let us underline this, that if J : S2×BS2 → [0, 1]
is a substochastic kernel satisfying

J (x, y,A× S) ≤ K(x,A) and J (x, y, S ×A) ≤ K(y,A),

for all x, y ∈ S and A ∈ BS , then we are always able to construct a Markovian
coupling of K whose stochastic kernel J satisfies J ≤ J .

2.4. The law of the iterated logarithm for Markov chains

Let µ ∈ M1(S) be a initial distribution of the Markov chain (χn)n∈N0 .
For any n ∈ N and f ∈ Lip(S) we define

sn(f) =

{
f(χ0)+...+f(χn−1)√

2n ln(ln(n))
for n > e,

0 for n ≤ e.

Suppose that there exists the unique invariant measure µ∗ ∈ M1(S) for
(χn)n∈N0 .We say that the LIL holds for Markov chain (f(χn))n∈N0 if for some
σ(f̃) ∈ (0,∞)

Pµ
(

lim sup
n→∞

sn(f̃) = σ(f̃)
)

= 1 and Pµ
(

lim inf
n→∞

sn(f̃) = −σ(f̃)
)

= 1,

where f̃ = f −
∫
S
f(x)µ∗(dx).

The following theorem is proved in [3, Theorem 4.7].

Theorem 1. Let (χn)n∈N0 be a time-homogeneous Markov chain with val-
ues in S and let K : S × BS → [0, 1] be the stochastic kernel of (χn)n∈N0 for
which the following conditions hold:
(B0) The Markov operator P corresponding to K is Feller operator.
(B1) There exist a Lyapunov function L : S → R+ and constants a ∈ (0, 1)

and b ∈ (0,∞) such that

(UL)(x) ≤ aL(x) + b.
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(B1′) For some fixed x ∈ S and some r ∈ (0, 2) there exist a∗ ∈ (0, 1) and
b∗ ∈ (0,∞) such that for every ν ∈Md(·,x)

1,2+r(S)

(∫
S

(
d(x, x)

)2+r

(Pν)(dx)
) 1

2+r ≤ a∗
(∫

S

(
d(x, x)

)2+r

ν(dx)
) 1

2+r

+ b∗.

Moreover, assume that there is a substochastic kernel J : S2 × BS2 →
[0, 1] that for every A ∈ BS, x, y ∈ S,

J (x, y,A× S) ≤ K(x,A) and J (x, y, S ×A) ≤ K(y,A).

(B2) There exist F ⊂ S2 and q ∈ (0, 1) such that suppJ (x, y, ·) ⊂ F and∫
S2

d(u, v)J (x, y, du× dv) ≤ qd(x, y) for (x, y) ∈ F.

(B3) For U(r) = {(x, y) ∈ F : d(x, y) ≤ r}, r > 0, we have

inf
(x,y)∈F

J (x, y, U(qd(x, y))) > 0.

(B4) There exist constants v ∈ (0, 1] and l > 0 such that

J (x, y, S2) ≥ 1− ld(x, y)v for every (x, y) ∈ F.

(B5) There is a coupling ((χ
(1)
n , χ

(2)
n ))n∈N0 of K with stochastic kernel J ,

satisfying J ≤ J , such that for some R > 0 and

K := {(x, y) ∈ F : L(x) + L(y) < R}

we can find ζ ∈ (0, 1) and C > 0 satisfying

E(x,y)(ζ
−σK ) ≤ C whenever L(x) + L(y) < 4b(1− a)−1,

where

σK = inf{n ∈ N : (χ(1)
n , χ(2)

n ) ∈ K}.

Let µ ∈ Md(·,x)
1,2+r(S) be an initial distribution of (χn)n∈N0 . If f ∈ Lip(S) and

f is not constant function, then (f(χn))n∈N0 satisfies the LIL.



242 Joanna Kubieniec

3. Model description and assumptions

Let us fix natural number N , set of indexes I = {1, . . . , N} and a Polish
metric space (Y, ρ). We introduce metric space (X, ρc), where

X := Y × I,

ρc((y1, i), (y2, j)) = ρ(y1, y2) + cφ(i, j), (y1, i), (y2, j) ∈ X(6)

and

(7) φ(i, j) =

{
1 for i 6= j,

0 for i = j,

and c is some fixed positive constant. Let Θ be a compact interval.
Assume that for every i ∈ I the mapping Πi : R+ × Y → Y is a semiflow.

It means that Πi is continuous with respect to each variable and

Πi(0, y) = y and Πi(s+ t, y) = Πi(s,Πi(t, y)) for i ∈ I, y ∈ Y, s, t ∈ R+.

Our considerations are focused on discrete-time dynamical system de-
scribed in detail in [4] and determined by stochastic process ((Y (t), ξ(t)))t≥0

evolving through random jumps in the space X.
On a time frame [tn−1, tn] the process (Y (t))t≥0 is driven accordingly with

Πi, where index i is appointed by (ξ(t))t≥0.
At the moment of the jump, i.e at time tn, process (Y (t))t≥0 skips to a

new state due to the mapping qθ : Y → Y and the current semiflow Πi is
displaced by Πj . The qθ is randomly pick out from a given set {qθ : θ ∈ Θ}.
We assume here that Y ×Θ 3 (y, θ) 7→ qθ(y) ∈ Y is continuous and that the
probability of choosing qθ is related with density function Θ 3 θ 7→ pθ(y),
y ∈ Y , such that (θ, y) 7→ pθ(y) is continuous. The semiflows conversion is
done in accordance with a matrix of continuous probabilities πij : Y → [0, 1],
i, j ∈ I, satisfying ∑

j∈I
πij(y) = 1 for i ∈ I, y ∈ Y.

The intensity of jumps is associated with Lipschitz continuous function
λ : Y → (0,∞) such that

λ = inf
y∈Y

λ(y) > 0 and λ = sup
y∈Y

λ(y) <∞.
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In this work we examine only the sequence of random variables given by the
locations directly after the jumps, that is (Yn, ξn) := (Y (τn), ξ(τn)), n ∈ N0,
where τn is a random variable describing the jump time tn.

We will express the above considerations for the intuitive description of
how our model works in the language of random variables. Let (Ω,F ,Pµ) be
a probability space on which we define ((Yn, ξn))n∈N0 . Let (Y0, ξ0) : Ω→ X be
random variable with arbitrary and fixed distribution µ ∈ M1(X). Further,
we introduce sequences (τn)n∈N0

, (ξn)n∈N, (ηn)n∈N and (Yn)n∈N of random
variables which fulfill the following conditions:
• τn : Ω→ R+, n ∈ N0, where τ0 = 0, form a strictly increasing sequence such
that τn →∞ a.e., and ∆τn = τn − τn−1 are mutually independent and have
the conditional distributions given by

Pµ(∆τn+1 ≤ t |Yn = y, ξn = i) = 1− e−L(t,(y,i)) for t ≥ 0,

whenever y ∈ Y and i ∈ I, where L is given by

(8) L(t, (y, i)) =

∫ t

0

λ(Πi(s, y))ds.

• ξn : Ω→ I, n ∈ N, satisfy

Pµ(ξn = j | Yn = y, ξn−1 = i) = πij(y) for i, j ∈ I, y ∈ Y.

• ηn : Ω→ Θ, n ∈ N0, is specified by

Pµ(ηn+1 ∈ A | Πξn(∆τn+1, Yn) = y) =

∫
A

pθ(y) dθ

for all A ∈ BΘ and y ∈ Y .
• Yn : Ω→ Y , n ∈ N, are determined by

Yn+1 = qηn+1(Πξn(∆τn+1, Yn)) for n ∈ N0.

Setting

U0 = (Y0, ξ0), Uk = (Y0, τ1, . . . , τk, η1, . . . , ηk, ξ0, . . . , ξk) for k ∈ N,

we assume that, for every k ∈ N0, the random variables ξk+1 and ηk+1 are con-
ditionally independent of Uk given {Yk+1 = y, ξk = i} and {Πξk(∆τk+1, Yk) =
y}, respectively. In addition to this, we require that ξk+1, ηk+1 and ∆τk+1 are
mutually conditionally independent given Uk, and that ∆τk+1 is independent
of Uk.
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These assumptions assure that ((Yn, ξn))n∈N0 is a Markov chain with phase
space X and stochastic kernel K : X × BX → [0, 1] given by

K((y, i), A) =
∑
j∈I

∫
Θ

∫ ∞
0

1A(qθ(Πi(t, y)), j)λ(Πi(t, y))e−L(t,(y,i))

×πij(qθ(Πi(t, y)))pθ(Πi(t, y)) dt dθ,

(9)

where L is given by (8).
The evolution of the distributions µn(·) := Pµ((Yn, ξn) ∈ ·) can be de-

scribed by the Markov operator P : M(X) → M(X) corresponding to (9),
as defined in (2).

As in [4], we apply following assumptions on considered model:
(A1) There is y∗ ∈ Y such that for every i ∈ I

sup
y∈Y

∫ ∞
0

e−λt
∫

Θ

ρ(qθ(Πi(t, y∗)), y∗)pθ(Πi(t, y))dθ dt <∞.

(A2) There exist α ∈ R, L > 0 and a bounded on bounded sets function
T : Y → R+ such that for t ≥ 0, y1, y2 ∈ Y , i, j ∈ I

ρ(Πi(t, y1),Πj(t, y2)) ≤ Leαtρ(y1, y2) + t T (y2)φ(i, j),

where φ(i, j) is given by (7).
(A3) There is a constant Lq > 0 such that for y1, y2 ∈ Y∫

Θ

ρ(qθ(y1), qθ(y2)) pθ(y1)dθ ≤ Lqρ(y1, y2).

(A4) There exists Lλ > 0 such that for y1, y2 ∈ Y

|λ(y1)− λ(y2)| ≤ Lλρ(y1, y2).

(A5) There exists Lπ > 0 and Lp > 0 such that for y1, y2 ∈ Y and i ∈ I∑
j∈I
|πij(y1)− πij(y2)| ≤ Lπρ(y1, y2),

∫
Θ

|pθ(y1)− pθ(y2)| dθ ≤ Lpρ(y1, y2).
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(A6) There exist δπ > 0 and δp > 0 such that for y1, y2 ∈ Y, i1, i2 ∈ I∑
j∈I

min{πi1j(y1), πi2j(y2)} ≥ δπ,

∫
Θ(y1,y2)

min{pθ(y1), pθ(y2)}dθ ≥ δp,

where Θ(y1, y2) = {θ ∈ Θ : ρ(qθ(y1), qθ(y2)) ≤ ρ(y1, y2)}.
The choice of c, which appears in (6), depends on constants from conditions
(A1)–(A4). More details can be found in [4].

In [4] is also shown ([4, Theorem 3.1]), that if the conditions (A1)–(A6)
hold and the constants L,Lq, α, λ, λ satisfy inequality

(10) LLqλ+ α < λ,

then the operator P corresponding to (9) is exponentially ergodic. Proof of this
fact requires checking whether conditions (B0)–(B5) beyond (B1′) are met.

4. The main result

Let ((Yn, ξn))n∈N0 be the Markov chain described in the previous section.
We extend conditions (A1) and (A3) imposed on this model to:
(A1′) There exist r ∈ (0, 2) and ỹ ∈ Y such that for i ∈ I

sup
y∈Y

∞∫
0

e−λt
∫
Θ

(
ρ(qθ(Πi(t, ỹ)), ỹ)

)2+r

pθ(Πi(t, y))dθdt <∞.

(A3′) There exists L̃q > 0 such that for y1, y2 ∈ Y∫
Θ

(
ρ(qθ(y1), qθ(y2))

)2+r

pθ(y1)dθ ≤ L̃q
(
ρ(y1, y2)

)2+r

.

It is noticeable that (A1′) implies (A1) and (A3′) implies (A3) with Lq =

L̃
1/(2+r)
q .



246 Joanna Kubieniec

Let us also define function L : X → R+ by

(11) L(y, i) = ρ(y, ỹ) for (y, i) ∈ X,

where ỹ is point which appears in (A1′).

Theorem 2. Let ((Yn, ξn))n∈N0 be the Markov chain with stochastic ker-
nel given by (9) and let (A1′), (A2), (A3′), (A4)–(A6) hold with constants
satisfying

(12)
(
λ

λ
L

)2+r

L̃q +
(2 + r)α

λ
< 1.

Let f ∈ Lip(X) and f is not constant function. If the initial distribution µ of
the chain (f(Yn, ξn))n∈N0 belongs toML1,2+r, where L is defined by (11), then
the LIL holds for (f(Yn, ξn))n∈N0 .

Proof. The following proof is based on techniques shown in proof of [3,
Theorem 5.2]. First we show that (12) implies that for Lq = L̃

1/(2+r)
q inequality

(10) is fulfilled. To obtain this, let us assume (12) and in contrast to (10) that
Lq = L̃

1/(2+r)
q and

(13) LLqλ+ α ≥ λ.

Since L, λ, λ, L̃q, r are positive numbers, it results in particular from (12) that

α

λ
<

1

2 + r
< 1

and so
1− α

λ
> 0.

Then, from (13)

(λLLq
λ

)2+r

≥
(

1− α

λ

)2+r

.

Further, from the Bernoulli inequality

(λLLq
λ

)2+r

≥
(

1− α

λ

)2+r

≥ 1− (2 + r)
α

λ
,

which contradicts (12). Therefore (12) implies (10) with Lq = L̃
1/(2+r)
q .
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Let us notice that ML1,2+r(X) ⊂ Mρc(·,x̃)
1,2+r (X), where x̃ = (ỹ, ĩ) for some

fixed ĩ ∈ I and ỹ given in (A1′). Indeed, let ν ∈ML1,2+r(X). Then∫
X

(
ρc(x, x̃)

)2+r

ν(dx) =

∫
Y×I

(
ρc((y, i), (ỹ, ĩ))

)2+r

ν(dy × di)

≤
∫
Y×I

(
ρ(y, ỹ) + c

)2+r

ν(dy × di) <∞.

Considering that conditions (B0)–(B5) beyond (B1′) were verified in [4] we
show that (B1′) also holds. In particular, using (4) and definition of stochastic
kernel (9) we obtain∫

X

(
ρc(x, x̃)

)2+r

(Pµ)(dx)(14)

=

∫
X

∫
X

(
ρc((s, l), (ỹ, ĩ))

)2+r

K(y, i, ds× dl)µ(dy × di)

=
∑
j∈I

∫
X

∫ ∞
0

∫
Θ

λ(Πi(t, y))e−L(t,(y,i))
(
ρ(Πi(t, y), ỹ) + cφ(j, ĩ)

)2+r

× πij(qθ(Πi(t, y)))pθ(Πi(t, y))dθdtµ(dy × di).

Let us define ν ∈M1(Z), where Z = X × R+ ×Θ× I as

ν(A) =
∑
j∈I

∫
X

∫ ∞
0

∫
Θ

λ(Πi(t, y))e−L(t,(y,i))
1A(y, i, t, θ, j)πij(qθ(Πi(t, y)))

× pθ(Πi(t, y))dθdtµ(dy × di) for A ∈ BZ ,

and ψ : Z → R by formula

ψ(y, i, t, θ, j) = ρ(qθ(Πi(t, y)), ỹ) + cφ(j, ĩ).

From triangle inequality, for y, i, t, θ, j ∈ Z

ψ(y, i, t, θ, j) ≤ ρ(qθ(Πi(t, y)), qθ(Πi(t, ỹ))) + ρ(qθ(Πi(t, ỹ)), ỹ) + cφ(j, ĩ).

Then, using the definition of ν we can write (14) as∫
X

(
ρc(x, x̃)

)2+r

(Pµ)(dx) =

∫
Z

(
ψ(y, i, t, θ, j)

)2+r

ν(dy × di× dt× dθ × dj).
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Applying Minkowski inequality, we obtain[ ∫
X

(
ρc(x, x̃)

)2+r

(Pµ)(dx)
] 1

2+r

=
[ ∫

Z

(
ψ(y, i, t, θ, j)

)2+r

ν(dy × di× dt× dθ × dj)
] 1

2+r

≤
[ ∫

Z

(
ρ(qθ(Πi(t, y)), qθ(Πi(t, ỹ)))

)2+r

ν(dy × di× dt× dθ × dj)
] 1

2+r

+
[ ∫

Z

(
ρ(qθ(Πi(t, ỹ)), ỹ)

)2+r

ν(dy × di× dt× dθ × dj)
] 1

2+r

+ c.

Further, using (A3′) and (A2) we obtain∫
Z

(
ρ(qθ(Πi(t, y)), qθ(Πi(t, ỹ)))

)2+r

ν(dy × di× dt× dθ × dj)

≤
∫
X

∫ ∞
0

λ(Πi(t, y))e−L(t,(y,i))L̃q

(
ρ(Πi(t, y),Πi(t, ỹ))

)2+r

dtµ(dy × di)

≤
∫
X

∫ ∞
0

λ(Πi(t, y))e−L(t,(y,i))L̃qL
2+re(2+r)αt

(
ρ(y, ỹ)

)2+r

dtµ(dy × di)

≤
∫
X

∫ ∞
0

λe−λtL̃qL
2+re(2+r)αt

(
ρ(y, ỹ)

)2+r

dtµ(dy × di)

≤ λL̃qL2+r

∫ ∞
0

e−(λ−(2+r)α)tdt

∫
X

(
ρ(y, ỹ)

)2+r

µ(dy × di)

≤ λL̃qL
2+r

λ− (2 + r)α

∫
X

(
ρc(x, x̃)

)2+r

µ(dx).

Let

a∗ =
[ λL̃qL

2+r

λ− (2 + r)α

] 1
2+r

and

b∗ =
[

sup
y∈Y

[ ∞∫
0

λe−λt
∫
Θ

(
ρ(qθ(Πi(t, ỹ)), ỹ)

)2+r

pθ(Πi(t, y))dθdt
]] 1

2+r

+ c.

From inequality (12) it follows that a∗ ∈ (0, 1). Moreover, assumption (A1′)
ensures that b∗ is finite and thus the (B1′) is met. �
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