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Abstract

This paper proposes a rule-based medical treatment graph (RB-MTG), a decision support tool that assists physicians in establishing
insulin therapy. The RB-MTG models clinical pathways, i.e. the sequences of blood glucose measurements and insulin injections.
It provides visualization of alternative clinical pathways, especially those that lead to dangerous states of the patient’s health.
By interpreting the RB-MTG, the physician assesses the patient’s condition and plans their insulin therapy. At each phase of the
treatment, the RB-MTG suggests the insulin dosage that leads to normoglycemia - the blood glucose level that is the norm for a
healthy person. This way, it is possible to avoid the course of the disease that leads to hypo- or hyperglycemia. Physicians have
verified the usefulness of our approach.
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1. Introduction

The main goal of diabetic therapy is to keep the patient’s blood glucose level (BGL) in a range called normo-
glycemia. Too low BGL (hypoglycemia) may result in loss of consciousness, seizures, or even death. On the contrary,
too high BGL (hyperglycemia) usually leads to various severe complications like kidney damage, neurological dam-
age, cardiovascular damage, and many others. Therefore, maintaining normoglycemia is a crucial feature of human
health.

From the very beginning of diabetic therapy, it is vital to avoid hypo- or hyperglycemia. As the BGL of diabetic
patients may substantially vary, the stabilization of BGL during the short period of patient stay at a hospital is chal-
lenging. The stabilization of the BGL can be achieved by different means, the most important one being the injection
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of insulin. However, the human body’s reaction to insulin substantially depends on many factors and differs for diverse
patients [1]. Therefore, for each patient, the administered insulin doses have to be continuously verified. This is done
by measuring the BGL several times a day, usually before each meal, two hours after the meal, and during the night.

The insulin-glucose interaction in the human body has to be analyzed and adjusted if necessary. We support this
task by modeling the course of the therapy (clinical pathway) for each patient individually and groups of them.

Modeling clinical pathways is a problem that has already been investigated in the literature.
Some diabetic models rely on mathematical equations containing variables reflecting the patient’s clinical state [3].

The medical interpretation of that model is not always easy for physicians. Because of its mathematical form.
Modeling diabetes can be achieved using ontologies. These models’ challenge is a proper definition of the con-

stituent ontological terms and their mapping to medical data. One of the solutions for this inconvenience is using the
fuzzy set approach [9]. The other model of that type is based on fuzzy cognitive maps (FCMs)[2].

Though the Bayesian networks (BN) are known for their efficiency in modeling uncertainties, it turns out that they
do not present the clinical pathways well enough. Also, the Markov Decision Process (MDP) [7] was used to model
the course of diabetes. In that case, an appropriate reward function has to be defined, enabling an evaluation of the
undertaken decision. The specification of that function is not a trivial problem.

This paper proposes a new method of modeling diabetic clinical pathways, specifically those that lead to hypo- or
hyperglycemia. The model we present here is an enhancement of the Medical Treatment Graph (MTG) we proposed
previously [4]. Using the MTG, it is possible to plan and adapt the insulin therapy. However, avoiding unwanted
hypo- and hyperglycemia is still cumbersome. Those clinical pathways that lead to hypo- or hyperglycemia need to
be clearly distinguished from one another. For that reason, in this paper, we propose a Rule-Based Medical Treatment
Graph (RB-MTG). The RB-MTG is a further step toward meeting the expectations of the physicians.

The contribution of this paper is three-fold.

1. We propose a Rule-Based Medical Treatment Graph to model clinical pathways.
2. We offer a data mining algorithm to infer the RB-MTG from medical health electronic data.
3. We explain how the RB-MTG can be used to avoid hypo- and hyperglycemia.

The rest of this paper is organized in the following way. In Section 2, we provide an explanation of the medical data
we use later for the construction of the RB-MTG. In Section 3, we present the contribution of this paper. In particular,
we provide an algorithm we use later for the construction of the RB-MTG. Then in Section 4, we illustrate how the
RB-MTG supports the physicians in their clinical practice. Section 5 concludes the paper.

2. Preprocessing medical data

We assume that at the time of admission to the hospital, the patient’s health is described by the following variables:
age - the age of the patient at the onset, sex - 0 (female) or 1 (male), weight - the patient’s weight, C-peptide - insulin
secretion, CRP Certificate of inflammation - 1 (high) or 0 (in norm range), PH - ACID based balance. Physicians have
given the minimum and maximum for each variable. Using the normalized data, we group patients into clusters. For
that purpose, we use the fuzzy c-means method with Euclidean measure ([5]). For each of those clusters, we build
later a separate RB-MTG.

After the admission of a juvenile patient to a hospital, the sequence of glycemia measurements and insulin injection
starts. An exemplary sequence is presented in Table 1. Note that the meal size and the insulin dose depend on each
other; therefore, the so-called insulin ratio is calculated as the number of insulin units per 100 kcal. The insulin pre-
meal ratio should be related to the patient’s weight. Therefore the insulin ratio is calculated with respect to 100 kcal
of a meal and 100kg of body weight. The obtained value is rounded. The value of glycemia is discretized dependent
on the actual meal and it is given in Table 2.

From the formal point of view, we treat the considered data as the sequences of medical events. A medical event
u ∈ U is a pair: u = 〈Vi = v, τ〉, where Vi ∈ V is a variable and v denotes the value, Vi assumes at time τ. An event u
occurs at time τ, when the variable Vi obtains certain value v from its domain dom(Vi) at a particular time τ. The set
U is the universe of all possible events.
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Table 1. An example of raw clinical data
Time Description Value
7:55 G - glycemia measurement 139 mg/dl
8:00 I - insulin injection 3.5 units
8:05 Breakfast 240 kcal
10:55 G - glycemia measurement 189 mg/dl
11:00 I - insulin injection 2 units
11:05 Second breakfast 170 kcal
13:55 G - glycemia measurement 65 mg/dl
14:00 I - insulin injection 4 units
14:05 Lunch 380 kcal
16:55 G - glycemia measurement 71 mg/dl
17:00 I - insulin injection 4.5 units
17:05 Dinner 480 kcal
19:55 G - glycemia measurement 109 mg/dl
20:00 I - insulin injection 3 units
20:05 Supper 190 kcal
22:00 G - glycemia measurement 66 mg/dl

Table 2. Glycemic ranges and theirs clinical meaning
Glycemia Clinical meaning
[mg/dl] before breakfast before other meals after meal
< 70 hypoglycemia hypoglycemia hypoglycemia
[70, 90] normoglycemia normoglycemia normoglycemia
(90, 100] mild-hyperglycemia normoglycemia normoglycemia
(100, 140) mild-hyperglycemia mild-hyperglycemia normoglycemia
[140, 200] mild-hyperglycemia mild-hyperglycemia mild-hyperglycemia
> 200 hyperglycemia hyperglycemia hyperglycemia

Let us consider now a pair V = {G, I}, where G refers to glycemia measurements and dom(G) = {1, 2, 3, 4}, and I
is the insulin ratio. The domain of I is the set of positive integers.

A clinical pathway is a sequence s =
〈
uτ1 , uτ2 , ..., uτn

〉
, were τi is the real-time at which an event occurs. The length

of s depends on the period, the patient stays in the hospital. By S we denote the set of all those sequences.

Table 3. Periods of daily therapy
T Description Period Event
t1 before breakfast [6:00 - 10:00] G
t2 breakfast [6:00 - 10:00] I
t3 after breakfast [9:00 - 12:00] G
t4 second breakfast [9:00 - 12:00] I
t5 after second breakfast [11:00 - 15:00] G
t6 lunch [11:00 - 15:00] I
t7 after lunch [14:00 - 17:00] G
t8 dinner [14:00 - 17:00] I
t9 after dinner [16:00 - 20:00] G
t10 supper [16:00 - 20:00] I
t11 after supper [19:00 - 23:00] G

As suggested in [6], we sequence a single therapeutic day of a patient. Each period within the therapeutic day is a
label ti ∈ T , where T = {t1, t2, ..., tw}. The new, discrete time scale is given in Table 3. This is in accordance with the
physicians’ discrete time scale for the planning of daily insulin therapy. Note that some time intervals overlap what is
happening in clinical practice.

To map medical events to the discrete time scale, we define a function t : RT → T , where RT denotes the domain
of real-time. It means that each uτ that occurs in real-time τ is mapped to a new, discrete time scale as ut(τ).

Thus, for each patient, we obtain a clinical pathway S p = {s1, ..., snw}, where si =
〈
ut1 , ut2 , ..., utw

〉
and nw = n/w is

the number of days. S = {S 1, ...S np} is the set of all clinical pathways, np is the number of therapeutic days considered.
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3. Rule-based Medical Treatment Graph

The set of medical sequences defined in the previous section serves now for the modeling of glucose-insulin
interaction. Our approach consist of two steps:

1. Mining rules.
2. Constructing the RB-MTG.

3.1. Mining rules

For mining rules from the previously presented medical sequences, we apply rough set theory [8]. The medical
data we consider form an information system I = (D,U), where D is the set of therapeutic days and U is the set of
attributes, which are here medical events, where u ∈ U is a mapping u : U → Vu and the set Vu is the value set of u.

Let us create the set of information tables Tk such that Tk = (D,Uk ∪ {d}), where d = 〈G = v, tk+1〉 and is called the
decision attribute, and k ∈ {2, 4, 6, 8, 10}, Uk is restricted to all events preceding the event d, i.e. t(u ∈ Uk) < t(d). As
already mentioned, we are interested only in rules leading to hyper or hypoglycemia so v = {1, 4}.

In the rough set theory, the rule-based classifier is based on decision relative reducts, i.e., a minimal subset of
attributes (here events) U′ ⊆ U, which determine the decision d. The reducts calculation is based on the indiscernibility
relation IND(U′) = {(x, y) ∈ D × D : ∀u ∈ U′(u(x) = u(y))}, which determines the indiscernibility classes [z]′U =
{z ∈ D : ∀u ∈ U′(u(x) = u(z))}. Decision rules are defined by the so-called positive region POS (U′) = {z ∈ D :
[z]′U = [z]{d}}. Every object z ∈ POS (U′) determined a decision rule. The idea is to deduct minimal rules with respect
to the number of attributes at the conditional part (this way, we consider only these events that are sufficient to reach
the glycemia episode). Therefore, the indiscernibility classes are calculated separately for each individual row of a
decision table with a decision equal to e.g., hypoglycemia. The other such rows are temporarily removed from the
table. We consider only the reducts with a minimal number of attributes for the deduction of the rules for such a row.

For the rule r we define the support and confidence coefficient by supp(r) = card(||lh(r)|| ∩ ||rh(r)||)/card(U) and
con f (r) = card(||lh(r)|| ∩ ||rh(r)||)/card(||lh(r)||), where lh(r) denotes the conditional part of the rule and rh(r) is the
decision part. With ||lh(r)||U we denote the set of all objects from decision table T that fit to the conditions defined by
lh(r).

It can be noticed that each rule is the subset of the given medical sequence. Let the rule be in the form w1∧...∧wl →
dk then w1, ..,wl, dk ⊆ s can be seen as the sub-sequence of one of the daily patient sequence; s ∈ S . Obviously wl and
dk describe the events that happen in the defined time interval from T . With W we denote the set of all sub-sequences
defined by the ruleset, and by Uw ⊆ U the set of events existing in the ruleset.

3.2. Creating the RB-MTG

Based on the set of rules, we build the RB-MTG. Each rule gives partial information about the clinical pathways
that end with hypo- or hyperglycemia in some time interval. Also, the rule could be non-deterministic. Therefore we
are aggregating the set of rules to form a graph, RB-MTG, that will present the whole picture of one therapeutic day
concerning the given glycemia episode (hyper- or hypo-glycemia).

The RB-MTG is defined as a 4-tuple: RB − MTG = (N, E, σ, ω), where N ⊆ Uw is the set of nodes of the graph,
E ⊆ N × N is the set of edges, σ : N → [0, 1] and ω : E → [0, 1] are the corresponding node and edge weight
functions.

Let Ut be the subset of events occurring in the time interval t, and Nt j ⊂ Ut is restricted to the events of a particular
variable G or I and its value. That is Nt j contains similar events, i.e., referring to the same variable and value of
glycemia or insulin ratio. We assume that Nt j ∈ N is the RB-MTG node, where indexes t and j are uniquely identifying
the node; t refers to the time interval of the event and j to the pair of the considered variable and its value.

It is worth mentioning that the RB-MTG relies on the set of rules; however, its parameters σ and ω are calculated
using the whole set of patients sequences. This allows us to evaluate how likely the given event or the event sequence
happens during the therapy. Let σ(Nt j) =

card(Nt j)
card(Ut)

- it estimates how likely an event from Nt j occurs in the set of events
from Ut.
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The edge of RB-MTG is defined as an ordered pair of nodes: Et jlk = 〈Nt j,Nlk〉, where Nt j, Nlk represents the sets
of events occurring at time t and l, respectively.

Let S tl ⊂ S be the set of the sequences of the pair of events ut, ul. Let us distinguish from S tl those sequences S ′tl
that match the given pair of nodes in RB-MTG. We define that set as S ′tl = {ut, ul}|ut ∈ Nt j, ul ∈ Nlk.

Let ω(Et jlk) = card(S ′t )
card(S t)

estimates the probability of the pair of events. The function ω is called the strength of the
edge Et jlk.

With every edge, we associate a certainty coefficient, defined by cer(Et jlk) = ω(Et jlk)
σ(Nt j)

. Note that the certainty coeffi-
cient describes the distribution of events along the edges starting at the given node.

Let us assume p = [p1, p2, ..., pn] is any path within the RB-MTG, where pi ∈ N, 1 < n ≤ 11 is a given node. Here,
the index i indicates the place of the node within the path. Note the p is a clinical pathway as described in Section 1.

We extend the ω coefficient to evaluate any pathway within the RB-MTG, i.e.,: ω(p) = σ(p1) ·∏n−1
i=1

ω〈pi,pi+1〉
σ(pi)

=

σ(p1) · cer(p1) · . . . · cer(pn) = σ(p1) · cer([p1...pn]).
Similarly, the certainty coefficient for the pathway of any length is calculated as cer(p) =

∏n−1
i=1 cer(pi, pi+1).

Using functions ω(p) and cer(p), the physicians can assess the credibility of any pathway within the RB-MTG.
They also allow filtering from the RB-MTG those pathways that represent exceptional (rare) medical cases. Assuming
ωmin is a threshold given by the physicians, it is possible to produce a sub-graph: MTG′ = (N′, E′, σ, ω) for which
ω(p) > ωmin for any p.

3.3. Creating the RB-MTG

Below we present the algorithm for building the RB-MTG.
The RB-MTG consists of two collections: those related to nodes N and those for edges E. Both of them are initially

empty. The main loop (starts at line 5) iterates through the sequence of events related to rules derived previously. The
events in the sequences are indexed by i and are then referred to the time interval. The graph edge connects two
consecutive events of the sequence occurring in time intervals referred by t and l respectively. In the RB-MTG, the
dependency l = t + 1 is not always true.

Then, the algorithm searches through the collections N and E, checking out whether they contain a particular event
(line 14) and edge (line 17) detected in the jth sequence.

If the node or edge is not found within the graph, it is added to the corresponding collection, and the weight of the
node and edge are respectively calculated using the separate functions CalcNodeWeight and CalcEdgeWeight. In the
CalcNodeWeight function the number of events equal to the one passed as the function parameter in the given time
interval and occurred in medical sequences are calculated straightforwardly. The same is done with the edges. Then
the support of both coefficients is counted.

Let us note that the algorithm has a linear computational complexity concerning both the number of the patient’s
sequences and the number of events within the sequence.

4. Case study

At first, the patients’ static data were normalized and partitioned using the fuzzy c-means clustering algorithm.
Then, for each cluster, the data related to BGL and pre-meal insulin doses have been gathered in the form of decision
tables. Let us follow the modeling clinical pathways that lead to hypoglycemia (see Table 2 for definition). The
approach to model the clinical pathways of hyperglycemia is analogous. Below, we present the examples of the
derived rules for hypoglycemia.
< G = 3, t1 > ∧ < I = 3, t2 >⇒< G = 1, t3 > (Supp: 0.022, Conf: 0.14)
< G = 3, t1 > ∧ < I = 4, t2 > ∧ < G = 3, t3 > ∧ < I = 4, t4 >⇒< G = 1, t5 > (Supp: 0.011, Conf: 0.5)
< G = 3, t1 > ∧ < I = 4, t2 > ∧ < G = 3, t3 > ∧ < I = 3, t4 >⇒< G = 1, t5 > (Supp: 0.011, Conf: 0.25)
< G = 2, t1 > ∧ < I = 6, t6 >⇒< G = 1, t7 > (Supp: 0.011, Conf: 1)
< I = 3, t4 > ∧ < G = 1, t5 >⇒< G = 1, t7 > (Supp: 0.011, Conf: 1)
< I = 5, t2 > ∧ < I = 3, t4 > ∧ < I = 4, t8 >⇒< G = 1, t9 > (Supp: 0.011, Conf: 1)
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Algorithm 1 Constructing the RB-MTG
Require: W - the set of sequences from the set of rules.

1: Function GraphBuild(W)
2: N = null; NCount ← 0; {a collection of nodes}
3: E = null; ECount ← 0; {a collection of edges}
4: l = 1;
5: for j = 1 to card(W) do {for each sequence}
6: for i = 1 to length(W[ j]) do {for each event}
7: t = t(τi);
8: node = W[ j][t]; {create a node}
9: l = t(τi+1);

10: edge = 〈node,W[ j][l]〉 ; {create an edge}
11: Nexists = f alse; {lacking node}
12: Eexists = f alse; {lacking edge}
13: for k = 1 to l do {for the added nodes}
14: if N[k][t] == node then {Is the node added?}
15: Nexists = true; {a number of nodes}
16: end if
17: if E[k][t] == edge then {Is the edge added?}
18: Eexists = true; {a number of edges}
19: end if
20: end for
21: if not Nexists then
22: N[l][t] = node;
23: CalcNodeWeight(N[l][t], l, t);
24: end if
25: if not Eexists then
26: E[l][t] = edge;
27: CalcEdgeWeight(E[l][t], l, t);
28: end if
29: end for
30: end for
31:
32: return RB − MTG

Algorithm 2 Calculating the node weight
Require: S - the set of clinical sequences, N - a given node, l, t - the node index

1: Function CalcNodeWeight(N, l, t)
2: NCount ← 0;
3: for j = 1 to card(S ) do {for each subsequence}
4: if S [ j][t] == N then
5: NCount + +;
6: end if
7: end for
8:
9: return NCount/card(S )

The first rule is interpreted as hypo-glycemia after the first breakfast, preceded by mild hyperglycemia in the
morning (before the first breakfast). For the first breakfast, the insulin ratio of 3 was administered. However, the rule
is only partly discriminating (confidence value 0.14). Other clinical pathways also started with mild hyperglycemia
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Algorithm 3 Calculating the edge weight
Require: S - the set of clinical sequences, E - a given node, l, t - the node index

Function CalcEdgeWeight(E, l, t)
ECount ← 0;
for j = 1 to card(S ) do {for each subsequence}

if E[ j][t] == E then
ECount + +;

end if
end for

return ECount/card(S )
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Fig. 1. Exemplary MTG

and insulin ratio 3 in the morning; however, the hypoglycemia after the first breakfast is not observed. The fourth rule
shows that the hypoglycemia after lunch occurs when there is normoglycemia in the morning and the insulin ratio at
lunch is equal to 6. However, there are also other ways to reach the hypoglycemia after lunch (support=0.11).

Based on the set of rules, we constructed the RB-MTG using the proposed Algorithm 1. Due to the space limitation,
we can present in Figure 1 only a part of the obtained graph. Furthermore, we filtered out the clinical pathways that
lead to hypoglycemia with low path certainty i.e., where ωmin < 0.0015

The medical interpretation of the produces RB-MTG is the following: all pathways that lead to hypoglycemia
starts with mild hyperglycemia before the first breakfast < G = 3, t1 >. 16% of such patients were administered 3
units of insulin per 100 kcal per 100 kg of body weight with the breakfast meal. Then, 2% of them had hypoglycemia
after breakfast. The hypoglycemia after the second breakfast can be reached when observing mild hyperglycemia or
normoglycemia in the previous measurement however, it is more likely to happen in the first case and when insulin
ratios are higher (equal to 5 in the first breakfast and equal to 3 in the second breakfast). It is also likely (cer = 0.33)
to obtain hypoglycemia after lunch if the hypoglycemia was observed after the second breakfast. In this example and
two other cases on the graph (marked with a dotted edge) the clinical pathway is generalized.
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5. Conclusions

The application of RB-MTG brings numerous advantages. First of all, it provides transparent visualization of
clinical pathways leading to glycemic episodes. Using the rough set approach, we limit the medical events to be
considered indispensable. With the certainty and strength coefficients assigned to each edge of the RB-MTG, it is
possible to analyze the various possibly risky medical treatments quickly. The graph representation of alternative
therapies is intuitive and thus easy to be used by physicians. Furthermore, by applying appropriate thresholding of the
certainty coefficient, it is possible to interpret our RB-MTG at diverse approximation levels. This way, the decision-
making task faced by the physician becomes easier.
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