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Abstract: The article presents the effect of the anodizing parameters, as well as the thermo-chemical
treatment, of Al2O3 layers produced on an aluminum alloy on the characterization of structure,
geometrical structure of the surface (SGS), the thickness of the oxide layers, the phase composition,
and their microhardness. The oxide layers were produced by the method of direct current anodizing
in a three-component electrolyte. Then, thermo-chemical treatment was carried out in distilled water
and aqueous solutions of sodium dichromate and sodium sulphate. The anodizing parameters and
compounds for the thermo-chemical treatment were selected on the basis of Hartley’s plans. The
research showed the effect of anodizing parameters on the thickness of the Al2O3 layers and the
increase in the thickness of the layers as a result of the thermo-chemical treatment. The research
showed a significant increase in the microhardness of the layers as a result of thermo-chemical
treatment and its influence on the phase composition of Al2O3 layers. A significant influence of the
thermo-chemical treatment on the geometrical structure of the surface was also found.

Keywords: thin coatings; electrochemical method; oxide layers; SEM; XRD; SGS

1. Introduction

The development of technology has contributed to the search for and use of a very
wide spectrum of materials. It has resulted in the extremely frequent use of aluminum
alloys in industry, thanks to their numerous advantages, such as very good thermal and
electrical conductivity and a very good weight-to-strength ratio [1–4]. Aluminum alloys
also have several significant disadvantages, for instance low hardness and poor corrosion
resistance. In order to improve both the physical and surface properties of aluminum and
its alloys (hardness, abrasion, and corrosion resistance), its surfaces are covered with an
Al2O3 layer using the anodic oxidation (anodizing) method [5]. Improving the surface
properties of aluminum by anodizing has contributed to much wider use of aluminum and
its alloys in various industries, including aerospace, machinery, automotive, electronics,
and nanotechnology (the production of membranes for sensors and nanowires) [6–8].

A very popular process that increases corrosion resistance [9,10] and closes the porous
oxide layer [11] is thermo-chemical treatment, which also preserves the advantages of
the Al2O3 layer [12]. This process transforms the Al2O3 layer of aluminum oxide into its
hydrated forms, such as boehmite γ-AlOOH and hydrargillite γ-Al(OH)3. The transfor-
mation of aluminum oxide is caused by the swelling of the cell walls of the oxide layer
as a result of their hydration [13]. Thermo-chemical treatment may also lead to a process
consisting in the formation of a pseudoboehmite sub-layer on the Al2O3 surface; the most
common reason for this process is the short time (several min) and low temperature [14].
The thermo-chemical treatment of Al2O3 layers is one of the processes consisting of a series
of treatments leading to a change in the properties (usually surface) and the chemical com-
position of the treated material, especially its surface. It is most often conducted in order
to improve the physicochemical or mechanical properties. Thermo-chemical treatment is
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designed to diffuse the chemical composition of the surface, which, in turn, contributes
to obtaining the appropriate performance properties. Thermo-chemical treatment enables
properties to be obtained on the surface other than those present in the core [15].

Researchers have conducted a series of studies on the structure and properties of oxide
layers. In paper [16], researchers focused on the production of composite oxide layers by
hard anodizing and thermo-chemical treatment, separating the composite component in
the presence of two organic acids—succinic and phthalic. The article presents the research
on the chemical composition, microstructure, morphology, and results of tribological tests
of the obtained layers. The structure examinations showed that the pores were sealed
as a result of the treatment and the microhardness increased. Another publication [17]
dealt with the modification of Al2O3 layers with carbon. Among others, investigations of
the geometrical structure of the surface and the microstructure of the layers were carried
out. A change in the microstructure was found as a result of modification of the Al2O3
layer by embedding graphite grains, as well as the beneficial influence of the modification
on the geometrical structure of the surface. The next cited publication [18] concerned
the production of anAl2O3 layer on the EN AW-5251 alloy. Changing the anodizing
parameters has a decisive effect on the nanostructure (a change in the size of the fibers) and
the microhardness.

All the cited publications concerned research on the structure, microhardness, and
geometrical structure of the surface of Al2O3 layers and their changes as a result of altering
the anodizing parameters or applying modifications with graphite, succinic acid, or phthalic
acid. In the literature, there is no information on the influence of Al2O3 layer modification
by thermo-chemical treatment in water, sodium dichromate, or sodium sulphate solutions
on the structure, geometrical structure of the surface, and microhardness. Therefore, the
studies presented below can be considered innovative.

2. Materials and Methods
2.1. Research Material

Al2O3 layers produced on the EN AW-5251 aluminum alloy were used as the research
material. Due to the high content of magnesium and small amount of admixtures of
other elements, the aluminum alloy is characterized by good corrosion resistance and high
plasticity. Before starting the anodizing process, samples made of the aluminum alloy
were etched in a 5% KOH solution for 20 min and neutralized in a 10% HNO3 solution for
5 min. The processes were carried out at room temperature. Each process was completed
by rinsing in distilled water. The layers were produced in the DC anodizing process using
a GPR-25H30D power supply. The anodizing process was carried out in an electrolyte
consisting of an aqueous solution of 18% sulfuric acid (33 mL/L), oxalic acid (30 g/L),
and phthalic acid (76 g/L). During anodizing, the electrolyte was stirred by means of
a mechanical stirrer at the speed of 100 rpm, and the direction of rotation was changed
every 10 min during the process. The parameters of the input variables (current density,
electrolyte temperature, process time, and compound for thermo-chemical treatment)
were selected on the basis of statistically determined polyselection experimental plans
(Tables 1 and 2). Hartley’s plans were used for three input factors based on a hypercube,
for which, coefficient α = 1.

Table 1 shows the values of the input variables on the natural and normalized scale
of the layers produced during the anodizing process without application of the thermo-
chemical treatment process. The following were assumed as the input variables: current
density, electrolyte temperature, and process time. The current density values were 2, 3,
and 4 A/dm2; electrolyte temperatures were 293, 298, and 303 K; and process times were
30, 60, and 90 min. The anodizing process was completed by rinsing in distilled water for
60 min.
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Table 1. Hartley’s plan for layers without thermo-chemical treatment.

Sample

Controlled Factors

On a Natural Scale On a Standard Scale

Current
Density

j (A/dm2)

Electrolyte
Temperature

T (K)

Process Time
t (min) ×1 ×2 ×3

01A 2 293 90 −1 −1 1
01B 4 293 30 1 −1 −1
01C 2 303 30 −1 1 −1
01D 4 303 90 1 1 1
01E 2 298 60 −1 0 0
01F 4 298 60 1 0 0
01G 3 293 60 0 −1 0
01H 3 303 60 0 1 0
01I 3 298 30 0 0 −1
01J 3 298 90 0 0 1
01K 3 298 60 0 0 0

Table 2. Hartley’s plan for layers with thermo-chemical treatment.

Sample

Controlled Factors

On a Natural Scale On a Standard Scale

Current
Density

j (A/dm2)

Compound for
Thermo-Chemical

Treatment (Density)
(g/cm3)

Process Time
t (min) ×1 ×2 ×3

02A 2 Water (0.998) 90 −1 −1 1
02B 4 Water (0.998) 30 1 −1 −1

02C 2 Sodium dichromate
(2.52) 30 −1 1 −1

02D 4 Sodium dichromate
(2.52) 90 1 1 1

02E 2 Sodium sulphate
(1.46) 60 −1 0 0

02F 4 Sodium sulphate
(1.46) 60 1 0 0

02G 3 Water (0.998) 60 0 −1 0

02H 3 Sodium dichromate
(2.52) 60 0 1 0

02I 3 Sodium sulphate
(1.46) 30 0 0 −1

02J 3 Sodium sulphate
(1.46) 90 0 0 1

02K 3 Sodium sulphate
(1.46) 60 0 0 0

Table 2 presents the values of the input variables on the natural and normalized scale
of the layers produced during the anodizing process using the thermo-chemical treatment
process. The assumed input variables were the current density, the time of the anodizing
process, and the density of the compounds for the thermo-chemical treatment. The current
density values were 2, 3, and 4 A/dm2; the anodizing process times were 30, 60, and 90 min,
and the densities of the compounds for thermo-chemical treatment were 0.998 g/cm3 for
water, 1.46 g/cm3 for sodium sulphate, and 2.52 g/cm3 for sodium dichromate. A constant
electrolyte temperature of 298K was used during anodizing.

After the anodizing process was completed and the samples were thoroughly rinsed
in distilled water in order to remove the residual electrolyte, thermo-chemical treatment
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was commenced. Distilled water with a pH ranging from 6 to 7 was used for the thermo-
chemical treatment. The next compound employed for the thermo-chemical treatment
was sodium sulphate. The composition of the applied bath was 200 g of sodium sulphate
(Na2SO4·10H2O) and 1 L of distilled water; the pH of the bath was between 6 and 7. The
last compound used for the thermo-chemical treatment was sodium dichromate. For this,
50 g of sodium dichromate (Na2Cr2O7·2H2O) and 1 L of distilled water were used to
prepare the bath for the thermo-chemical treatment; the pH of the compound was 8–9.
The temperature of all the compounds used in the thermo-chemical treatment was 371 K,
and the process time was 60 min. For each sample, the thermo-chemical treatment was
completed by rinsing in distilled water and allowing it to dry.

2.2. Research Methodology

The thickness of the Al2O3 layers was measured using a Fischer Dualscope MP40
instrument (Helmut Fischer GmbH+Co.KG, Shindelfingen, Germany). A probe was used,
which is a part of the meter equipment for measuring by the contact method (placing the
probe on the sample surface). The device uses the eddy current method for measurements.
In total, 10 measurements of the thickness of the oxide layer were made along its entire
length, and then the average values were calculated. The accuracy of the instrument is
in the range of 0–50 µm, 0.25 µm, and in the range of 50–800 µm, 0.5%. The device was
calibrated using calibration standards.

The microhardness of the Al2O3 layers was tested on metallographic specimens. The
specimens were prepared by grinding with sandpaper and polishing with felt using a
slurry of calcined aluminum oxide. A Saphir 520 grinder-polisher (ATM Qness GmbH,
Mammelzen, Germany) was used for grinding and polishing, and the papers had a gra-
dation from 200 to 2000. During the measurement of microhardness, indentations were
made with a Hanemann microhardness tester with a Vickers indenter at a load of 0.3 N.
On each cross-section of the selected layers, 3 indentations (at a distance of about 10, 15,
and 20 µm from the substrate) were made 5 times. Then, images were captured and the
measurements were made using an ImageJ 1.50i. The last step was to calculate the average
microhardness for a distance of 20 µm.

Microscopic examinations were conducted using Hitachi S-4700 (Hitachi, Tokyo,
Japan) and JEOL JSM-6480 (JEOL, Tokyo, Japan) scanning electron microscopes. An analysis
of the nanostructure of layers on the metallographic specimens (magnification 10,000×
and 30,000×) was performed. Anodic oxide layers are poor conductors, and therefore,
during operation, the electron beams become electrically charged, which contributes to
incorrect observation. For proper observation, the layers were sprayed with carbon using
a turbomolecular carbon sputtering machine. The carbon layer enables the rebounding
electrons to be discharged and carried away during the investigation.

Grazing incidence X-ray diffraction (GIXD) tests were carried out on selected Al2O3
layers after applying the thermo-chemical treatment and on a layer without modification
in order to obtain the phase composition. An X’Pert Philips PW 3040/60 diffractometer
(working at 30 mA and 40 kV, PANalytical, Almelo, The Netherlands) was used to acquire
GIXD patterns in a 2θ angle from 10◦ to 100◦ with a 0.05◦ step for the angle of incidence
α = 0.20◦, 0.30◦, 0.50◦, 1.00◦, 1.50◦, 2.50◦, 5.0◦. The device was equipped with a Eulerian
cradle and a vertical goniometer. A copper source (λCu Kα, λ = 1.54178 Å) was used
throughout the experiments.

Surface geometrical structure (SGS) investigations were carried out in order to deter-
mine the roughness parameters and the geometrical structure of the surface. Measurements
were made by systematic scanning using a Form Taly Surf Series 2 50i contact profilo-
graphometer (Taylor Hobson Ltd., Leicester, UK). Material proportion curves (Abbott–
Firestone curves) describing the material proportion of the profile as a function of cut
height are presented.
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3. Results and Discussion

Table 3 presents the average results of measurements of the thickness of the Al2O3
layers produced in the anodizing process with three variable input parameters (current
density, electrolyte temperature, process time) according to Hartley’s plan (without thermo-
chemical treatment).

Table 3. List of thicknesses of Al2O3 layers produced in anodizing process according to Hartley’s
plan (without thermo-chemical treatment).

Sample Oxide Layers Thickness
d (µm)

Deviation
(µm)

01A 51.4 0.9
01B 33.3 0.9
01C 16.8 0.2
01D 94.9 0.7
01E 32.7 0.4
01F 67.7 0.4
01G 53.3 1.2
01H 51.1 0.9
01I 25.3 0.4
01J 75.8 0.4
01K 51.6 0.9

Based on the measurements, significant changes in the thickness of the Al2O3 layers
were found due to the use of various production parameters during anodizing. It was
noticed that the thickness of the layers is influenced by parameters such as the process
time, current density, and electrolyte temperature. An increase in the current density,
together with a constant electrolyte temperature and anodizing time, contributes to an
increase in the thickness of the Al2O3 layer (samples 01E, 01F, 01K). An increase in the
anodizing time at a constant electrolyte temperature and current density causes a significant
increase in the thickness of the layer (samples 01I, 01J, 01K). The increase in layer thickness
is due to the increasing value of the electric charge. The temperature of the electrolyte
during anodizing is also important for the thickness of the oxide layer. An increase in
the electrolyte temperature during a constant current density and constant process time
contributes to a reduction in the oxide layer thickness (samples 01G, 01H, 01K). The reason
for this is that the solubility of the secondary oxide layer increases with an increasing
electrolyte temperature.

Table 4 presents the average results of the thickness of the Al2O3 layers produced
in the anodizing process with three variable input parameters (current density, process
time, compound for thermo-chemical treatment) according to Hartley’s plan (after thermo-
chemical treatment).

The comparison of the thickness measurements of the oxide layers before and after the
thermo-chemical treatment allowed the conclusion to be drawn that the thermo-chemical
treatment slightly increased the thickness of the layer (comparison of samples 01I, 01J,
01K—Table 1, with samples 02I, 02J, 02K—Table 2), taking into account the samples pro-
duced under the same anodizing conditions. The above dependence can be confirmed by
comparing samples 01E, 01F, and 01K from Table 1 with samples 02E, 02F, and 02Kfrom
Table 2. The increase in layer thickness after thermo-chemical treatment was insignificant
and fluctuated within ±2.4 µm. For the layers modified with thermo-chemical treatment,
one can notice, similarly to the unmodified layers, increases in thickness depending on the
current density and the time of the anodizing process.
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Table 4. List of thickness of Al2O3 layers produced in anodizing process according to Hartley’s plan
(after thermo-chemical treatment).

Sample Oxide Layers Thickness
d (µm)

Deviation
(µm)

02A 51.4 0.6
02B 33.6 0.8
02C 16.6 0.3
02D 98.8 5.8
02E 34.2 0.6
02F 68.9 0.6
02G 49.3 0.6
02H 52.2 0.4
02I 27.7 0.5
02J 77.4 1.4
02K 52.3 0.2

One of the characteristic features of oxide layers is the microhardness that changes
depending on the distance from the substrate. For this reason, the indentations to determine
the microhardness were made for three different distances from the substrate (about
10, 15, and 20 µm). Based on the microhardness measurements for the three different
distances of indentations, a trend line was determined (Figure 1), on the basis of which
the microhardness was calculated for the distance of 20 µm from the substrate for each
sample. The microhardness was determined for four layers produced under the same
anodizing conditions (3A/dm2, 298 K, 60 min), followed by thermochemical treatment
in distilled water (sample 02G), sodium dichromate solution (sample 02H), and sodium
sulphate solution (sample 02K). The microhardness was also calculated for the sample
without modification with thermo-chemical treatment (sample 01K).
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All the determined microhardness values for the subsequent samples are presented in
Table 5.
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Table 5. Influence of thermo-chemical treatment on value of microhardness of Al2O3 layers.

Sample
Compound for

Thermo-Chemical
Treatment

Microhardness µHV
(MPa)

Deviation
(µm)

01K - 5496 303
02G Water 5970 297
02H Sodium dichromate 6568 316
02K Sodium sulphate 7231 345

A significant influence of the thermo-chemical treatment on the microhardness of the
oxide layers was noticed. The thermo-chemical treatment of the layer performed in distilled
water caused a slight rise in the microhardness in relation to the microhardness of the layer
without modification. The use of sodium dichromate as a treatment compound augmented
the microhardness by about 1000 MPa, while the use of sodium sulphate contributed to
the production of a layer with the highest microhardness (7231 MPa). The increase in
microhardness as a result of thermo-chemical treatment is caused by swelling of the fibers
and a change in the porosity in the layer.

In order to assess the impact of the thermo-chemical treatment on the Al2O3 layers,
photos of the anodized oxide layer cross-sections were taken under the same conditions
(current density, electrolyte temperature, and process time). The differences resulted from
the type of compounds used for the thermo-chemical treatment or the lack of applica-
tion of the thermo-chemical treatment. Al2O3 layers produced on aluminum alloys by
electrochemical methods are characterized by a two-layer structure. The barrier layer
adheres to the substrate and is non-porous, with a thickness of up to 100 nm. The sec-
ond layer is porous and has a columnar-fibrous structure that varies according to the
manufacturing parameters.

Microphotographs of the oxide layer structure not subjected to thermo-chemical
treatment (sample 01K) are shown in Figure 2. The photo was taken of a metallographic
specimen at 30,000× magnification, allowing observation of the Al2O3 nanofibers.
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The microphotograph shows a structure characteristic of an oxide layer oriented along
the growth direction of the oxide layer under the influence of an electric field.

Figure 3 presents microphotographs of the cross-sections of the oxide layers subjected
to thermo-chemical treatment in distilled water (sample 02G) and in solutions of sodium
dichromate (sample 02H) and sodium sulphate (sample 02K). A magnification of 10,000×
was employed.
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The application of thermo-chemical treatment resulted in complete covering of the
nanofibers with precipitates of the compounds used in the treatment.

Using GIXD, a series of measurements was made for selected samples with different
production parameters. Seven angles (α = 0.20◦; 0.30◦; 0.50◦; 1.00◦; 1.50◦; 2.50◦; 5.0◦) of
incidence of the X-ray beam were used, of which one angle (0.5◦) visualized on the GIXD
patterns was selected. Figure 4 shows the GIXD patterns for the 01K sample produced
during anodizing at the current density of 3 A/dm2, at 298 K, for 60 min. The sample
can be treated as the reference layer because it did not undergo any modification after the
anodizing process.

The GIXD diffraction pattern for the 01K sample was characterized by the absence of
clear reflections and the presence of the so-called amorphous “halo”. Therefore, layer 01K
can be regarded as an amorphous surface.

Figure 5 shows the GIXD diffraction pattern for the 02G sample produced at 3 A/dm2,
at 298 K, for 60 min, which was subjected to thermo-chemical treatment in distilled water.
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thermo-chemical treatment in distilled water.

Sample 02G was characterized by quite strong reflections from aluminum hydroxide
Al(OH)3 with intensity above 500, approaching 800 for the selected reflections.

Figure 6 shows a GIXD pattern for the oxide layer subjected to thermo-chemical
treatment in the sodium dichromate solution (sample 02H). The samples were prepared at
3 A/dm2 for 60 min and the electrolyte temperature was 298 K.
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Figure 6. GIXD pattern for the angle of incidence α = 0.50◦ obtained for the 02H sample subjected to
thermo-chemical treatment in sodium dichromate solution.

The Al2O3 layers subjected to thermo-chemical treatment in the sodium dichromate
solution were characterized by very strong reflections from sodium dihydroxy aluminum
carbonate (AlCH2NaO5), with an intensity of over 2000 for selected reflections. It is a
compound formed during the hydrothermal recrystallization of Al2O3. There were also
strong reflections (over 1000 intensity) from sodium chromium oxide (NaCrO2), which
is a compound from the group of chromium oxides commonly used as lubricants in tri-
bological pairs during dry friction. Chromium oxides are ceramic materials with ionic
bonds. Reflections of aluminum were also visible, caused by the penetration of X-rays
into the sample and the generation of an image from the substrate. Al2O3 layers sub-
jected to thermo-chemical treatment in sodium dichromate solution can be treated as
crystalline surfaces.

Figure 7 shows the GIXD pattern for the 02K sample after anodizing, subjected to
thermochemical treatment in the sodium sulphate solution. The layers were produced
successively at 3 A/dm2 for 60 min, at the electrolyte temperature of 298 K.

Sample 02K had no reflections indicating the formation of an additional sub-layer
during thermo-chemical treatment in the sodium sulphate solution. The only observed
reflections were those from aluminum, which appeared due to penetration of the layer
substrate by the X-ray beam. Based on the diffractogram, it can be concluded that the layer
had an amorphous structure.

The conducted GIXD studies allowed the influence of thermo-chemical treatment
on the phase composition of the Al2O3 layer to be determined. The sample that was
not treated after anodizing (01K) showed the properties of a typical amorphous surface,
which is in line with previous studies by researchers [19]. The investigations conducted
on the sample subjected to thermo-chemical treatment in distilled water (02B) showed the
appearance of reflections from aluminum hydroxide Al(OH)3 in the phase composition
of the Al2O3 layer. The analysis performed for the sample treated in the solution of
sodium dichromate (02H) showed the appearance in the phase composition of the layer of
both sodium dihydroxy aluminum carbonate (AlCH2NaO5) and sodium chromium oxide
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(NaCrO2), which is a derivative of chromium oxides used in friction pairs due to its good
tribological properties. These samples were characterized by a crystalline surface. The
Al2O3 layer, on which the thermo-chemical treatment in sodium sulphate (02K) solution
was applied, was characterized by a typically amorphous surface, with reflections on the
X-ray only from the substrate.
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In order to assess the functional properties (tribological applications) of the Al2O3
layers, the load-bearing capacity curves (Abbott–Firestone) with the parameters charac-
terizing them have been included (Figure 8). The parameters of the load-bearing capacity
curves are: Sk—the height of the surface core, Spk—the reduced height of the surface
peaks, Svk—the reduced depth of the surface recesses, Sr1—the load-bearing portion of the
surface peaks, and Sr2—the load-bearing portion of the surface recesses. Figure 8 presents
the load-bearing capacity curves for the layers produced in the anodizing process at the
current density of 3 A/dm2 in an electrolyte at the temperature of 298 K for 60 min, for
the sake of comparison. Sample 01K, which was not been subjected to thermo-chemical
treatment, was compared with sample 02G (subjected to thermo-chemical treatment in
distilled water) and samples 02H and 02K (modified in sodium dichromate and sodium
sulphate solutions, respectively).

After conducting a comparative analysis of the load-bearing capacity curves for layers
produced under the same conditions, and differing only in the thermo-chemical treatment,
several important facts were be noticed. The use of distilled water for the thermo-chemical
treatment (sample 02G) contributed to a significant reduction in the Sk, Spk, and Svk
parameters (the lowest among the compared samples) and a slight reduction in the Sr1 and
Sr2 parameters. The Spk parameter determines the behavior of the geometric structure of
the surface during run-in of the elements. Low values of the Spk parameter indicate the
low abrasion susceptibility of these layers. Based on the value of the Svk parameter, it can
be concluded that the layer was able to hold the lubricating oil film. A low value of this
parameter indicates a surface that does not require good lubrication. The use of sodium
dichromate for the thermo-chemical treatment (sample 02H) resulted in a significant rise
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in the Sk, Spk, and Svk parameters (the highest among the compared samples) and a
drop in the Sr1 and Sr2 parameters (the lowest among the compared samples). The use of
sodium sulphate (sample 02K) did not bring any significant changes in the parameters of
the load-bearing capacity curve.
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4. Conclusions

On the basis of the conducted research, it can be stated that the thermo-chemical
treatment of Al2O3 layers has a decisive influence on their structure and properties.

Depending on the type of compound used for thermo-chemical treatment, the micro-
hardness of the layer increases (by about 500 MPa with distilled water, by over 1000 MPa
with sodium dichromate solution, and by over 1700 MPa with sodium sulphate solution).
The increase in microhardness is caused by the swelling of the fibers and the change in
porosity as a result of thermo-chemical treatment [16,20].

The use of the thermochemical process in distilled water and in sodium dichromate
solution caused a change in the phase composition of the Al2O3 layer. The modified layer in
distilled water showed reflections from aluminum hydroxide Al(OH)3. This contributed to
the reduction of the parameters of the load capacity curve, which proved the low abrasion
susceptibility of such layers (during running-in) and good tribological properties with
limited lubrication. Modification in sodium dichromate solution caused the appearance
in the phase composition of both sodium dihydroxyaluminum carbonate (AlCH2NaO5)
and sodium chromium oxide (NaCrO2), which is a derivative of chromium oxides used in
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the sliding layers. This caused a significant increase in the Sk, Spk, and Svk parameters,
which indicates the greater susceptibility of these coatings to abrasion during running-in
(from the SGP point of view). The sodium sulphate used for the thermo-chemical treatment
did not significantly affect the phase structure of the layer and the parameters of the load
capacity curve. The technology of Al2O3 layer modification using distilled water and
sodium dichromate used in the research can be used to improve the tribological properties
of oxide layers used in friction nodes operating with limited lubrication. Future research
directions using the above method of thermo-chemical treatment will concern tribological
tests performed on material samples.
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