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THE LAW OF THE ITERATED LOGARITHM
FOR RANDOM DYNAMICAL SYSTEM WITH JUMPS
AND STATE-DEPENDENT JUMP INTENSITY

JOANNA KUBIENIEC

Abstract. In this paper our considerations are focused on some Markov chain
associated with certain piecewise-deterministic Markov process with a state-
dependent jump intensity for which the exponential ergodicity was obtained
in [4]. Using the results from [3] we show that the law of iterated logarithm
holds for such a model.

1. Introduction

We conduct our considerations for some subclass of piecewise-deterministic
Markov processes (PDMP). These processes are governed by deterministic
semiflows which are intermittent by jumps. PDMP’s have been introduced
by Davis in [5] and have found their application, among others, in modeling
phenomena in biology, as stochastic model for gene expression (|2} 14, [15]).

Most results on such processes are formulated in situation when the periods
between jumps have a Poisson distribution with constant parameter A\. We are
interested in the properties of these type of systems but in case when the jump
intensity depends on the trajectory of the process. The asymptotic stability
and exponential ergodicity for a model in which the intensity of jumps depends
on the state of the system was examined in [4, [11]. In this work we focus to
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prove one of the limit theorems, namely the law of the iterated logarithm
(LIL), for a such process. Limit theorems for Markov processes have recently
been the subject of intense research (see e.g. [1, 16}, 9, 10, [16]). The LIL defines a
range in which, with probability 1, from a certain point the trajectories of the
stochastic process will be found. In other words the LIL examines the greatest
deviations from the mean of stochastic process. It can be located between the
strong law of large numbers and the central limit theorem. Originally it was
formulated by A. Khintchine in 7] and independently by A. Kolmogorov in [§].

The article consists of three parts. In Section 2] we introduce a notation and
formulate basic definitions and facts related to Markov operators. Section
contains a formal description and main assumption of the considered model.
In the last section we formulate and prove the LIL for the process described
in Section [3l

2. Preliminaries

2.1. Basic notation and definition

Let (S,d) be a Polish metric space and let Bg denotes the o-field of all
Borel subsets of S. As usual, by B(z,r) we denote the open ball in (S, d) with
center at x € S and radius v > 0. We use symbol 14 and ¢, for indicator
function of set A C S and Dirac measure in point = € S, respectively. We use
letters R and N to denote successively the set of real and natural numbers.
Additionally, R, stands for the set of nonnegative real numbers and Ny for
NuU{0}.

Within the set B(S), which states for all bounded, Borel measurable func-
tions f: S — R, we specify two subsets: C'(S) and Lip(S) consisting of all
continuous functions and Lipschitz-continuous functions, respectively.

Let M(S) be the set of all finite, countably additive functions on Bg.
By M(S) and M;(S) we denote the subsets of M(S) consisting of all non-
negative measures and all probability measures, respectively.

We write Mfk(S) for the set of all u € M;(S) satisfying

/ (L(2))* p(dz) < oo,
S
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where £ > 0 and £: S — R, is a Lyapunov function i.e L is bounded on
bounded sets and for some zg € S

lim L(z) = o0,
d(z,z9)—00

if S is unbounded.
The set M(S) is considered with the Fortet-Mourier norm ||-||z,, (12,
13]), given by

lilless =suw {| [ @] £ € Frau($)} tor e M.(S).
where

Fru(S) ={f € C(S): [f(x)] < 1, |f(z) = f(y)| < d(z,y), z,y € S}.

2.2. Markov operators

An operator P : M(S) — M(S) is called a Markov operator if
(i) Plaps +bpz) = aPuy 4+ bPuy  for a,b € Ry, py, pa € M(S),
(i) (Pu)(S) = () for p e M(S).
If for the Markov operator P there exists a dual operator U: B(S) — B(S5)

1) /S £ () (Pu)(dz) = /S (U ) @)uldr) for | € B(S). € M(S),

then P is called regular.
A function K: S x Bg — [0, 1] is called a substochastic kernel if
(i) £(-,A): S — [0,1] is measurable for every A € Bg,
(ii) K(zx,-): Bs — [0, 1] is a subprobability Borel measure for every z € S.
If IC is substochastic kernel and K(z,S) = 1 for z € S then K is called
stochastic kernel.

For given stochastic kernel K we can always set two mappings P: M(S) —
M(S) and U: B(S) — B(S) by formulas:

2) Pi)(A) = [ Kl Ayp(dn) for p € M(S). A Bs,

and

3) (Uf)(x) = /S f) Kz, dy) forz € S, f € B(S).
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Then P is a Markov operator and U is its dual operator. Let us notice that

using (1)) and we obtain

(4) /S F(2)(Py)(dz) = /S /S f(w) K, dy)pu(dz) for f € B(S).

We want to emphasize that the operator P can be extended to a linear op-
erator defined on the space of all bounded below Borel functions with keeping

the duality property (T]).

A regular Markov operator P is called Feller if Uf € C(S) for any f €
c(9).

We say that the p. € M(S) is invariant for operator P if P, = pix.

The operator P is said to be exponentially ergodic if there exists invariant
measure j1, € M;(S5) and constant 8 € [0,1) such that, for every € Mf ()
and some constant C,, € R, we have

P — pil|ppy < Cuf™ for allm € N.

2.3. Markov chains

It is well known that if we take a stochastic kernel K and a measure
€ M;p(S) then we can always define on relevant probability space, say
(Q,F,P,), a homogeneus Markov chain (xn)nen, for which

Pu.(xo € A) = u(A) for A € Bg,
(5) K(z,A) =Pu(xnt1 € Alxn =) forxe S, A€ Bs,neN.

If we consider the Markov operator P for the kernel (5)) according formula (2)),
then

Un+1 = Pu, forn € Ny
where
() 1= Puln € ).
In our further considerations we will use the symbol E,, for the expectation

with respect to P,. If u = ¢, for some fixed z € S, we will write E, instead
of Es .
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We say that a time-homogeneus Markov chain evolving on the space S? is
a Markovian coupling of some stochastic kernel K: S x Bg — [0, 1] whenever
its stochastic kernel 7 : 5% x Bg2 — [0, 1] satisfies

J(x,y, Ax S)=K(zx,A) and J(z,y,5 x A) =K(y,A)

for all 7,3y € S and A € Bg. Let us underline this, that if J: S? x Bg= — [0, 1]
is a substochastic kernel satisfying

J(x,y,AxS) <K(z,A) and J(z,y,5x A) < K(y, A),
for all z,y € S and A € Bg, then we are always able to construct a Markovian
coupling of K whose stochastic kernel J satisfies J < J.
2.4. The law of the iterated logarithm for Markov chains

Let p € M;(S) be a initial distribution of the Markov chain (x»)nen,-
For any n € N and f € Lip(S) we define

\/271 In(In(n)) for n > &
0 for n <e.

fxo)+--+f(Xn-1)
sn(f) =

Suppose that there exists the unique invariant measure p, € M;j(S) for
(Xn)nen,- We say that the LIL holds for Markov chain (f(xy))nen, if for some

o(f) € (0,00)
P#(limsup sn(f) = a(f)) =1 and P“(liminfsn(f) = —a(f)> =1,

n—o0o n—oo

where f = f — Js f(@) s (dx).
The following theorem is proved in [3, Theorem 4.7].

THEOREM 1. Let (Xn)nen, be a time-homogeneous Markov chain with val-
ues in S and let K: S x Bg — [0,1] be the stochastic kernel of (Xn)nen, for
which the following conditions hold:

(BO) The Markov operator P corresponding to K is Feller operator.
(B1) There exist a Lyapunov function L: S — Ry and constants a € (0,1)
and b € (0,00) such that

(UL)(x) < al(x)+b.
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(Bl') For some fized T € S and some r € (O 2) there exist a* € (0,1) and
b* € (0,00) such that for every v € M; Qx) (S)

</s (d(xj» (Pu)(dx)) T <a (/S (d(m,x))zwy(d@)zir .

Moreover, assume that there is a substochastic kernel J: S* x Bg2 —
[0,1] that for every A € Bg, x,y € S,

J(x,y,AxS) <K(z,A) and J(z,y,5x A) < K(y,A).

(B2) There exist F C S? and q € (0,1) such that supp J (z,y,-) C F and

/ d(u,v)J (x,y,du x dv) < qd(x,y) for (z,y) € F.
52
(B3) ForU(r) ={(z,y) € F:d(z,y) <r},r >0, we have

inf J(x,y,U(qd(z,y))) > 0.

(z,y)eF

(B4) There ezist constants v € (0,1] and I > 0 such that
JI(x,y,5%) > 1~ ld(z,y)" for every (z,y) € F.

(B5) There is a coupling ((X,(ll),xn ))nen, of K with stochastic kernel J,
satisfying J < J, such that for some R > 0 and

K :={(v,y) € F: L(z) + L(y) < R}
we can find ¢ € (0,1) and C > 0 satisfying
E(u,y)((T7%) < C  whenever L(z) + L(y) < 4b(1 —a) ™",
where
ox =inf{n e N: (x{),x{?) € K}.

Let € M{ 2+T(S) be an initial distribution of (Xn)nen,- If f € Lip(S) and
f is not constant function, then (f(xn))nen, satisfies the LIL.
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3. Model description and assumptions

Let us fix natural number N, set of indexes I = {1,..., N} and a Polish
metric space (Y, p). We introduce metric space (X, p.), where

X:=Y x1,
(6) pe((y1,1), (y2,7)) = p(y1,92) +co(i,5), (y1,9), (y2,5) € X
and
o f1feri#
(7) ¢(Z’J) - {0 fOI" ’i:j,

and c is some fixed positive constant. Let © be a compact interval.
Assume that for every ¢ € I the mapping II; : Ry x Y — Y is a semiflow.
It means that II; is continuous with respect to each variable and

I1;(0,y) =y and IL;i(s+t,y) =1;(s, (¢, y)) foriel,yeY,steR,.

Our considerations are focused on discrete-time dynamical system de-
scribed in detail in [4] and determined by stochastic process ((Y(t),£(t)))t>0
evolving through random jumps in the space X.

On a time frame [¢,,_1,t,] the process (Y (t)):>0 is driven accordingly with
I1;, where index ¢ is appointed by (£(t))t>0.

At the moment of the jump, i.e at time ¢,,, process (Y (t)):>0 skips to a
new state due to the mapping ¢p: ¥ — Y and the current semiflow II; is
displaced by II;. The gy is randomly pick out from a given set {gy : § € ©}.
We assume here that Y x © 3 (y,0) — gg(y) € Y is continuous and that the
probability of choosing ¢y is related with density function © > 6 — py(y),
y € Y, such that (6,y) — pe(y) is continuous. The semiflows conversion is
done in accordance with a matrix of continuous probabilities m;;: ¥ — [0, 1],
1,7 € I, satisfying

ij(y):l foriel,yeY.
jel

The intensity of jumps is associated with Lipschitz continuous function
A:Y — (0,00) such that
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In this work we examine only the sequence of random variables given by the
locations directly after the jumps, that is (Y,,,&,) := (Y (70),&(m)), n € N,
where 7, is a random variable describing the jump time ¢,.

We will express the above considerations for the intuitive description of
how our model works in the language of random variables. Let (Q, F,[P,,) be
a probability space on which we define ((Y,,,&n))nen,- Let (Yo,&0): @ — X be
random variable with arbitrary and fixed distribution u € M;(X). Further,
we introduce sequences (Tp)neny, (§n)neNs (Mn)nen and (Yy)nen of random
variables which fulfill the following conditions:

* Tn: 0 = Ry, n € Ny, where 7p = 0, form a strictly increasing sequence such
that 7, = oo a.e., and A7, = 7, — 71 are mutually independent and have
the conditional distributions given by

Pu(ATpy1 <t|Y, =y, & =14) =1 — e FEWD) for ¢ >0,

whenever y € Y and i € I, where L is given by

t

(8) L, (y,1)) = / ATLi(s, y))ds.
0
* & — I, n €N, satisty

Pu(gn:] | Yn =Y, gn—l :i) :Wij(y) fOl“’i,j EIa er,

* 1, 2 — O, n € Ny, is specified by

Pu(nt1 € A g, (ATpy1, V) = y) = /Ape(y) do

forall A€ Bg and y €Y.
* Y,: Q2 — Y, neN, are determined by

Yot1 = ay, . (He, (ATp41,Y5))  for n € No.
Setting

U0:<Y07£0)7 Uk:(}/Oa’rla"'aTkanly"'ynka£07"‘7§k> fOkaN,

we assume that, for every k£ € Ny, the random variables &1 and 11 are con-
ditionally independent of Uy, given {Yy11 =y, § = i} and {Ilg, (Ati41, Ys) =
y}, respectively. In addition to this, we require that k1, 7g+1 and A71,4q are
mutually conditionally independent given Uy, and that A7y is independent
of Uk
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These assumptions assure that ((Y,,,&,))nen, is a Markov chain with phase
space X and stochastic kernel : X x Bx — [0, 1] given by

(y, Z/ / ]1A q9 t y)) )A(Hi(t7y))@_l’(tv(yvi))
9) <
x7ij(qo (I (t, y)))pe (IL; (¢, y)) dt dO,
where L is given by (8).
The evolution of the distributions g, (-) :=P,((Yn,&n) € -) can be de-

scribed by the Markov operator P: M(X) — M(X) corresponding to @,
as defined in .

As in [4], we apply following assumptions on considered model:
(A1) There is y,. € Y such that for every i € T

o | Y /@ p(as (Lt 9.)), 3 )p (T (1, 9))d6 dt < .

yeY Jo

(A2) There exist « € R, L > 0 and a bounded on bounded sets function
T:Y — Ry such that for t >0, y1,y2 € Y, 4,5 €1

p(I;(t, y1), 1L (¢, y2)) < Le™ p(yr, y2) + t T (y2) (i, §),

where ¢(i, j) is given by (7).
(A3) There is a constant Ly > 0 such that for y;,y, € Y

/ p(a6(y1), a0(y2)) po(y1)d0 < Lap(y1,y2).
e
(A4) There exists Ly > 0 such that for y1,y2 € Y

IA(y1) — Ay2)| < Lap(yr, ya).

(A5) There exists L, > 0 and L, > 0 such that for y;,y» € Y and i € 1

D Imij (1) = 75 (y2)] < Lep(ys, ),

/@ Do) — po(2)] 40 < Lyl o).
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(A6) There exist dr > 0 and 0, > 0 such that for yi,y2 € Y, 41,92 € [

> min{mi,; (1), Tin; (y2)} > 6r,

jeI
/ mln{pg(y1)7p9(y2)}d9 Z 5p7
O(y1,y2)

where ©(y1,y2) = {0 € ©: p(go(y1), 90(y2)) < p(y1,92)}-
The choice of ¢, which appears in @, depends on constants from conditions

(A1)H(A4)l More details can be found in [4].

In [4] is also shown ([4, Theorem 3.1]), that if the conditions |(A1)H(A6)
hold and the constants L, Ly, o, A\, A satisfy inequality
(10) LL A+ a < ),

then the operator P corresponding to @D is exponentially ergodic. Proof of this
fact requires checking whether conditions [(BO)H(B5)| beyond |(B1")| are met.

4. The main result

Let ((Yn,&n))nen, be the Markov chain described in the previous section.
We extend conditions [(A1)| and |(A3)|imposed on this model to:

(A1") There exist r € (0,2) and § € Y such that for i € I
i M 24r
sup [ e / p(a(TL(t§). ) po(TLi, )0t < oo.
0

(A3') There exists f/q > 0 such that for y1,y2 € Y

/ (P(%(Z/l),%(yz)))zﬂpe(yl)d@ <L, (P(ylyyz))2+T~

(€]

It is noticeable that implies [(A1)[ and (A3")| implies with L, =
L,
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Let us also define function £: X — R, by
(11) L(y,i) = py,y) for (y,i) € X,
where ¢ is point which appears in |(A1")

THEOREM 2. Let ((Yy,&n))nen, be the Markov chain with stochastic ker-
nel given by (9) and let [(A17)] [(A2)] [(A3)] [(A4)}(A6)] hold with constants

satisfying

~ 24r
A = (241

Let f € Lip(X) and f is not constant function. If the initial distribution p of
the chain (f(Yn,&n))nen, belongs to M, ., where L is defined by (1), then
the LIL holds for (f(Yn,&n))nen,-

PROOF. The following proof is based on techniques shown in proof of |3}

Theorem 5.2|. First we show that implies that for L, = Ll/ (24m) inequality
is fulfilled. To obtain this, let us assume and in contrast to that

Ly = Ly/®™) and
(13) LL A+ a > )\

Since L, \, ), f/q, r are positive numbers, it results in particular from that

1

<1
247

@ <
A
and so

1——>0.

>~1Q

Then, from (|13])

()\I;\Lq>2+7" > (1 B (;>2+r.

Further, from the Bernoulli inequality

()\L/\Lq)%r . (1 - (i)ww o1 (247)

@
A7

which contradicts (12). Therefore implies with L, = Li/@*).
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Let us notice that M% 2+r( ) C Mf”z(ﬁ)( ), where & = (§,4) for some
fixed 7 € T and § given in |( Indeed, let v € Mf,,,.(X). Then

/X (ool ) vida) = /Y y (peltw.i).3.9))" " wldy x di
<[ (owire) utdyx i) <o

Considering that conditions|(BO)H(B5)|beyond |(B1”)|were verified in [4] we
show that |[(B1’)|also holds. In particular, using (4]) and definition of stochastic
kernel (9) we obtain

1) [ (o) (Profar)
= [ [ (et @70) ™ Kis x < ai
=S [T e o (o) +est.0)

jerl
x mi5(qo (I (t, y)))pe (T (t, y))dOdtp(dy x di).

Let us define v € M;(Z), where Z =X xRy x © x I as

Z/ / / (I (t y))e P C @D Ly, i,¢,0, )i (g0 (i, )

jel

x po(IL;(t,y))dOdtu(dy x di)  for A € By,
and ©¥: Z — R by formula
U(y,i,t,0,7) = plao(ILi(t,y)), ) + co(j. 7).
From triangle inequality, for y,4,t,0,7 € Z
U(y,i,t,0,7) < plao(ILi(t,y)), a(TLi(t,9))) + plao (T (t, §)), 5) + e (3, ).

Then, using the definition of v we can write as

/X (pc(x,i))ZJrr(Pu)(dm) - /Z <w(y,i,t,6,j))2+TV(dy x di % dt x df x dj).
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Applying Minkowski inequality, we obtain
2 =
[ (oot )™ Py (o)

= {/Z (7/J(y,i,t, 9,j)>2+7“y(dy X di X dt x df x dj)} T

1

= [ /Z (p(qe(m(t,y)), qe(Hi(t,?j))))2+TV(dy x di x dt x df x dj)} T

1

+ [/Z (P(%(Hi(t,@)),§)>2+Tu(dy x di x dt x df x dj)} RN

Further, using |(A3") and |(A2)| we obtain

24r
/ (a0t ), a0 (TL(E ) ) v(dy x di x dt x dO x dj)
Z
o0 N\~ 24r
< [ [ At e KON, (p(iLe,) 02,5)) deitay x di)
X JO
oo N 241
S// /\(Hi(t,y))G’L“”(y’”)LqL”’"e(””‘“(p(y,ﬂ)) dtp(dy x di)
X JO
© _ ~ 24r
< / / /\e‘AtLqL“’“e(W)“t(p(y,Q)) dtp(dy x di)
X JO

0 X

< m [ (ot i)

IN

(o) ity x di)

A

Let
. |: XEqLQ—i-r }241—7
f=|—F
A— (2471«

and

1

"= ou {7 A / (olao(1(0.9).8)) " poiL(t.))doat] |7 + .
0 e

yeyY

From inequality it follows that a* € (0,1). Moreover, assumption [(A17)|
ensures that b* is finite and thus the |(B1')|is met. O
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