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Abstract

Recommendation systems can suggest users list of items they have not yet seen but might be interested in. To improve the quality
of the generated recommendations, different techniques are often used which try to personalize recommendations. Usually user
preferences are stored in the form of a vector in which individual values describe to what extent a given feature is desired by the
user. To find this vector, metaheuristic algorithms can be used, however their main drawback is their computational complexity.
Therefore, in this paper, a modification of the Differential Evolution algorithm is proposed to enable faster computation of the
ranking score for each item in the system, which is used to create a recommendation list. Experiments have been performed on the
current MovieLens 25m database and they show that our modification can significantly speed up the process of finding a preference
vector, without losing their quality for the top-N recommendation task. We will also address the vulnerability of recommendation
systems to profile injection attacks, as a result of which an attacker can influence the generated recommendations.
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1. Introduction

Recommendation systems have become an integral part of our lives. We can use them while shopping, watching
movies, listening to music, or browsing social networks. These systems try to suggest new content and products by
analyzing the current behavior of users. A well implemented recommendation system, in addition to financial benefits
for a given company, can also have a positive influence on the satisfaction of users. Before generating recommenda-
tions, items and users must have a certain set of features that describe them. Unfortunately, it is often the case that
we do not have such features or they are poor quality. If we do not have good quality features, we can create them by
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factorizing the user-item matrix. Such features are called “latent features”, due to the fact that they cannot be observed
directly. Their main disadvantage is that it is hard to explain what they mean.

In our previous article [4], we described how the Differential Evolution algorithm can be used to generate person-
alized recommendations by optimizing the average precision (AP) measure. Unfortunately, the main problem during
our research was the long time needed to complete the computation, which prevented us from using larger datasets.
Therefore, we decided to improve our algorithm and proposed a modification of the Differential Evolution algorithm
allowing for faster calculation of the dot product for individual items. This value is later used to create a ranking of
items. In our research, we used the publicly available, popular MovieLens 25m dataset (released in 2019) [11].

Additionally, in this article, we will discuss the problem of pre-filtering the data on the basis of which the recom-
mendations are generated. This is important because recommendation systems analyze users behaviour in order to
recommend products to other users on the basis of their choices. With this in mind, it should be noted that there is
some potential danger here. It may turn out that some user profiles are fabricated in a special way. The goal of such
an attack would be to influence the recommendation system in a specific way, which, for example, should recommend
specific products. The problem is particularly difficult to solve in large datasets, where there is a large number of user
profiles which cannot be reviewed manually.

This article is divided into 6 chapters. Chapter 2 includes literature overview which provides information about the
current literature related to the subject of this article. Chapter 3 will present the definition of recommendation system
along with an explanation of such concepts as “matrix factorization”, “profile injection attack” and the “Differential
Evolution” algorithm. Chapter 4 describes the proposed modification of the DE algorithm along with a description of
the fitness function. In chapter 5 we will present the performed experiments and their results. The last chapter 6 will
be dedicated to conclusions and suggestions for future work.

2. Literature overview

Recommender systems have become popular in recent years, mainly due to the ”Netfix Prize” competition [1],
where researchers have tried to improve the quality of the generated recommendations by reducing the RMSE (root
mean square error). However, since recommendations are often presented to the user in the form of a Top-N list of
suggested items, an appropriate approach is to check the quality of the system in this aspect as well [13] and many
papers have been written on this topic [8] [9]. In this paper, learning to rank is applied to find the items that could be
recommended to the active user. Learning to rank is often described in the context of information retrieval systems and
this problem has been described in detail in the work [16]. This technique has also been applied to recommendation
systems [21][17].

Often metaheuristic algorithms are used to directly optimize measures used in the learning to rank problem such
as MAP, NDCG, which due to their specificity cannot be optimized using other techniques. An example of such work
is the use of Differential Evolution (DE) [3] and Particle Swarm Optimization (PSO) [10] algorithm to optimize the
mean average precision (MAP) measure in information retrieval systems. The application of Evolutionary Algorithms
in recommender systems is well described in the paper [12] where an overview of current research and its results is
presented.

This paper also addresses the problem of shilling attacks that aim to influence the generated recommendations.
This problem has been described in several papers, where researchers try to use statistical metrics [7] or algorithms
used for outlier analysis [6] to find such profiles in the system that may have been created by an attacker. Good survey
of attack detection approaches in recommender systems can be found in [19].

3. Background of the research

3.1. Recommendation system

The purpose of recommendation systems is to suggest some content or services to the user that he might be inter-
ested in. The problem is not trivial and has been studied by researchers for many years. Let us consider some set of
users U = u1, . . . , u|U | and some set of items I = i1, . . . , i|I|. Each user u ∈ U, has rated some items i ∈ I, which we
will refer to by rui. Therefore, the data can be represented as a three (u, i, rui), which in the case of our research will
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mean that a certain user u rated a certain movie i, giving it a rating of rui. All ratings given by all users for all items
are often presented as a matrix of size m × n. There are three main types of recommendation systems:

• content-based - suggesting new products is based on the similarity of features describing the items with the
user profile. Their advantage is that they do not need other users to generate recommendations, but the main
disadvantage is that they require good quality features.
• collaborative filtering – collaborative filtering is a technique that recommends new products to a user based on

the activity of other, similar users in the system. Different similarity measures, such as Euclidean distance, are
used to assess the similarity between users.
• hybrid – it is a system that combines different techniques. Today, most recommendation systems are based on

this approach.

Frequently when working with recommendation systems, we need a certain set of features upon which we can, for
example, calculate the similarity between particular users or items. However, a common problem in recommendation
systems is that we do not have such features or they are poor quality. Therefore, it has been proposed to use algorithms
that are designed to create such features from a user-item matrix. The most popular technique for obtaining these
features is the matrix factorization technique. However, it should be noted that this matrix is very sparse (about 99%)
and therefore standard techniques (e.g. Singular Value Decomposition (SVD)) cannot be used here. Therefore we
factorize this matrix using algorithms that look for the best approximation of the original matrix. We can describe this
technique as follows:

R̂ := UIT (1)

where R̂ is a matrix of size |U | × |I| formed by the product of two smaller matrices |U | : |U | × k and I : |I| × k, k denotes
the rank of approximated matrices. Each row Uu in matrix U represents features describing user u, and each row Ii in
matrix I represents features describing item i. More information about this technique can be found in the paper [14].

3.2. Profile injection attack

Some people or bots may try to influence a recommendation system by creating fake user profiles which then
promote (push attack) or discredit (nuke attack) selected items in the system. Attacks of this type are called “profile
injection attack” or “shilling attack” and they can affect the quality of the generated recommendations. Of course,
manual detection of such attacks is very time-consuming due to the amount of data that needs to be processed, so the
only reasonable solution is to automate this process.

Various techniques are used to detect these types of attacks. From simple statistical measures examining a single
user behavior to sophisticated algorithms combining various anomaly (outlier) detection techniques. Their aim is to
filter users in the system and detect profiles that are highly likely to have been crafted by the attacker. In the paper
[2], the authors observed that attacker profiles are often correlated with one another. Therefore, unsupervised learning
can be used here, for example, to detect clusters of such users. In our work, we used the rating deviation from mean
agreement (RDMA) measure, proposed in this paper [7] to detect such profiles:

RDMAj =

∑N j

n=0
ri, j−Avgi

NRi

N j
(2)

where Nj is the number of items rated by user j, ri, j is the rating given by user j for item i, NRi is the number of
ratings given in the system for item i.

3.3. Differential Evolution

Differential evolution is an evolutionary technique that was developed by K. Price and R. Storn [20]. In this algo-
rithm there is some population in which every individual is a solution to some optimization problem. This technique
is often use in continuous optimization, in which case the individuals are d-dimensional vectors of real numbers, so
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Fig. 1. Graphic representation of multiplication of items feature matrix by DE population matrix.

each individual is a solution to the optimization problem. The algorithm with each iteration tries to improve the pop-
ulation of individuals until a stopping criterion is reached. To evaluate whether one individual is better than another, a
function, called the “fitness function”, is used here. Its task is to evaluate the quality of each individual in the popula-
tion, by which the algorithm can choose which individual should go to the next generation. There are two operators:
mutation and crossover [5]. Mutation in the standard version of the algorithm creates a new individual by combining
three randomly selected individuals from the population P and is expressed by the following formula:

�vi = �xr1 + F( �xr2 − �xr3 ), (3)

where r1, r2, r3 are three random individuals from population P, with r1 � r2 � r3. The parameter F is the amplification
factor and takes a value between [0, 1]. Following the usage of mutation operator the crossover operator is used, which
creates a new individual �ui according to formula 4 . The CR parameter determines the crossover probability, and the
rand( j) function generates a random number between [0, 1]. irand is a random integer from [1, 2, ..., d].

ui, j =

{
vi, j if (rand( j) ≤ CR or i = irand)
xi, j otherwise. (4)

4. Proposed method FastRankDE

Our proposed FastRankDE method use matrix multiplication operation to compute the ranking score based on
which the ranking of items will be created. To do this, we need to store the population of individuals and all the items
present in the system as a matrix. Such an operation will allow us to multiply the matrix of individuals and the matrix
of items. This is an operation that can be easily parallelized using programing libraries. Then, by sorting the values
(dot products) found in each column, we can create a ranking of the items. A graphical representation of such an
operation is presented in figure 1, and a diagram showing the system architecture is shown in figure 2.

4.1. Fitness function

Fitness function makes it possible to evaluate the quality of a new individual created as a result of the usage of
crossover and mutation operators. The fitness of the individuals is compared and the individual with the better fitness
value is passed to the next generation. For the learning to rank problem, we propose to use a fitness function that uses
matrix multiplication to calculate the values on the basis of which the items will be sorted. This way, we will obtain
ranking scores (dot products) for all items and for the entire population in the DE algorithm. Pseudocode showing the
algorithm for such a fitness function is presented in listing 1 and 2.

C = AB (5)
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Phase 1 - Preprocessing Phase 2 - Differential Evolution

Filtering

Feature extraction

Operators

Fitness function

Training set

Outlier detection

Create user-item rating matrix

Extract features vectors φ(u, i)
(e.g. using SVD)

Convert items features to
matrix representation A

Mutation and crossover

Convert DE population to
matrix representation B

C = AB
Multiply matrix A by matrix B

For every item in system
extract ranking score from

matrix C for given individual

Select TopN items with
highest ranking score

Calculate average precision
for user uA

Get all N items rated by
user uA from traning set

Selection

Initialize random population

Is termination
criteria met?

Select best individual w
from population P

Select active user uA

C

No

Yes

Fig. 2. System architecture.

By multiplying the items feature matrix A by the population matrix B according to the formula 5, we obtain the matrix
product C. Then, for a given individual (column) we sort the items in a descending order according to the values in
the corresponding row of this matrix, and then select the top-N items S that would be recommended to user uA. The
fitness function is calculated for the active user in the system as follows:

Fitness = AP@k (R, S ) (6)

where R is the set of items that the user uA rated in his training set. Formula 6 represents the average precision that
would be computed between the sets R and S , that is, between the set of items rated by the user and the set of items
recommended by the system. In our system k in average precision is equal to the number of rated items by user uA in
his traning set. According to our experiments this is the best value since we are using all items from user uA training
set.
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Algorithm 1 Pseudocode for DE
1: Generate random initial population P0 of size NP (d-dimensional vectors)
2: repeat
3: for each individual i in the population Pt do
4: three random integers r1, r2, r3 ∈ (1,NP), with r1 � r2 � r3 � i
5: generate a random integer irand ∈ [1, 2, ..., d]
6: for each j-th gene in individual i do
7: vi, j = xr1, j + F(xr2, j − xr3, j)

8: ui, j =

{
vi, j if (rand( j) ≤ CR or i = irand)
xi, j otherwise

9: end for
10: add new individual �ui to population Pt+1

11: matrixFitnessFunction(Pt+1)
12: replace �xi from population Pt with the trial individual �ui from population Pt+1, if �ui is better
13: end for
14: t = t + 1
15: until

Algorithm 2 Pseudocode for matrix fitness function
1: procedure MatrixFitnessFunction(population P)
2: convert items features to matrix representation A
3: convert population P to matrix representation B
4: C = AB
5: for individual i in population P do
6: for item j in items I do
7: extract ranking score from matrix C for given individual:
8: rankingS core = C[ j, i]
9: end for

10: sort items by ranking score
11: select TopN items with highest ranking score
12: calculate average precision (AP) for active user uA

13: use AP as fitness value for given individual i
14: end for
15: end procedure

5. Experiments

Recommendations are usually displayed to the user in form of list. Therefore, to evaluate the quality of the gener-
ated recommendations, we used the average precision (AP) measure, which compares the top-N recommended items
suggested by our system with the items that an active user has in his test set. This measure examines where the recom-
mended items are positioned. The higher the more relevant items are on the list (closer to the first position), the larger
the AP measure is. The problem is not trivial, due to the number of items from which we need to select these which
are relevant. The experiments performed in this paper were done using the popular MovieLens 25m database [11].
This is currently the most up-to-date database provided by GroupLens group and is recommended for new research.
The database contains 25 million ratings given on a scale of 1-5 by 162541 users for 62423 movies. Each user has
rated at least 20 movies and is represented only by an id number (no other information is provided). Features for user
and items in system were generated using the randomizedSVD algorithm, which implementation can be found in the
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popular scikit-learn1 library. The FastRankDE algorithm was implemented in Python and C#. Python was used to cre-
ate the environment needed to conduct a reliable research and at the same time the Differential Evolution algorithm,
due to the time-consuming computation, was implemented in C#. The research was conducted on a computer with
Intel Core i5-7600 processor clocked at 3.50GHz with 16GB of RAM.

5.1. Description of the research

In order to check the quality of the generated recommendations, our system had to select the top-N items out of
all the items that appeared in the training set, and which the user had not yet rated. Therefore, first the ratings for
each user were sorted by the time, and then divided into two sets: training (80%) and test (20%). This approach is
justified due to the fact that our algorithm tries to predict the user’s future preferences based on his past activity. Due
to the time-consuming computation of metaheuristic algorithms, 30 users were randomly selected for the study and
recommendations were generated for them, subsequently the results (AP) were averaged which can be shown in result
as Mean Average Precision (MAP). To demonstrate that our algorithm produces good results, we compared it with
the Bayesian Personal Ranking (BPR) algorithm [18], implementation of which is available in the LigtFM library
[15]. In addition, an standard SVD algorithm labeled “PureSVD” in the results was implemented. The parameters of
the Differential Evolution algorithm are presented below, but some of them depend on the performed experiment. In
addition, a push attack was simulated to test whether the system can detect injected profiles by an attacker. Due to the
large number of profiles in the database, testing was performed on a subset of profiles. First, 5000 user profiles were
selected and 50 (1%) fake profiles were injected. The injected profiles were then used to rate a few items that had low
average ratings and were rated by a small number of users. The RDMA value was calculated for each profile and it
was checked if injected profiles were correctly identified.

Table 1. Differential Evolution parameters. The population and number of iterations varies depending on the experiment.

Parameter name Value

Population [10, . . . , 100]
Number of Iterations [100, . . . , 1000]
Crossover‘s Probability 0,9
Amplification Factor F 0,8
Dimensions (number of latent features) 15

5.2. Results

By analyzing the results presented in Table 2 and figure 3, it can be seen that as the number of iterations increases,
the computation time increases as well. However, for the FastRankDE algorithm, the calculations performed on av-
erage 36% faster than for the algorithm without a modification. In addition, it should be noted that the quality of
recommendations for both algorithms is practically identical. Further, Table 3 and Figure 3 present how the average
computation time changed according to the number of individuals in the DE population. Here, the computation time
was reduced on average by 56%, also without any loss in the quality of the generated recommendations. In addi-
tion, a study was performed to compare the quality of the generated recommendations with other algorithms such as
“PureSVD” or “BPR” and the results are presented in Table 4, where it can be seen that the quality of the generated
recommendations is higher than these techniques.

Analyzing the results presented in figure 4, it can be seen that our system correctly identified injected profiles as
outliers. They were characterized by a significant value of RDMA compared to the other selected profiles. It can also
be seen that some of the non-injected profiles also had a high RDMA value. To explain this, it is important to note
that the MovieLens 25m database can consist of profiles created by attackers, or this profiles can belong to users with
very specific tastes.

1 https://scikit-learn.org/
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Table 2. Average time (in seconds) and quality of generated recommendations (MAP) depending on the number of iterations (for 20 individuals).

Iterations DE run time DE MAP FastRankDE run time FastRankDE MAP Run time improved by

100 3,32 s 0,25 1,91 s 0,26 42 %
200 6,00 s 0,26 3,72 s 0,23 38 %
300 8,85 s 0,26 5,70 s 0,30 36 %
400 11,83 s 0,27 7,23 s 0,25 39 %
500 14,77 s 0,26 9,80 s 0,27 34 %
600 18,20 s 0,25 11,30 s 0,23 38 %
700 20,22 s 0,25 13,28 s 0,24 34 %
800 24,05 s 0,26 14,94 s 0,28 38 %
900 26,42 s 0,26 17,70 s 0,25 33 %
1000 29,13 s 0,25 19,00 s 0,25 35 %

Fig. 3. Graph representing average time (in seconds): (left) depending on the number of iterations; (right) depending on the number of individuals.

Table 3. Average time (in seconds) and quality of generated recommendations (MAP) depending on the number of individuals (for 250 iterations).

Individuals DE run time DE MAP FastRankDE run time FastRankDE MAP Run time improved by

10 3,42 s 0,18 1,48 s 0,23 57 %
20 6,02 s 0,26 2,74 s 0,26 55 %
30 9,77 s 0,25 4,18 s 0,26 57 %
40 12,79 s 0,25 5,63 s 0,26 56 %
50 15,71 s 0,24 7,00 s 0,23 55 %
60 18,18 s 0,25 8,42 s 0,25 54 %
70 21,40 s 0,27 10,19 s 0,25 52 %
80 26,64 s 0,25 11,90 s 0,25 55 %
90 31,07 s 0,25 13,19 s 0,27 58 %
100 35,00 s 0,25 14,65 s 0,27 58 %

Table 4. Quality of generated recommendations (MAP) for 20 individuals and 250 iterations. The rest of the parameters according to table 1

experimentId mean FastRankDE run time per user Random Most Popular SVD MAP BPR MAP DE MAP

1 3,0 s 0,001 0,022 0,19 0,20 0,24
2 3,1 s 0,003 0,018 0,19 0,20 0,21
3 2,9 s 0,004 0,014 0,19 0,20 0,23
4 3,2 s 0,002 0,025 0,19 0,20 0,19
5 3,0 s 0,006 0,024 0,19 0,20 0,22
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Fig. 4. Calculated RDMA value for every user profile in system. All injected profiles were detected.

6. Conclusion and future work

In this paper, we presented how the Differential Evolution algorithm can be accelerated by using a dedicated fitness
function to generate personalized recommendations for a given user. The proposed algorithm was tested on the pub-
licly available MovieLens 25m database. The experiments and their analysis show that our proposed fitness function
significantly improves the speed of the Differential Evolution algorithm without any loss in the quality of the generated
recommendations. Converting DE population and items features to matrix form, enables much easier parallelization
of the process of acquiring individual values (dot products) on the basis of which ranking of recommended items can
be done and this modification should also work for other metaheuristic algorithms. Additionally, our system correctly
identified the injected profiles, but in the future we will conduct a more detailed study by implementing other types
of attacks and compare the results with more complex algorithms for their detection. The main limitation of the pro-
posed approach is that it operates mainly on dot products, so it is primarily suitable for problems where it is possible
to present the problem into matrix multiplication form, which may not always be possible or appropriate. In future
work, we will also focus on improving the quality of the generated recommendations.
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