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Abstract

When mining of input data is focused on rule induction, knowledge, discovered in exploration of existing patterns, is stored in
combinations of certain conditions on attributes included in rule premises, leading to specific decisions. Through their properties,
such as lengths, supports, cardinalities of rule sets, inferred rules characterise relations detected among variables. The paper presents
research dedicated to analysis of these dependencies, considered in the context of various discretisation methods applied to the
input data from stylometric domain. For induction of decision rules from data, Classical Rough Set Approach was employed. Next,
based on rule properties, several factors were proposed and evaluated, reflecting characteristics of available condition attributes.
They allowed to observe how variables and rule sets changed depending on applied discretisation algorithms.
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1. Introduction

Discretisation imposes granularity on the input space by construction of intervals, designed to represent ranges of
values for considered attributes [1]. The process widens the scope of methods to be used for data mining, as some
inducers operate only on nominal variables. Even when some classification system can work on both continuous and
discrete features, categorical representation of values can bring such advantages as structure reduction that follows
data reduction. When applied, typically discretisation constitutes a part of initial data preparation stage, after which
data mining takes place [2]. It is also possible to firstly explore real-valued attributes, only to transform learned patterns
[3]. As various discretisation methods exist, such reversal of steps allows to try out several algorithms, while avoiding
the high computational costs of repeated knowledge discovery stage. Discretisation approaches can focus on many
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criteria, and result in construction of different numbers of intervals for variables taken under consideration. Therefore,
they all return some variants of input data that influence relationships and patterns present, and their exploration [4].

Knowledge discovered in data needs to be stored in some form [5]. Apart from being accessible for the process of
labelling unknown examples, it is most advantageous when this form of representation provides also characterisation
of attributes and detected dependencies, as it brings enhanced understanding. The transparency, such as shown by
decision rules induced from input data, offers deep insight into existing relationships, and various rule parameters and
rule based measures can be used for feature characterisation [6]. Within the experiments the rules were inferred by an
exhaustive algorithm, dedicated to rough set processing of data.

Rough set theory enables description of sets by their approximations, and uses atoms of information corresponding
to equivalence classes of objects that cannot be discerned based on values of known attributes [7]. This granularity is
reflected in categorical variables that are required for classical rough set approach that was employed for mining sty-
lometric data [8]. Exploration of stylistic characteristics of texts to the point of authorship attribution is considered as
the most important task [9], and datasets used in research constituted examples of such problem. They were subjected
to several discretisation algorithms, and from all versions of discrete datasets rule sets were inferred.

The methodology proposed in the framework of research allowed for in-depth analysis of relationships among sets
of decision rules, induced from datasets discretised by various selected approaches, and attributes included in these
rules. Most often rule lengths, supports and overall cardinalities of obtained rule sets are considered as important
indicators of rule quality [10], and these properties were exploited in the experiments. They were used as a base for
definition of new factors reflecting properties of individual attributes, relative to knowledge represented by sets of
inferred rules. The proposed factors, when evaluated, led to obtaining several statistics for all considered attributes,
and their analysis and comparison brought several observations on visible dependencies, and conclusions from results
of combining different discretisation approaches applied to data.

The experiments performed consisted of several stages:

• preparation of input datasets;
• discretisation of data;
• induction of decision rules and their evaluation;
• creation of characteristics of attributes occurring in rule sets based on the proposed factors;
• construction of learning sets based on the obtained characteristics of attributes;
• induction of decision rules for modified learning sets;
• evaluation of obtained sets of rules and construction characteristics of attributes.

Comments on the properties of input features and data are presented in Section 2, along with explanation of various
discretisation approaches. Description of properties of decision rules is given in Section 3, as are the proposed factors
based on rules and dedicated to attribute characterisation. Observations on differences related to various discrete
variants of datasets, induced rules, and attributes are included in Section 4, and final conclusions in Section 5.

2. Nature of Stylometry as the Application Domain and Input Datasets

Initial preparation of data included selection of: (i) authors and texts for authorship attribution tasks, (ii) character-
istic features, (iii) discretisation approaches applied to data. This pre-processing stage of research was concluded with
obtaining several selected variants of discrete input datasets, which were next subjected to data mining.

2.1. Input Features and Preparation of Data

Authorship attribution is considered as the most important task in the domain of stylometry [11]. It relies on
construction of stylistic profiles for compared authors, reflecting their preferences with respect to linguistic elements,
observable in many samples of writing [12]. Stylometric descriptors often refer to frequently employed function
words, and punctuation marks as they are used habitually. Recognition of authorship can be treated as a classification
task, where authors define classes and linguistic markers give characteristic features.
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In the research for stylometric processing literary works of four renowned writers were chosen, and grouped into
pairs: Edith Wharton and Mary Johnston, and Jack London and James Curwood. To obtain samples, the selected novels
were divided in parts of comparable size. For all these text chunks there were calculated frequencies of occurrence for
22 words and 2 punctuation marks as follows: after, almost, any, around, before, but, by, during, how, never, on, same,
such, that, then, there, though, until, whether, what, within, who, a comma, a semicolon.

The datasets prepared in this way contained 24 continuous characteristic features and 100 samples per author in
a set (200 samples per set). In order to limit the number of factors influencing observations, balance of classes was
ensured and classification was binary. To prepare data for rough set processing, discretisation was executed next.

2.2. Discretisation Algorithms

Right conduct regarding data preparation has an impact on the results obtained in the subsequent stages of data
mining. Discretisation can be considered as an important element of data pre-processing step [2]. It transforms a set
of continuous values into discrete ones, by partitioning ranges of numeric variables into a number of bins (sub-ranges)
and treating each bin as a category or nominal value [4]. This division is based on selection of so-called cut-points.

To find intervals among ranges of attribute values unsupervised approaches only need to know their numbers,
provided as an input parameter [13]. The main algorithms of this type are equal width binning and equal frequency
binning [1]. For the former, values of the discretised attribute are sorted, then the minimum and maximum values are
found, and finally all values in the range are divided into the number of equal width discrete intervals defined by a
user. In the latter, after determining the minimum and maximum values of the discretised attribute, the range of values
is divided into the specified number of intervals, such that each bin contains the same number of sorted values.

Supervised approaches consider information about class labels of objects when they investigate construction of
intervals for attribute values. Known algorithms used are by Fayyad and Irani [14], and Kononenko [15]. Both methods
use class entropy of constructed bins for evaluation of cut-points, and Minimum Description Length principle as a
stopping criterion. Intervals are partitioned in top-down fashion, starting from one interval containing all values of
the considered attribute, then the proposed cut-points are evaluated and the best one chosen for splitting the range of
continuous values into sub-ranges. Discretisation is continued with each interval until a stopping criterion is achieved.

Let set S contain N instances and k decision classes C1, . . . ,Ck. For P(Ci, S ) denoting the proportion of class Ci

instances in S , class entropy Ent(S ) is defined as follows:

Ent(S ) = −
k∑

i=1

P(Ci, S ) log(P(Ci, S )). (1)

For binary discretisation of a continous attribute A, a candidate cut-point T splits set S into two subsets, S 1 and S 2,
where S 1 ⊂ S contains instances with attribute values ≤ T and S 2 = S \ S 1. Entropy for cut-point T is obtained by:

Ent(A, T ; S ) =
|S 1|
|S | Ent(S 1) +

|S 2|
|S | Ent(S 2). (2)

The selection of cut-point Topt is made by testing all candidates. For the optimal cut-point Topt class information
entropy Ent(A, Topt; S ) is minimal. Evaluation of cut-points is executed recursively until the stop criterion is met.

For Fayyad and Irani method, the stopping criterion, given by inequality Eq. (3), is based on information gain
resulting from the cut-point T , Gain(A, T ; S ) = Ent(S ) − E(A, T ; S ).

Gain(A, T ; S ) >
log2(N − 1)

N
+

log2(3k − 2) − [k · Ent(S ) − k1 · Ent(S 1) − k2 · Ent(S 2)]
N

. (3)



 Beata Zielosko  et al. / Procedia Computer Science 192 (2021) 3922–3931 3925

In the research for stylometric processing literary works of four renowned writers were chosen, and grouped into
pairs: Edith Wharton and Mary Johnston, and Jack London and James Curwood. To obtain samples, the selected novels
were divided in parts of comparable size. For all these text chunks there were calculated frequencies of occurrence for
22 words and 2 punctuation marks as follows: after, almost, any, around, before, but, by, during, how, never, on, same,
such, that, then, there, though, until, whether, what, within, who, a comma, a semicolon.

The datasets prepared in this way contained 24 continuous characteristic features and 100 samples per author in
a set (200 samples per set). In order to limit the number of factors influencing observations, balance of classes was
ensured and classification was binary. To prepare data for rough set processing, discretisation was executed next.

2.2. Discretisation Algorithms

Right conduct regarding data preparation has an impact on the results obtained in the subsequent stages of data
mining. Discretisation can be considered as an important element of data pre-processing step [2]. It transforms a set
of continuous values into discrete ones, by partitioning ranges of numeric variables into a number of bins (sub-ranges)
and treating each bin as a category or nominal value [4]. This division is based on selection of so-called cut-points.

To find intervals among ranges of attribute values unsupervised approaches only need to know their numbers,
provided as an input parameter [13]. The main algorithms of this type are equal width binning and equal frequency
binning [1]. For the former, values of the discretised attribute are sorted, then the minimum and maximum values are
found, and finally all values in the range are divided into the number of equal width discrete intervals defined by a
user. In the latter, after determining the minimum and maximum values of the discretised attribute, the range of values
is divided into the specified number of intervals, such that each bin contains the same number of sorted values.

Supervised approaches consider information about class labels of objects when they investigate construction of
intervals for attribute values. Known algorithms used are by Fayyad and Irani [14], and Kononenko [15]. Both methods
use class entropy of constructed bins for evaluation of cut-points, and Minimum Description Length principle as a
stopping criterion. Intervals are partitioned in top-down fashion, starting from one interval containing all values of
the considered attribute, then the proposed cut-points are evaluated and the best one chosen for splitting the range of
continuous values into sub-ranges. Discretisation is continued with each interval until a stopping criterion is achieved.

Let set S contain N instances and k decision classes C1, . . . ,Ck. For P(Ci, S ) denoting the proportion of class Ci

instances in S , class entropy Ent(S ) is defined as follows:

Ent(S ) = −
k∑

i=1

P(Ci, S ) log(P(Ci, S )). (1)

For binary discretisation of a continous attribute A, a candidate cut-point T splits set S into two subsets, S 1 and S 2,
where S 1 ⊂ S contains instances with attribute values ≤ T and S 2 = S \ S 1. Entropy for cut-point T is obtained by:

Ent(A, T ; S ) =
|S 1|
|S | Ent(S 1) +

|S 2|
|S | Ent(S 2). (2)

The selection of cut-point Topt is made by testing all candidates. For the optimal cut-point Topt class information
entropy Ent(A, Topt; S ) is minimal. Evaluation of cut-points is executed recursively until the stop criterion is met.

For Fayyad and Irani method, the stopping criterion, given by inequality Eq. (3), is based on information gain
resulting from the cut-point T , Gain(A, T ; S ) = Ent(S ) − E(A, T ; S ).

Gain(A, T ; S ) >
log2(N − 1)

N
+

log2(3k − 2) − [k · Ent(S ) − k1 · Ent(S 1) − k2 · Ent(S 2)]
N

. (3)

In the case of Kononenko algorithm, let N be the number of training instances, NCi denote the number of training
instances from the class Ci, NAx specify the number of instances with x-th value of the given attribute, NCiAy the
number of instances from class Ci with y-th value of the given attribute, and NT the number of possible cut-points.
The stopping criterion requires that the inequality (4) becomes true:

log
(

N
NC1 . . .NCk

)
+ log

(
N + k − 1

k − 1

)
>
∑

j

log
(

NAj

NC1A j . . .NCk Aj

)
+
∑

j

(
NAj + k − 1

k − 1

)
+ log NT . (4)

In majority of research, once the decision with respect to application of discretisation is made, all attributes are
transformed, and to all variables the same algorithm is applied. This popular practice is not necessarily the most
advantageous, as sometimes processing of only a part of attributes, instead of all, can bring better results [16]. The
supervised methods are often considered as more efficient and delivering better results then unsupervised, in particular
equal width binning is frequently criticised as inflexible to data distributions [17]. However, combinations of methods
can allow for smaller reduction of information leading to enhanced predictions [18, 19].

2.3. Discrete Datasets

The choice of some particular discretisation algorithm can significantly influence data mining and knowledge
discovery process [20]. In the research several variants of discrete input data were obtained and compared in the
perspective of properties of rule sets induced. These datasets were as follows:

• dsF—supervised discretisation with Fayyad and Irani method applied to all attributes;
• dsK—supervised discretisation with Kononenko algorithm for all attributes;
• dufi—unsupervised equal frequency binning, with i giving the number of intervals, the same for all attributes;
• duwi—unsupervised equal width binning, with i giving the number of intervals, the same for all attributes;
• factor-based—combination of specific supervised and unsupervised approaches, selected individually for at-

tributes depending on observed values for the proposed factors referring to rule sets induced from data.

The input parameter i used for unsupervised approaches was from the set {2, 3, 4, 5}. The upper limit considered was
chosen by an analysis of the maximum numbers of bins found for attributes by supervised algorithms. They ranged
from 1, which means a single interval representing all values of some attribute, to the maximum of 4 intervals. Such
1-bin variables brought no informative content in discrete space [6], and were in fact disregarded within knowledge
discovery process that was the next stage of experiments.

3. Knowledge Represented by Decision Rules

Decision rules are popular and very useful form of knowledge representation [21], since their notation is similar
to the way how a human writes knowledge. Simplicity of understanding and interpretation by domain experts are
considered their main advantages, and the reason for frequent application in many areas connected with data mining
and knowledge discovery. Due to this popularity, a variety of approaches and algorithms for decision rules construction
exist [22]. In the reported research, decision rules were induced in the framework of rough sets theory [7].

3.1. Properties of Decision Rules

In rough set universe U, objects are described by data stored in a tabular form, known as a decision table: S =
(U, A

⋃{d}). A = {a1, . . . , am} is a nonempty, finite set of condition attributes, i.e., ai : U → Va, where Va is the set of
values of attribute ai, and d is a distinguished attribute d � A called a decision. Decision rules induced from the table
are expressions presented in a form (ai1 = v1) ∧ . . . ∧ (aik = vk) → d = vd, where 1 ≤ i1 < . . . < ik ≤ m, vi ∈ Vai ,
1 ≤ vd ≤ |Vd |. In the research they were inferred by the exhaustive algorithm, which constructs all decision rules with
minimal number of pairs attribute = value in the premise part of the rule [23].
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The aim of discovery oriented induction is to find patterns or regularities hidden in the data set, which are interesting
and useful for users. Once decision rules are induced [24], they can also be analysed from the point of view of
knowledge representation. Their sets can be studied through the perspective of their properties and measures used for
evaluation of their quality [25]. Typically the considered rule characteristics refer to:

• cardinality of rule sets;
• lengths of rules, giving the number of descriptors (conditions) in premise part of the rule;
• supports of rules, which is the number of objects from the training dataset covered by the rule.

Rules with fewer conditions are considered as more advantageous. They are more general, possess better descriptive
properties, and are simpler for interpretation. Heuristics for optimisation of decision rule induction often focus on this
aspect and return only subsets of rules with specific lengths [26]. High support of rules indicates that captured patterns
were observed in many training objects, which is naturally preferred over rare cases, as it speaks of rule strength.

3.2. Induced Decision Rules

In the research Rough Set Exploration System was employed [27] for induction of decision rules. For sets of rules
induced from data discretised by selected algorithms, Table 1 presents evaluation measures such as the number of
included rules, average and maximum values of length and support (minima were equal 1 for all rule sets).

Table 1. Properties of rule sets induced from data discretised by various algorithms, for Female and Male writer datasets

Female writer datasets Male writer datasets
rule number length support rule number length support
set of rules average maximum average maximum set of rules average maximim average maximum

dsF 4121 4.8 9 6.6 88 dsF 15283 5.1 9 5.9 79
dsK 10190 5.3 10 5.4 88 dsK 20815 5.1 10 5.5 75
duf2 103645 5.7 11 3.7 92 duf2 138910 5.6 10 3.6 56
duf3 122527 4.5 8 2.1 66 duf3 135696 4.4 7 2.0 67
duf4 81723 3.8 7 1.8 50 duf4 96327 3.7 7 1.8 50
duf5 68994 3.5 6 1.7 40 duf5 76240 3.4 7 1.7 40
duw2 2094 5.5 11 6.5 86 duw2 1509 4.6 10 7.5 78
duw3 26025 5.6 10 3.6 75 duw3 32447 5.7 12 3.3 66
duw4 46480 5.0 9 2.6 58 duw4 47574 5.0 10 2.9 49
duw5 67054 4.5 9 2.1 54 duw5 79561 4.6 9 2.3 51

It can be observed that various discretisation methods applied to the datasets resulted in highly varied characteristics
of rule sets induced from them, in all aspects. Different numbers of rules were inferred, with varying averages of
lengths and supports. Supervised discretisation approaches not always resulted in the best rule sets. The lowest average
rule length was related to lowest maximal length, and highest average supports with rule sets of lowest cardinalities.

These characteristics can be used not only for comparisons of rule sets, but also to describe individual attributes
used as conditions in rule premises. With that aim in the research several factors were defined, based on rules and
focused in attributes, as explained in the next section.

3.3. Characterisation of Attributes by Rules and Rule Sets

Given a set of decision rules SRls, card(SRls) denotes the cardinality of the rule set, that is the number of rules in
the set. For an attribute a, RLS (SRls, a) is the subset of rules from the set SRls that include conditions on a attribute. It
can be argued that if an attribute occurs in many rules, then it is considered as important for rule induction process.
Such factor was defined by Eg. (5). Its modification, given by Eq. (6), enabled to calculate the average length of rules
including the attribute a. Taking into account the preference of shorter rules led to Eg. (7), where rules were weighted
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and useful for users. Once decision rules are induced [24], they can also be analysed from the point of view of
knowledge representation. Their sets can be studied through the perspective of their properties and measures used for
evaluation of their quality [25]. Typically the considered rule characteristics refer to:

• cardinality of rule sets;
• lengths of rules, giving the number of descriptors (conditions) in premise part of the rule;
• supports of rules, which is the number of objects from the training dataset covered by the rule.

Rules with fewer conditions are considered as more advantageous. They are more general, possess better descriptive
properties, and are simpler for interpretation. Heuristics for optimisation of decision rule induction often focus on this
aspect and return only subsets of rules with specific lengths [26]. High support of rules indicates that captured patterns
were observed in many training objects, which is naturally preferred over rare cases, as it speaks of rule strength.

3.2. Induced Decision Rules

In the research Rough Set Exploration System was employed [27] for induction of decision rules. For sets of rules
induced from data discretised by selected algorithms, Table 1 presents evaluation measures such as the number of
included rules, average and maximum values of length and support (minima were equal 1 for all rule sets).

Table 1. Properties of rule sets induced from data discretised by various algorithms, for Female and Male writer datasets

Female writer datasets Male writer datasets
rule number length support rule number length support
set of rules average maximum average maximum set of rules average maximim average maximum

dsF 4121 4.8 9 6.6 88 dsF 15283 5.1 9 5.9 79
dsK 10190 5.3 10 5.4 88 dsK 20815 5.1 10 5.5 75
duf2 103645 5.7 11 3.7 92 duf2 138910 5.6 10 3.6 56
duf3 122527 4.5 8 2.1 66 duf3 135696 4.4 7 2.0 67
duf4 81723 3.8 7 1.8 50 duf4 96327 3.7 7 1.8 50
duf5 68994 3.5 6 1.7 40 duf5 76240 3.4 7 1.7 40
duw2 2094 5.5 11 6.5 86 duw2 1509 4.6 10 7.5 78
duw3 26025 5.6 10 3.6 75 duw3 32447 5.7 12 3.3 66
duw4 46480 5.0 9 2.6 58 duw4 47574 5.0 10 2.9 49
duw5 67054 4.5 9 2.1 54 duw5 79561 4.6 9 2.3 51

It can be observed that various discretisation methods applied to the datasets resulted in highly varied characteristics
of rule sets induced from them, in all aspects. Different numbers of rules were inferred, with varying averages of
lengths and supports. Supervised discretisation approaches not always resulted in the best rule sets. The lowest average
rule length was related to lowest maximal length, and highest average supports with rule sets of lowest cardinalities.

These characteristics can be used not only for comparisons of rule sets, but also to describe individual attributes
used as conditions in rule premises. With that aim in the research several factors were defined, based on rules and
focused in attributes, as explained in the next section.

3.3. Characterisation of Attributes by Rules and Rule Sets

Given a set of decision rules SRls, card(SRls) denotes the cardinality of the rule set, that is the number of rules in
the set. For an attribute a, RLS (SRls, a) is the subset of rules from the set SRls that include conditions on a attribute. It
can be argued that if an attribute occurs in many rules, then it is considered as important for rule induction process.
Such factor was defined by Eg. (5). Its modification, given by Eq. (6), enabled to calculate the average length of rules
including the attribute a. Taking into account the preference of shorter rules led to Eg. (7), where rules were weighted

by their lengths. Eg. (8) brought information on average support of rules in which the attribute occurred.

(NoR) WN(SRls, a) = card(RLS (SRls,a))
card(SRls)

, (5)

(AvgL) WAL(SRls, a) =
lmax∑

i=lmin

card(RLS (SRls,a,i))
card(SRls)

· i, (6)

(Wl) WL(SRls, a) =
lmax∑

i=lmin

card(RLS (SRls,a,i))
card(SRls)·i , (7)

(AvgS ) WS (SRls, a) =
smax∑

i=smin

card(RLS (SRls,a,i))
card(SRls)

· i, (8)

In calculation of all these factors the total number of rules in the considered rule set was taken into account, that is
occurrence in rules was always treated as relative to all rules in the analysed set. In the rest of the paper the factors
will be referred to by their labels given on the left in the above equations. With these definitions, for NoR highest
values were preferred, and the same statement was true for weighted lengths Wl and averaged support AvgS , whereas
the smallest values for averaged lengths AvgL were considered as most advantageous.

4. From Datasets to Rule Sets then to Attributes

For all variants of discrete input datasets and rule sets induced from them, statistics were obtained for attributes,
exploiting the previously defined factors built around rules and their properties. These individual characteristics were
analysed in relation to discretisation methods used, which led to modifications of the training sets. From the new sets
again rules were inferred, and again statistics calculated and compared. In all computations representation included
4 fractional digits. In the presented tables they were rounded to at most 2, due to space limitation. Zeroes indicate
absence of an attribute in a considered rule set. In all tables preferred or improved values were indicated with colours.

4.1. Statistics Obtained for Attributes

NoR, defined by Eq. (5), was the first statistics considered. It corresponded to the percentage of rules in a rule
set studied, which contained a given attribute. The characteristics, displayed by Table 2, show that for female writer
dataset the highest number of variables (8) indicated equal width binning with just 2 bins as leading to the highest
values of NoR factor, the remaining ones pointed to both supervised methods, equal frequency binning with 2 bins, and
again equal width binning but with 3 bins this time. For male writers the distribution of selections among discretisation
methods was closer, for the highest number of variables (7) it was equal frequency binning with 2 bins, for the rest
Fayyad and Irani supervised discretisation, and equal width binning with either 2 or 3 bins. Overall, methods leading to
smaller numbers of intervals constructed were mostly selected, but from both supervised and unsupervised approaches.

Table 3 shows statistics based on the second factor AvgL (Eg. (6)), calculating the average length of rules containing
conditions on a attribute, in relation to the total number of decision rules in a set. In the case of this factor, smallest
values were preferred. With only few exceptions, for both female and male datasets, the vast majority of attributes
distinguished equal frequency binning with 5 bins as the method leading to shortest rules. This observation brought
an interesting contrast when compared with the content of Table 4, which reflects Wl factor (Eg. (7)) that was also
based on rule lengths. However, in this case the preference for shorter rules was incorporated directly into calculations,
through weighting rules by their lengths. For female writers Wl factor pointed mostly to Fayyad and Irani algorithm
of supervised discretisation, and for male writers to Fayyad and equal width binning with 2 bins. In both cases for
most variables smaller numbers of bins were constructed than in algorithms pointed by AvgL factor.

Table 5 presents characteristics based on the last of considered factors, AvgS (Eg. (8)), which took into account
supports of rules with conditions on a given attribute. As rules with high supports are preferred as stronger, highest
values were distinguished. From all discretisation methods the ones that stood out as leading to the best statistics
for both datasets were Fayyad and Irani supervised algorithm, and equal width binning with 2 bins. Actually, when
statistics for all considered factors were compared, putting aside the characterisation by AvL factor, the rest pointed
mostly to these two discretisation procedures for both female and male writer datasets, as returning preferred values.
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Table 2. Statistics obtained for attributes based on NoR factor (see Eg. (5)), presenting the percentage of rules in which an attribute is included
Female writer datasets

rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 4.1 29.7 30.1 35.0 29.0 4.5 31.8 24.8 34.5 38.3 28.1 18.9 39.0 26.7 0.0 30.1 0.0 13.6 0.0 7.1 19.7 0.0 27.3 9.2
dsK 3.1 24.0 30.4 31.2 30.6 3.7 28.8 25.8 34.5 38.4 27.2 19.7 36.7 26.8 23.9 29.5 18.0 10.4 0.0 9.0 15.7 36.2 23.5 5.8
duf2 28.6 12.7 24.4 28.9 26.2 29.2 24.2 31.3 26.6 29.1 28.8 31.7 29.1 23.5 16.6 30.5 30.3 11.0 28.4 16.6 15.7 28.3 15.7 2.6
duf3 22.5 11.5 17.8 21.6 21.5 23.9 19.6 21.7 20.5 22.5 23.0 22.5 20.9 18.4 11.5 23.4 22.8 9.9 20.3 10.6 11.5 21.0 17.8 9.5
duf4 20.6 10.5 15.7 19.7 18.9 20.0 16.4 19.6 18.1 19.1 18.9 20.5 17.9 15.6 9.0 20.5 19.5 9.5 16.6 8.1 10.5 18.1 14.0 4.4
duf5 17.7 10.1 13.6 18.1 17.4 17.3 15.3 17.3 16.3 17.1 17.2 18.5 16.3 14.3 8.0 19.1 18.4 8.8 15.0 6.6 9.3 15.8 12.9 5.2
duw2 43.6 37.1 38.1 14.0 33.4 21.9 27.7 23.7 14.5 33.1 13.2 32.3 27.6 29.6 3.1 30.7 24.3 4.1 28.9 13.3 2.0 3.0 37.8 11.1
duw3 33.9 22.7 29.8 16.9 31.3 27.7 29.4 29.0 27.7 33.8 34.4 32.5 27.4 21.1 6.3 29.8 23.9 7.5 25.6 5.7 5.4 12.7 28.2 14.3
duw4 28.4 18.8 24.4 24.9 25.9 26.7 27.9 23.7 24.6 27.3 24.3 29.4 20.4 20.7 4.4 29.3 28.6 6.4 19.6 15.7 4.7 11.6 23.5 7.0
duw5 23.3 13.3 19.0 22.9 22.9 25.1 21.4 24.0 23.0 21.9 24.7 24.7 22.3 15.8 2.9 25.1 22.8 10.1 22.9 12.3 10.2 20.1 16.5 4.1

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 29.2 26.3 16.4 20.8 22.3 30.5 26.8 23.7 26.0 27.2 17.6 0.0 30.1 27.7 0.0 20.5 20.0 27.9 15.3 22.5 28.7 16.1 20.9 10.4
dsK 27.6 25.4 27.1 18.8 21.5 29.5 24.0 22.7 24.6 24.9 15.6 15.2 28.6 27.1 0.0 20.3 19.5 25.2 15.7 20.8 27.0 14.5 19.8 9.8
duf2 21.0 19.9 20.5 17.8 26.7 28.6 18.2 25.1 26.0 26.0 28.5 29.1 27.9 24.4 22.0 30.9 27.2 19.9 24.6 15.3 25.1 24.9 27.0 7.9
duf3 19.6 18.3 16.4 17.4 20.4 23.0 15.2 19.0 20.6 17.9 22.7 23.0 21.3 19.1 15.7 22.1 16.3 16.3 18.1 10.2 18.8 15.9 20.4 9.9
duf4 15.8 14.6 14.5 14.2 18.5 19.4 14.2 16.8 16.8 16.2 19.3 19.4 18.9 16.3 12.8 18.0 15.5 13.6 16.8 8.4 15.7 13.2 17.5 8.4
duf5 14.6 13.2 13.5 14.0 16.7 17.5 13.5 16.1 15.8 13.9 18.0 17.7 16.8 14.2 11.0 17.2 13.5 12.8 14.7 7.7 14.1 10.5 15.7 5.5
duw2 38.2 33.6 29.2 29.1 30.7 18.2 15.5 21.9 29.1 32.7 23.3 24.3 8.7 9.1 1.9 11.9 9.6 18.4 12.7 10.9 13.0 3.3 10.3 27.0
duw3 29.4 29.0 28.4 23.8 31.0 28.7 27.6 26.7 33.8 27.6 33.8 27.6 19.3 17.2 8.2 21.6 19.6 21.2 18.2 19.4 20.2 9.6 26.8 21.2
duw4 23.7 22.3 22.6 23.8 27.6 28.3 19.9 21.2 26.3 22.4 26.9 26.0 20.5 15.9 5.4 29.3 18.4 18.9 18.3 16.5 16.4 8.0 24.1 12.9
duw5 20.4 17.7 18.6 18.9 22.5 22.7 18.8 20.1 22.3 22.2 24.9 20.9 20.5 18.0 15.9 25.4 13.7 15.0 16.4 12.7 19.2 17.5 22.5 8.5

Table 3. Statistics obtained for attributes based on AvgL factor (see Eg. (6)), giving average length of rules including a given attribute, relative to
the total number of rules

Female writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 0.20 1.42 1.52 1.80 1.52 0.24 1.61 1.32 1.76 2.01 1.51 1.02 2.02 1.43 0.0 1.58 0.0 0.64 0.0 0.42 0.97 0.0 1.38 0.36
dsK 0.17 1.24 1.71 1.75 1.76 0.22 1.58 1.50 1.92 2.19 1.58 1.17 2.06 1.58 1.43 1.69 1.06 0.56 0.0 0.57 0.85 2.05 1.27 0.24
duf2 1.68 0.72 1.41 1.69 1.53 1.71 1.40 1.84 1.55 1.70 1.69 1.86 1.71 1.35 1.00 1.79 1.78 0.63 1.66 1.03 0.92 1.65 0.90 0.13
duf3 1.02 0.51 0.80 0.98 0.98 1.09 0.88 0.98 0.92 1.02 1.05 1.03 0.95 0.83 0.57 1.06 1.04 0.48 0.94 0.52 0.55 0.97 0.80 0.44
duf4 0.81 0.40 0.61 0.77 0.74 0.78 0.63 0.76 0.70 0.74 0.73 0.80 0.71 0.61 0.38 0.80 0.76 0.40 0.67 0.35 0.44 0.72 0.53 0.17
duf5 0.63 0.34 0.47 0.64 0.61 0.61 0.53 0.61 0.57 0.60 0.61 0.65 0.59 0.50 0.32 0.67 0.65 0.35 0.56 0.26 0.36 0.58 0.45 0.18
duw2 2.83 2.39 2.41 1.03 2.23 1.49 1.52 1.52 0.70 2.06 0.98 1.89 1.86 1.87 0.23 1.80 1.51 0.22 1.86 0.95 0.11 0.15 2.39 0.53
duw3 1.95 1.35 1.78 1.04 1.83 1.60 1.72 1.75 1.60 1.97 2.04 1.96 1.65 1.29 0.43 1.76 1.46 0.44 1.54 0.38 0.33 0.76 1.60 0.78
duw4 1.48 0.97 1.27 1.33 1.31 1.40 1.44 1.24 1.28 1.40 1.26 1.53 1.07 1.06 0.28 1.53 1.51 0.36 1.07 0.85 0.28 0.64 1.21 0.34
duw5 1.09 0.60 0.89 1.11 1.06 1.19 0.99 1.15 1.07 1.01 1.17 1.15 1.03 0.74 0.15 1.16 1.07 0.54 1.08 0.62 0.52 0.98 0.75 0.17

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 1.58 1.39 0.96 1.08 1.14 1.65 1.40 1.24 1.40 1.46 0.97 0.0 1.61 1.48 0.0 1.09 1.09 1.44 0.81 1.20 1.54 0.86 1.09 0.49
dsK 1.48 1.33 1.41 0.98 1.11 1.58 1.24 1.19 1.31 1.33 0.85 0.82 1.52 1.45 0.0 1.09 1.06 1.29 0.83 1.11 1.44 0.77 1.04 0.46
duf2 1.20 1.14 1.18 1.02 1.55 1.67 1.03 1.45 1.52 1.51 1.66 1.70 1.62 1.42 1.28 1.81 1.58 1.13 1.43 0.90 1.45 1.45 1.57 0.43
duf3 0.88 0.81 0.73 0.77 0.91 1.03 0.67 0.84 0.92 0.79 1.03 1.03 0.95 0.85 0.72 0.99 0.72 0.72 0.81 0.48 0.85 0.75 0.91 0.45
duf4 0.60 0.55 0.55 0.54 0.71 0.75 0.53 0.64 0.65 0.62 0.75 0.75 0.73 0.63 0.51 0.69 0.60 0.52 0.65 0.35 0.62 0.54 0.67 0.32
duf5 0.50 0.45 0.46 0.47 0.58 0.60 0.46 0.56 0.54 0.48 0.62 0.62 0.59 0.50 0.41 0.59 0.47 0.44 0.51 0.30 0.51 0.40 0.54 0.19
duw2 1.92 1.83 1.44 1.58 1.67 1.03 0.72 1.25 1.48 1.79 1.14 1.33 0.49 0.52 0.09 0.55 0.60 0.96 0.70 0.60 0.73 0.17 0.55 1.25
duw3 1.78 1.77 1.71 1.36 1.87 1.75 1.61 1.66 2.03 1.62 2.03 1.70 1.26 1.09 0.53 1.36 1.29 1.31 1.05 1.22 1.28 0.60 1.65 1.30
duw4 1.21 1.18 1.14 1.22 1.45 1.46 0.99 1.16 1.33 1.15 1.40 1.37 1.13 0.88 0.31 1.58 0.98 0.94 0.96 0.91 0.93 0.47 1.29 0.64
duw5 0.94 0.82 0.87 0.87 1.07 1.07 0.88 0.97 1.02 1.05 1.17 1.00 1.02 0.88 0.78 1.23 0.67 0.69 0.79 0.64 0.93 0.88 1.07 0.38

Based on observations drawn from evaluation of factors for all rule sets and all attributes considered, modified ver-
sions of discrete input datasets were constructed next. For each attribute such discretisation method was selected that
led to obtaining the most preferred value for each considered factor. With preferences indicating both supervised and
unsupervised algorithms, the resulting datasets constituted examples of combinations of several different discretisation
approaches applied to data in a single dataset, which is not a standard procedure.
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Table 2. Statistics obtained for attributes based on NoR factor (see Eg. (5)), presenting the percentage of rules in which an attribute is included
Female writer datasets

rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 4.1 29.7 30.1 35.0 29.0 4.5 31.8 24.8 34.5 38.3 28.1 18.9 39.0 26.7 0.0 30.1 0.0 13.6 0.0 7.1 19.7 0.0 27.3 9.2
dsK 3.1 24.0 30.4 31.2 30.6 3.7 28.8 25.8 34.5 38.4 27.2 19.7 36.7 26.8 23.9 29.5 18.0 10.4 0.0 9.0 15.7 36.2 23.5 5.8
duf2 28.6 12.7 24.4 28.9 26.2 29.2 24.2 31.3 26.6 29.1 28.8 31.7 29.1 23.5 16.6 30.5 30.3 11.0 28.4 16.6 15.7 28.3 15.7 2.6
duf3 22.5 11.5 17.8 21.6 21.5 23.9 19.6 21.7 20.5 22.5 23.0 22.5 20.9 18.4 11.5 23.4 22.8 9.9 20.3 10.6 11.5 21.0 17.8 9.5
duf4 20.6 10.5 15.7 19.7 18.9 20.0 16.4 19.6 18.1 19.1 18.9 20.5 17.9 15.6 9.0 20.5 19.5 9.5 16.6 8.1 10.5 18.1 14.0 4.4
duf5 17.7 10.1 13.6 18.1 17.4 17.3 15.3 17.3 16.3 17.1 17.2 18.5 16.3 14.3 8.0 19.1 18.4 8.8 15.0 6.6 9.3 15.8 12.9 5.2
duw2 43.6 37.1 38.1 14.0 33.4 21.9 27.7 23.7 14.5 33.1 13.2 32.3 27.6 29.6 3.1 30.7 24.3 4.1 28.9 13.3 2.0 3.0 37.8 11.1
duw3 33.9 22.7 29.8 16.9 31.3 27.7 29.4 29.0 27.7 33.8 34.4 32.5 27.4 21.1 6.3 29.8 23.9 7.5 25.6 5.7 5.4 12.7 28.2 14.3
duw4 28.4 18.8 24.4 24.9 25.9 26.7 27.9 23.7 24.6 27.3 24.3 29.4 20.4 20.7 4.4 29.3 28.6 6.4 19.6 15.7 4.7 11.6 23.5 7.0
duw5 23.3 13.3 19.0 22.9 22.9 25.1 21.4 24.0 23.0 21.9 24.7 24.7 22.3 15.8 2.9 25.1 22.8 10.1 22.9 12.3 10.2 20.1 16.5 4.1

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 29.2 26.3 16.4 20.8 22.3 30.5 26.8 23.7 26.0 27.2 17.6 0.0 30.1 27.7 0.0 20.5 20.0 27.9 15.3 22.5 28.7 16.1 20.9 10.4
dsK 27.6 25.4 27.1 18.8 21.5 29.5 24.0 22.7 24.6 24.9 15.6 15.2 28.6 27.1 0.0 20.3 19.5 25.2 15.7 20.8 27.0 14.5 19.8 9.8
duf2 21.0 19.9 20.5 17.8 26.7 28.6 18.2 25.1 26.0 26.0 28.5 29.1 27.9 24.4 22.0 30.9 27.2 19.9 24.6 15.3 25.1 24.9 27.0 7.9
duf3 19.6 18.3 16.4 17.4 20.4 23.0 15.2 19.0 20.6 17.9 22.7 23.0 21.3 19.1 15.7 22.1 16.3 16.3 18.1 10.2 18.8 15.9 20.4 9.9
duf4 15.8 14.6 14.5 14.2 18.5 19.4 14.2 16.8 16.8 16.2 19.3 19.4 18.9 16.3 12.8 18.0 15.5 13.6 16.8 8.4 15.7 13.2 17.5 8.4
duf5 14.6 13.2 13.5 14.0 16.7 17.5 13.5 16.1 15.8 13.9 18.0 17.7 16.8 14.2 11.0 17.2 13.5 12.8 14.7 7.7 14.1 10.5 15.7 5.5
duw2 38.2 33.6 29.2 29.1 30.7 18.2 15.5 21.9 29.1 32.7 23.3 24.3 8.7 9.1 1.9 11.9 9.6 18.4 12.7 10.9 13.0 3.3 10.3 27.0
duw3 29.4 29.0 28.4 23.8 31.0 28.7 27.6 26.7 33.8 27.6 33.8 27.6 19.3 17.2 8.2 21.6 19.6 21.2 18.2 19.4 20.2 9.6 26.8 21.2
duw4 23.7 22.3 22.6 23.8 27.6 28.3 19.9 21.2 26.3 22.4 26.9 26.0 20.5 15.9 5.4 29.3 18.4 18.9 18.3 16.5 16.4 8.0 24.1 12.9
duw5 20.4 17.7 18.6 18.9 22.5 22.7 18.8 20.1 22.3 22.2 24.9 20.9 20.5 18.0 15.9 25.4 13.7 15.0 16.4 12.7 19.2 17.5 22.5 8.5

Table 3. Statistics obtained for attributes based on AvgL factor (see Eg. (6)), giving average length of rules including a given attribute, relative to
the total number of rules

Female writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 0.20 1.42 1.52 1.80 1.52 0.24 1.61 1.32 1.76 2.01 1.51 1.02 2.02 1.43 0.0 1.58 0.0 0.64 0.0 0.42 0.97 0.0 1.38 0.36
dsK 0.17 1.24 1.71 1.75 1.76 0.22 1.58 1.50 1.92 2.19 1.58 1.17 2.06 1.58 1.43 1.69 1.06 0.56 0.0 0.57 0.85 2.05 1.27 0.24
duf2 1.68 0.72 1.41 1.69 1.53 1.71 1.40 1.84 1.55 1.70 1.69 1.86 1.71 1.35 1.00 1.79 1.78 0.63 1.66 1.03 0.92 1.65 0.90 0.13
duf3 1.02 0.51 0.80 0.98 0.98 1.09 0.88 0.98 0.92 1.02 1.05 1.03 0.95 0.83 0.57 1.06 1.04 0.48 0.94 0.52 0.55 0.97 0.80 0.44
duf4 0.81 0.40 0.61 0.77 0.74 0.78 0.63 0.76 0.70 0.74 0.73 0.80 0.71 0.61 0.38 0.80 0.76 0.40 0.67 0.35 0.44 0.72 0.53 0.17
duf5 0.63 0.34 0.47 0.64 0.61 0.61 0.53 0.61 0.57 0.60 0.61 0.65 0.59 0.50 0.32 0.67 0.65 0.35 0.56 0.26 0.36 0.58 0.45 0.18
duw2 2.83 2.39 2.41 1.03 2.23 1.49 1.52 1.52 0.70 2.06 0.98 1.89 1.86 1.87 0.23 1.80 1.51 0.22 1.86 0.95 0.11 0.15 2.39 0.53
duw3 1.95 1.35 1.78 1.04 1.83 1.60 1.72 1.75 1.60 1.97 2.04 1.96 1.65 1.29 0.43 1.76 1.46 0.44 1.54 0.38 0.33 0.76 1.60 0.78
duw4 1.48 0.97 1.27 1.33 1.31 1.40 1.44 1.24 1.28 1.40 1.26 1.53 1.07 1.06 0.28 1.53 1.51 0.36 1.07 0.85 0.28 0.64 1.21 0.34
duw5 1.09 0.60 0.89 1.11 1.06 1.19 0.99 1.15 1.07 1.01 1.17 1.15 1.03 0.74 0.15 1.16 1.07 0.54 1.08 0.62 0.52 0.98 0.75 0.17

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 1.58 1.39 0.96 1.08 1.14 1.65 1.40 1.24 1.40 1.46 0.97 0.0 1.61 1.48 0.0 1.09 1.09 1.44 0.81 1.20 1.54 0.86 1.09 0.49
dsK 1.48 1.33 1.41 0.98 1.11 1.58 1.24 1.19 1.31 1.33 0.85 0.82 1.52 1.45 0.0 1.09 1.06 1.29 0.83 1.11 1.44 0.77 1.04 0.46
duf2 1.20 1.14 1.18 1.02 1.55 1.67 1.03 1.45 1.52 1.51 1.66 1.70 1.62 1.42 1.28 1.81 1.58 1.13 1.43 0.90 1.45 1.45 1.57 0.43
duf3 0.88 0.81 0.73 0.77 0.91 1.03 0.67 0.84 0.92 0.79 1.03 1.03 0.95 0.85 0.72 0.99 0.72 0.72 0.81 0.48 0.85 0.75 0.91 0.45
duf4 0.60 0.55 0.55 0.54 0.71 0.75 0.53 0.64 0.65 0.62 0.75 0.75 0.73 0.63 0.51 0.69 0.60 0.52 0.65 0.35 0.62 0.54 0.67 0.32
duf5 0.50 0.45 0.46 0.47 0.58 0.60 0.46 0.56 0.54 0.48 0.62 0.62 0.59 0.50 0.41 0.59 0.47 0.44 0.51 0.30 0.51 0.40 0.54 0.19
duw2 1.92 1.83 1.44 1.58 1.67 1.03 0.72 1.25 1.48 1.79 1.14 1.33 0.49 0.52 0.09 0.55 0.60 0.96 0.70 0.60 0.73 0.17 0.55 1.25
duw3 1.78 1.77 1.71 1.36 1.87 1.75 1.61 1.66 2.03 1.62 2.03 1.70 1.26 1.09 0.53 1.36 1.29 1.31 1.05 1.22 1.28 0.60 1.65 1.30
duw4 1.21 1.18 1.14 1.22 1.45 1.46 0.99 1.16 1.33 1.15 1.40 1.37 1.13 0.88 0.31 1.58 0.98 0.94 0.96 0.91 0.93 0.47 1.29 0.64
duw5 0.94 0.82 0.87 0.87 1.07 1.07 0.88 0.97 1.02 1.05 1.17 1.00 1.02 0.88 0.78 1.23 0.67 0.69 0.79 0.64 0.93 0.88 1.07 0.38

Based on observations drawn from evaluation of factors for all rule sets and all attributes considered, modified ver-
sions of discrete input datasets were constructed next. For each attribute such discretisation method was selected that
led to obtaining the most preferred value for each considered factor. With preferences indicating both supervised and
unsupervised algorithms, the resulting datasets constituted examples of combinations of several different discretisation
approaches applied to data in a single dataset, which is not a standard procedure.

Table 4. Statistics obtained for attributes based on Wl factor (see Eg. (7)), with weighting rules including an attribute by their lengths, relative to
the total number of rules, multiplied by 10

Female writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 0.26 1.94 1.86 2.08 1.72 0.27 1.93 1.44 2.06 2.24 1.61 1.09 2.30 1.53 0.00 1.77 0.00 0.91 0.00 0.36 1.25 0.00 1.64 0.74
dsK 0.06 0.50 0.58 0.59 0.56 0.07 0.56 0.47 0.65 0.71 0.49 0.35 0.69 0.48 0.42 0.54 0.33 0.21 0.00 0.15 0.32 0.67 0.46 0.15
duf2 0.50 0.24 0.43 0.50 0.46 0.51 0.43 0.55 0.47 0.51 0.50 0.55 0.51 0.42 0.28 0.53 0.53 0.20 0.50 0.28 0.28 0.50 0.28 0.05
duf3 0.51 0.27 0.40 0.49 0.48 0.54 0.44 0.49 0.47 0.51 0.52 0.51 0.47 0.42 0.24 0.53 0.51 0.21 0.45 0.22 0.25 0.46 0.41 0.21
duf4 0.54 0.29 0.42 0.52 0.50 0.52 0.44 0.52 0.48 0.50 0.50 0.54 0.47 0.42 0.22 0.54 0.52 0.23 0.43 0.20 0.26 0.47 0.38 0.12
duf5 0.52 0.30 0.40 0.53 0.51 0.51 0.45 0.51 0.48 0.51 0.50 0.54 0.47 0.43 0.21 0.56 0.54 0.23 0.42 0.18 0.25 0.44 0.38 0.15
duw2 0.76 0.65 0.69 0.22 0.56 0.37 0.57 0.43 0.34 0.60 0.21 0.61 0.46 0.53 0.06 0.59 0.45 0.09 0.51 0.20 0.04 0.08 0.67 0.28
duw3 0.63 0.41 0.53 0.29 0.57 0.50 0.53 0.51 0.51 0.61 0.61 0.57 0.49 0.37 0.10 0.54 0.42 0.13 0.45 0.09 0.10 0.23 0.53 0.28
duw4 0.57 0.39 0.49 0.49 0.54 0.53 0.56 0.48 0.50 0.56 0.49 0.59 0.41 0.42 0.07 0.59 0.57 0.12 0.38 0.30 0.09 0.23 0.48 0.16
duw5 0.52 0.31 0.43 0.49 0.52 0.55 0.48 0.52 0.52 0.50 0.54 0.55 0.50 0.36 0.06 0.57 0.50 0.20 0.50 0.26 0.21 0.43 0.39 0.11

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 0.57 0.52 0.29 0.42 0.45 0.59 0.54 0.48 0.50 0.53 0.34 0.00 0.59 0.54 0.00 0.41 0.39 0.56 0.31 0.44 0.56 0.32 0.42 0.24
dsK 0.53 0.50 0.54 0.38 0.43 0.57 0.48 0.45 0.48 0.49 0.30 0.30 0.56 0.53 0.00 0.40 0.38 0.51 0.32 0.41 0.53 0.29 0.39 0.22
duf2 0.38 0.36 0.37 0.32 0.47 0.50 0.33 0.45 0.46 0.46 0.50 0.51 0.49 0.43 0.39 0.54 0.48 0.36 0.44 0.27 0.44 0.44 0.48 0.15
duf3 0.45 0.42 0.38 0.40 0.47 0.52 0.35 0.44 0.47 0.41 0.52 0.52 0.49 0.44 0.35 0.50 0.38 0.38 0.41 0.22 0.42 0.35 0.47 0.22
duf4 0.43 0.40 0.39 0.39 0.49 0.52 0.39 0.45 0.45 0.44 0.51 0.51 0.50 0.43 0.33 0.48 0.41 0.37 0.45 0.21 0.41 0.34 0.47 0.23
duf5 0.44 0.40 0.41 0.42 0.50 0.52 0.41 0.48 0.47 0.41 0.53 0.53 0.49 0.42 0.31 0.52 0.40 0.39 0.44 0.21 0.40 0.29 0.47 0.17
duw2 0.82 0.70 0.66 0.60 0.64 0.36 0.38 0.43 0.64 0.68 0.53 0.50 0.19 0.20 0.06 0.29 0.17 0.41 0.28 0.24 0.28 0.08 0.23 0.65
duw3 0.52 0.51 0.50 0.44 0.55 0.51 0.50 0.46 0.60 0.50 0.60 0.48 0.31 0.29 0.14 0.37 0.31 0.38 0.34 0.33 0.34 0.17 0.46 0.37
duw4 0.49 0.45 0.48 0.49 0.56 0.58 0.42 0.41 0.55 0.46 0.55 0.52 0.39 0.31 0.10 0.58 0.36 0.40 0.37 0.32 0.31 0.15 0.48 0.28
duw5 0.46 0.40 0.42 0.43 0.50 0.51 0.42 0.44 0.51 0.49 0.55 0.46 0.43 0.39 0.34 0.55 0.29 0.35 0.36 0.26 0.41 0.37 0.49 0.20

Table 5. Statistics obtained for attributes based on AvgS factor (see Eg. (8)), giving average support of rules including a given attribute, relative to
the total number of rules

Female writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 0.40 1.88 1.39 1.89 1.58 0.51 1.74 1.32 2.08 2.04 1.44 0.91 2.06 1.33 0.00 1.38 0.00 1.18 0.00 0.28 1.44 0.00 1.66 0.66
dsK 0.23 1.17 1.25 1.42 1.36 0.36 1.49 1.20 1.79 1.72 1.17 0.83 1.68 1.16 1.14 1.20 0.71 0.77 0.00 0.36 1.03 1.61 1.23 0.35
duf2 0.90 0.53 0.82 0.91 0.85 0.92 0.84 0.98 0.88 0.95 0.90 0.98 0.91 0.79 0.56 0.96 0.93 0.51 0.94 0.47 0.59 0.91 0.57 0.17
duf3 0.42 0.26 0.35 0.41 0.41 0.44 0.38 0.41 0.40 0.43 0.43 0.42 0.40 0.36 0.24 0.44 0.43 0.26 0.40 0.20 0.27 0.41 0.35 0.18
duf4 0.34 0.20 0.27 0.33 0.32 0.33 0.28 0.33 0.31 0.32 0.32 0.33 0.31 0.27 0.17 0.34 0.33 0.21 0.29 0.14 0.22 0.32 0.26 0.10
duf5 0.27 0.18 0.22 0.28 0.27 0.27 0.25 0.27 0.26 0.27 0.26 0.28 0.26 0.23 0.14 0.29 0.28 0.19 0.24 0.11 0.19 0.26 0.21 0.09
duw2 2.40 2.56 2.35 0.76 1.98 1.59 1.83 1.04 0.80 2.20 0.89 2.23 1.52 1.76 0.09 1.94 1.70 0.29 1.57 0.77 0.12 0.17 2.08 1.50
duw3 1.04 0.77 0.98 0.55 1.17 0.96 1.04 1.07 0.88 1.26 1.13 1.12 1.02 0.90 0.30 1.02 0.82 0.31 0.98 0.19 0.25 0.40 1.00 0.47
duw4 0.63 0.47 0.62 0.68 0.62 0.67 0.68 0.66 0.59 0.68 0.63 0.72 0.58 0.64 0.17 0.69 0.73 0.17 0.52 0.38 0.11 0.29 0.56 0.17
duw5 0.44 0.29 0.38 0.48 0.45 0.49 0.43 0.49 0.44 0.45 0.48 0.49 0.45 0.38 0.08 0.47 0.46 0.22 0.48 0.25 0.23 0.41 0.34 0.08

Male writer datasets
rule set attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
dsF 1.58 1.31 0.94 1.23 1.11 1.53 1.65 1.19 1.39 1.41 0.86 0.00 1.54 1.36 0.00 0.97 1.22 1.62 0.90 1.09 1.42 0.82 1.10 0.45
dsK 1.31 1.08 1.23 0.97 0.94 1.23 1.37 0.97 1.14 1.13 0.69 0.68 1.24 1.15 0.00 0.82 1.06 1.31 0.81 0.90 1.19 0.60 0.92 0.33
duf2 0.73 0.70 0.70 0.60 0.81 0.85 0.64 0.78 0.78 0.81 0.86 0.87 0.86 0.74 0.70 0.92 0.85 0.70 0.78 0.53 0.78 0.77 0.84 0.35
duf3 0.37 0.35 0.33 0.34 0.38 0.42 0.31 0.37 0.38 0.35 0.41 0.41 0.40 0.36 0.31 0.40 0.33 0.33 0.35 0.23 0.35 0.30 0.38 0.17
duf4 0.27 0.25 0.25 0.25 0.31 0.32 0.26 0.29 0.28 0.28 0.31 0.31 0.31 0.28 0.22 0.30 0.27 0.24 0.28 0.17 0.26 0.23 0.29 0.14
duf5 0.23 0.21 0.21 0.22 0.26 0.27 0.22 0.26 0.24 0.23 0.27 0.27 0.26 0.24 0.18 0.26 0.23 0.21 0.24 0.14 0.23 0.17 0.24 0.10
duw2 3.06 2.96 2.49 2.28 1.71 1.27 1.40 1.50 1.86 2.23 1.53 1.95 1.19 0.42 0.11 0.83 0.46 1.18 0.96 0.49 0.80 0.19 0.53 3.33
duw3 0.92 0.93 0.87 0.93 0.92 0.92 0.90 0.88 1.00 0.86 1.06 0.84 0.62 0.58 0.28 0.71 0.68 0.65 0.58 0.58 0.64 0.33 0.85 0.51
duw4 0.65 0.62 0.63 0.63 0.68 0.73 0.56 0.55 0.68 0.62 0.71 0.73 0.58 0.47 0.13 0.76 0.62 0.52 0.46 0.49 0.47 0.24 0.68 0.36
duw5 0.44 0.41 0.41 0.39 0.47 0.48 0.40 0.46 0.44 0.49 0.50 0.47 0.46 0.42 0.33 0.54 0.40 0.34 0.35 0.32 0.45 0.37 0.49 0.18

4.2. Properties of Rule Sets Inferred from Modified Training Sets

From the modified training sets new sets of decision rules were induced, with corresponding properties and mea-
sures listed in Table 6. From all approaches tested, focus on AvgL factor in fact led to obtaining rule sets with the
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decreased average rule lengths. Other measures (cardinalities and average supports) were not better than the best
previously obtained, but NoR factor caused the highest cardinalities of rule sets, confirming the aim at inclusion in
high numbers of rules for attributes. And similarly to observations referring to Table 1, also in this case the maximum
values of average support existed for datasets with the smallest numbers of rules among those considered.

Table 6. Properties of rule sets inferred from modified datasets

Female writer datasets Male writer datasets
number length support number length support

factor of rules average maximum average maximum of rules min average maximum average maximum

NoR 55723 6.0 11 4.1 73 94956 1 5.7 11 3.8 64
AvgL 33291 3.4 7 1.8 38 44251 1 3.3 6 1.7 40
Wl 31494 5.6 10 4.1 88 69602 1 5.3 10 3.6 64
AvgS 15117 6.1 11 5.2 86 22411 2 5.4 11 5.9 79

Based on the newly inferred rule sets again statistics for attributes were obtained, given in Table 7. The prefixes
F- and M- indicate respectively female or male writer dataset, and coloured cells distinguish cases of improvement.
For both datasets some enhanced results could be observed, not always for the same attributes or factors. Part of
the improvement was the consequence of applying unsupervised discretisation to variables for which supervised
discretisation returned single bins, practically eliminating them from all considerations. This additional processing
enabled access to the information brought by such variables at the data exploration stage, that was denied by standard
supervised algorithms. Even if entropy-based measures evaluated their informative content as negligible, it was higher
than zero, and brought benefits with extra transformations, as shown in the improved statistics.

Table 7. Statistics obtained for attributes based on considered factors (see Sect.3.3), calculated with relation to modified versions of both datasets
factor attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
F-NoR 30.3 22.8 25.2 26.2 24.1 34.0 24.1 34.2 29.7 33.0 30.2 30.9 28.1 18.0 22.5 20.8 35.0 8.6 15.4 21.1 11.3 32.6 29.7 10.5
M-NoR 21.5 21.5 20.6 21.2 26.9 30.5 20.6 22.4 25.4 18.9 28.9 30.2 25.4 25.6 20.6 31.0 28.2 21.1 25.3 19.4 26.0 24.3 28.6 8.5
F-AvgL 0.18 0.46 0.59 0.73 0.72 0.12 0.64 0.70 0.65 0.72 0.72 0.76 0.66 0.59 0.07 0.77 0.74 0.16 0.63 0.30 0.09 0.16 0.51 0.15
M-AvgL 0.56 0.53 0.52 0.55 0.64 0.68 0.51 0.62 0.61 0.54 0.69 0.68 0.11 0.57 0.05 0.11 0.53 0.50 0.56 0.33 0.57 0.06 0.61 0.22
F-Wl 0.55 0.36 0.48 0.51 0.49 0.64 0.41 0.44 0.53 0.58 0.44 0.32 0.54 0.44 0.38 0.49 0.60 0.17 0.22 0.14 0.23 0.56 0.41 0.09
M-Wl 0.45 0.37 0.33 0.34 0.31 0.53 0.34 0.39 0.38 0.33 0.53 0.53 0.45 0.45 0.41 0.54 0.52 0.38 0.51 0.32 0.46 0.44 0.52 0.18
F-AvgS 1.65 1.93 1.73 1.02 1.63 1.35 0.90 1.36 1.51 1.41 1.37 1.34 1.67 1.16 1.39 1.02 0.96 0.39 0.79 0.43 0.54 1.68 1.64 0.41
M-AvgS 1.83 1.34 1.32 1.19 1.00 1.53 1.61 0.99 1.22 1.14 1.13 0.94 1.30 1.45 1.35 1.33 1.40 1.60 0.55 1.13 1.43 0.91 1.09 1.15

The experimental results presented can be used to support analysis of relations between discretisation approaches,
properties of induced decision rules, and individual attributes, enhancing understanding of existing dependencies.

5. Conclusions

The paper reports research on dependencies between discretisation methods, rule sets inferred from data, and
individual characteristics obtained for attributes, built around rules. In the performed experiments the input datasets
were discretised by selected approaches, and for all variants of these sets decision rules were induced in rough set
processing. Properties of rules and rule sets, such as cardinalities, rule lengths and supports, were used as a base for
definitions of several factors describing considered condition attributes. Statistics obtained for variables were analysed
in relation to discretisation methods, which led to construction of the modified variants of learning sets, combining
different discretisation approaches for different variables. From these new datasets decision rules were induced again,
and the resulting characteristics of rules, sets, and attributes studied. The proposed methodology enabled deeper
investigation of relationships existing between discretisation approaches and properties of inferred decision rules,
visible through attributes and their characteristics, enhancing understanding of knowledge represented by rules.

Future research paths will include explorations of dependence of rule classifier performance on discretisation
approaches and attribute characteristics. In particular combinations of various discretisation procedures within one
dataset, and the influence of such processing on predictive powers of inducers will be studied.
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decreased average rule lengths. Other measures (cardinalities and average supports) were not better than the best
previously obtained, but NoR factor caused the highest cardinalities of rule sets, confirming the aim at inclusion in
high numbers of rules for attributes. And similarly to observations referring to Table 1, also in this case the maximum
values of average support existed for datasets with the smallest numbers of rules among those considered.

Table 6. Properties of rule sets inferred from modified datasets

Female writer datasets Male writer datasets
number length support number length support

factor of rules average maximum average maximum of rules min average maximum average maximum

NoR 55723 6.0 11 4.1 73 94956 1 5.7 11 3.8 64
AvgL 33291 3.4 7 1.8 38 44251 1 3.3 6 1.7 40
Wl 31494 5.6 10 4.1 88 69602 1 5.3 10 3.6 64
AvgS 15117 6.1 11 5.2 86 22411 2 5.4 11 5.9 79

Based on the newly inferred rule sets again statistics for attributes were obtained, given in Table 7. The prefixes
F- and M- indicate respectively female or male writer dataset, and coloured cells distinguish cases of improvement.
For both datasets some enhanced results could be observed, not always for the same attributes or factors. Part of
the improvement was the consequence of applying unsupervised discretisation to variables for which supervised
discretisation returned single bins, practically eliminating them from all considerations. This additional processing
enabled access to the information brought by such variables at the data exploration stage, that was denied by standard
supervised algorithms. Even if entropy-based measures evaluated their informative content as negligible, it was higher
than zero, and brought benefits with extra transformations, as shown in the improved statistics.

Table 7. Statistics obtained for attributes based on considered factors (see Sect.3.3), calculated with relation to modified versions of both datasets
factor attr0 attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 attr12 attr13 attr14 attr15 attr16 attr17 attr18 attr19 attr20 attr21 attr22 attr23
F-NoR 30.3 22.8 25.2 26.2 24.1 34.0 24.1 34.2 29.7 33.0 30.2 30.9 28.1 18.0 22.5 20.8 35.0 8.6 15.4 21.1 11.3 32.6 29.7 10.5
M-NoR 21.5 21.5 20.6 21.2 26.9 30.5 20.6 22.4 25.4 18.9 28.9 30.2 25.4 25.6 20.6 31.0 28.2 21.1 25.3 19.4 26.0 24.3 28.6 8.5
F-AvgL 0.18 0.46 0.59 0.73 0.72 0.12 0.64 0.70 0.65 0.72 0.72 0.76 0.66 0.59 0.07 0.77 0.74 0.16 0.63 0.30 0.09 0.16 0.51 0.15
M-AvgL 0.56 0.53 0.52 0.55 0.64 0.68 0.51 0.62 0.61 0.54 0.69 0.68 0.11 0.57 0.05 0.11 0.53 0.50 0.56 0.33 0.57 0.06 0.61 0.22
F-Wl 0.55 0.36 0.48 0.51 0.49 0.64 0.41 0.44 0.53 0.58 0.44 0.32 0.54 0.44 0.38 0.49 0.60 0.17 0.22 0.14 0.23 0.56 0.41 0.09
M-Wl 0.45 0.37 0.33 0.34 0.31 0.53 0.34 0.39 0.38 0.33 0.53 0.53 0.45 0.45 0.41 0.54 0.52 0.38 0.51 0.32 0.46 0.44 0.52 0.18
F-AvgS 1.65 1.93 1.73 1.02 1.63 1.35 0.90 1.36 1.51 1.41 1.37 1.34 1.67 1.16 1.39 1.02 0.96 0.39 0.79 0.43 0.54 1.68 1.64 0.41
M-AvgS 1.83 1.34 1.32 1.19 1.00 1.53 1.61 0.99 1.22 1.14 1.13 0.94 1.30 1.45 1.35 1.33 1.40 1.60 0.55 1.13 1.43 0.91 1.09 1.15

The experimental results presented can be used to support analysis of relations between discretisation approaches,
properties of induced decision rules, and individual attributes, enhancing understanding of existing dependencies.

5. Conclusions

The paper reports research on dependencies between discretisation methods, rule sets inferred from data, and
individual characteristics obtained for attributes, built around rules. In the performed experiments the input datasets
were discretised by selected approaches, and for all variants of these sets decision rules were induced in rough set
processing. Properties of rules and rule sets, such as cardinalities, rule lengths and supports, were used as a base for
definitions of several factors describing considered condition attributes. Statistics obtained for variables were analysed
in relation to discretisation methods, which led to construction of the modified variants of learning sets, combining
different discretisation approaches for different variables. From these new datasets decision rules were induced again,
and the resulting characteristics of rules, sets, and attributes studied. The proposed methodology enabled deeper
investigation of relationships existing between discretisation approaches and properties of inferred decision rules,
visible through attributes and their characteristics, enhancing understanding of knowledge represented by rules.

Future research paths will include explorations of dependence of rule classifier performance on discretisation
approaches and attribute characteristics. In particular combinations of various discretisation procedures within one
dataset, and the influence of such processing on predictive powers of inducers will be studied.
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