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a b s t r a c t

In this paper, we study a subclass of piecewise-deterministic Markov processes
with a Polish state space, involving deterministic motion punctuated by random
jumps that occur at exponentially distributed time intervals. Over each of these
intervals, the process follows a flow, selected randomly among a finite set of all
possible ones. Our main goal is to provide a set of verifiable conditions guaranteeing
the exponential ergodicity for such processes (in terms of the bounded Lipschitz
distance), which would refer only to properties of the flows and the transition law
of the Markov chain given by the post-jump locations. Moreover, we establish a
simple criterion on the exponential ergodicity for a particular instance of these
processes, applicable to certain biological models, where the jumps result from the
action of an iterated function system with place-dependent probabilities.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Piecewise-deterministic Markov processes (PDMPs), first introduced by Davis [18] in 1984 (cf. also [19,20]),
constitute a general class of non-diffusive Markov processes, for which randomness stems only from
the jump mechanism, including the jumping times, the post-jump locations and other changes occurring
at the moments of jumps. This huge family of processes is extensively used for modelling purposes in many
applied subjects, like biology [8,9,13,34,39], storage modelling [7] or internet traffic [24].

In this paper, we are concerned with the PDMPs that evolve on a Polish space through jumps arriving
according to a Poisson process. This means that the span of time between consecutive jumps is exponentially
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distributed with a constant rate λ. Between any two adjacent jumps, the dynamics of these processes is
riven by one of the semiflows, randomly selected from a finite set {Si : i ∈ I} of possible ones, according
o a given stochastic matrix [πij ]i,j∈I . The state right after a jump (usually called the post-jump location)
epends randomly on the one immediately preceding this jump, and its probability distribution is governed
y a given Markov transition function (a stochastic kernel) (y,B) ↦→ J(y,B).

More specifically, given an arbitrary Polish metric space Y , we shall investigate a stochastic process
:= {(Y (t), ξ(t))}t≥0 with values in X := Y × I, whose motion can be described as follows. Starting

rom some initial value (y0, i0), the process evolves deterministically in such a way that {Y (t)}t≥0 follows
↦→ Si0(t, y0) until the first jump time, say t1 > 0. At this moment the trajectory of the first coordinate

umps to another point of Y , say y1, so that the probability it will fall into a Borel set B ⊂ Y is
(Si0(t1, y0), B). At the same time the index of the “active” semiflow, determined by {ξ(t)}t≥0, is randomly
witched from i0 to another (or the same) one i1 with probability πi0i1 . Then the motion restarts from
he new state (y1, i1) and proceeds as before. Formally, the process Ψ can be therefore defined by setting

Y (t) := Sξn(t− τn, Yn) and ξ(t) := ξn for t ∈ [τn, τn+1), n ∈ N0,

here Φ̄ := {(Yn, ξn, τn)}n∈N∪{0} is a time-homogeneous Markov chain with state space X × [0,∞) and
ransition law satisfying

P(Φ̄n+1 ∈ B × Ξ × T | Φ̄n = (y, i, s)) =
∑
j∈Ξ

πij

∫
T ∩ [s,∞)

λe−λ(t−s)J(Si(t, y), B) dt

or any n ∈ N ∪ {0}, y ∈ Y, i ∈ I, s ≥ 0 and Borel sets B ⊂ Y , Ξ ⊂ I, T ⊂ [0,∞). Obviously, all
he randomness of the PDMP Ψ is contained in the chain Φ̄. What is more, the sequence Φ := {(Yn, ξn)}n

f the post-jump locations itself is an X-valued Markov chain (with respect to its natural filtration). Clearly,
n the family of rectangles B ×Ξ (where B ⊂ Y is a Borel set, and Ξ ⊂ I), the transition law of this chain

takes the form

P ((y, i), B × Ξ ) := P(Φn+1 ∈ B × Ξ | Φn = (y, i)) =
∑
j∈Ξ

πij

∫ ∞

0
λe−λtJ(Si(t, y), B) dt.

The subclass of the PDMPs considered here somewhat resembles those investigated in [1–4,11,12]. All
these papers, however, focus on processes evolving on finite-dimensional (and thus locally compact) spaces.
While proving the existence of invariant distributions and ergodicity (usually in the total variation norm) in
such a setup, one can use various adaptations of conventional methods of Meyn and Tweedie [36,37], based
mainly on the Harris recurrence (assured e.g. by Hörmander-type bracket conditions, just as in [3]) or some
criteria referring to the so-called drift towards a petite set. These techniques, however, are mostly valid only
for ψ-irreducible processes, which is, obviously, not the case in our framework. On the other hand, [10],
for instance, deals with a large class of regime switching Markov processes (a much more general family
than that of PDMPs), which take values in a Polish space. Nevertheless, the criteria on the exponential
ergodicity (in the Wasserstein distance) provided in that work are based on fairly general assumptions, such
as the “exponential contractivity” of the given Markov semigroups or a Lyapunov–Foster type condition in
the continuous-time context, which might be difficult to verify in practice (at least in a direct way).

The main goal of this paper is to provide relatively easy to check conditions on the kernel J and
the semiflows Si which would guarantee that both the transition operator of the chain Φ and the transition
emigroup of the process Ψ are exponentially ergodic in the bounded Lipschitz distance (equivalent to

the one induced by the Dudley norm [22]). Such a metric, also known as the Fortet–Mourier distance
(see e.g. [31,33]), is defined on the cone of non-negative finite Borel measures on X, and induces the

topology of weak convergence of such measures [6]. Roughly speaking, the aforementioned form of ergodicity
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means that the process under consideration admits a unique stationary (invariant) distribution, to which its
distribution converges at an exponential rate in the Fortet–Mourier distance, independently of the initial
state. The rigorous meaning of this term is given in Definitions 2.1 and 2.2. The general strategy of our
approach is as follows:

(I) We begin with showing that, whenever J enjoys some strengthened form of the Feller property, there
exists a one-to-one correspondence between the set of invariant distributions of the process Ψ and those
of the associated chain Φ (Theorem 5.1).

(II) Next, we note that the existence of an appropriate coupling (Φ(1),Φ(2)) between two copies of Φ,
such that the mean distance between them decreases geometrically with time, in conjunction with
the so-called Foster–Lyapunov drift condition (see, e.g., [21, Definition 6.23]) and the Feller property
imposed on P , ensures the exponential ergodicity of Φ (Lemma 6.1).

III) The essential step in our analysis is proving that, for a given coupling (Φ(1),Φ(2)) of the chain Φ

enjoying the property indicated in (II), the corresponding coupling of the process Ψ has an analogous
property, provided that the semiflows Si fulfil a certain Lipschitz-type condition (Lemma 6.2). The key
idea here is partially inspired by the techniques used in the proof of [10, Theorem 1.4].

IV) From the results discussed in steps (I)–(III) we can conclude that, under suitable assumptions on
the semiflows Si and the kernel J , providing all the requirements mentioned above, the existence of
an appropriate coupling of Φ implies the exponential ergodicity of the process Ψ (Theorem 6.1).

(V) Finally, we employ some additional hypotheses which, together with the previous ones, ensure that
the coupling mentioned in (II) exists. This leads us to the main result of the paper, stated as
Theorem 7.1. In particular, at this stage we require the existence of a substochastic kernel QJ on Y 2

with certain specific properties (in the spirit of [15,29]), such that

QJ((y1, y2), · × Y ) ≤ J(y1, ·) and QJ((y1, y2), Y × ·) ≤ J(y2, ·),

which further enables us to construct a substochastic kernel QP on X2, having the analogous properties
with respect to P (Lemma 7.1). The transition function of the desired coupling can be then defined as
the sum of QP and a suitable complementary kernel (Proposition 7.1). Such a construction is inspired by
the ideas of Hairer [25], regarding the so-called asymptotic coupling technique (also used e.g. in [41,43]).

What is especially noteworthy here is the fact that this approach also elucidates the way in which
the exponential ergodicity of the PDMP Ψ is inherited from the same property for the associated chain Φ.
This is visible in steps (I) and (III).

The obtained general result (i.e. Theorem 7.1) is further applied to derive a simple criterion on the expo-
nential ergodicity (in the Fortet–Mourier distance) in the case where the jump kernel J is a transition law
of a random iterated function system (Proposition 7.2). This is done by taking advantage of the fact that
the kernel QJ , playing a key role in step (V), can be defined explicitly in such a model. More specifically,
we discuss the case in which J is given by

J(y,B) =
∫
Θ

1B(wθ(y))pθ(y)ϑ(dθ) for each y ∈ Y and any Borel set B ⊂ Y,

where {wθ : θ ∈ Θ} is an arbitrary family of continuous transformations from Y to itself, indexed by
the elements of a measure space (Θ , ϑ), and Θ ∋ θ ↦→ pθ(y), y ∈ Y , is the associated set of state-dependent
probability density functions with respect to ϑ. In this setting, the model under consideration may serve as
a framework for analysing the dynamics of gene expression in prokaryotes (see e.g. [5,14,34]), discussed in
more detail within Example 7.3. Moreover, if ϑ(Θ) = 1 and pθ ≡ 1 for every θ ∈ Θ , then {Y (t)}t≥0 can
be treated as the solution to a stochastic evolution equation with Poisson noise (see, e.g., [17,26,30,32,35]).

An interpretation of Proposition 7.2 in this setup is presented in Example 7.2.

3
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The discrete-time dynamical system Φ with the above-specified shape of the jump kernel J , even in
more general setting, wherein the probabilities πij depend on the state, has been more widely examined

in terms of ergodicity and classical limit theorems) in our previous articles [14–17]. For instance, in [14],
he exponential ergodicity of Φ has been used to prove the strong law of large numbers for the chain
f(Φn)}n∈N∪{0} (with a Lipschitz continuous function f : X → R), which, in turn, has enabled us to derive

the analogous law for the process {f(Ψ(t))}t≥0 (without using the ergodicity of Ψ). The result provided in
he present paper should prove to be useful in establishing also the central limit theorem for this process,
hich would be rather difficult to achieve based only on the properties of Φ.
The organization of the paper is as follows. In Section 2, we introduce notation and some basic concepts

egarding Markov semigroups acting on measures, including the employed definition of ergodicity. Section 3
rovides a detailed description of the subclass of the PDMPs under study. In Section 4, we list and
iscuss all the assumptions underlying our main results. Section 5 is devoted to establishing a one-to-one
orrespondence between invariant distributions of the processes Ψ and Φ, that is, the realization of step (I).

The essential part of our analysis, referring to the coupling argument, which has been described within
steps (II)–(IV), is contained in Section 6. Step (V), including the construction of a suitable coupling for Φ,
is included in Section 7. Finally, also in this part of the paper, we state the main result and discuss some
special cases of the model, for which the jumps are determined by a random iterated function system.

2. Preliminaries

Consider a complete separable metric space (E, ρ), endowed with its Borel σ-field B(E). By BE(x, r)
we will denote the open ball in E centred at x of radius r > 0. The symbol 1A will be used to denote
the indicator function of a subset A of E (or any other space, which should be clear from the context).
Additionally, we set N0 := N ∪ {0} and R+ := [0,∞).

Let Bb(E) stand for the Banach space of all real-valued, Borel measurable functions on E, equipped with
the supremum norm ∥f∥∞ := supx∈E |f(x)|. By Cb(E) we shall denote the subspace of Bb(E) consisting of
all continuous functions. In addition to this, we also define the set Lipb,1(E) as follows:

Lipb,1(E) :=
{
f ∈ Cb(E) : 0 ≤ f ≤ 1, sup

x ̸=y

|f(x) − f(y)|
ρ(x, y) ≤ 1

}
.

Moreover, we will write M(E) and Mprob(E) to denote the cone of all finite non-negative, Borel measures
n E, and its subset consisting of all probability measures, respectively. Further, given any Borel measurable
unction V : E → [0,∞), we shall consider the subset MV

prob(E) of Mprob(E) consisting of all measures with
nite first moment with respect to V , that is,

MV
prob(E) :=

{
µ ∈ Mprob(E) :

∫
E

V (x)µ(dx) < ∞
}
.

For brevity of notation, the Lebesgue integral
∫

E
f dµ of a Borel measurable function f : E → R with

espect to a signed Borel measure µ – if exists – will be sometimes denoted by ⟨f, µ⟩. Furthermore, we will
rite δx for the Dirac measure at x ∈ E on B(E).
To describe the distance between measures, we will use the Fortet–Mourier metric (equivalent to

he metric induced by the Dudley norm [22]), which on M(E), is defined by

dF M,ρ(µ, ν) := sup
f∈Lipb,1(E)

| ⟨f, µ− ν⟩ | for any µ, ν ∈ M(E).

t is well-known that, as long as E is separable (which is the case here), the metric dF M,ρ induces the topology
f weak convergence of measures on M(E) (cf. [22, Theorems 6 and 8] or [6, Theorem 8.3.2]). Let us recall
4
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here that a sequence {µn}n∈N ⊂ M(E) of measures is called weakly convergent to a measure µ ∈ M(E) if
f, µn⟩ → ⟨f, µ⟩, as n → ∞, for any f ∈ Cb(E). Moreover, if (E, ρ) is complete (which is also the case in
ur setting), then so is the space (Mprob(E), dF M,ρ) (see [22, Theorem 9]).

Before further discussion, it is also useful to recall several basic concepts in the theory of Markov operators.
A function P : E × B(E) → [0, 1] is called a (sub)stochastic kernel if for each A ∈ B(E), x ↦→ P (x,A)

s a Borel measurable map on E, and for each x ∈ E, A ↦→ P (x,A) is a (sub)probability Borel measure on
(E). The composition of two such kernels, say P and Q, is defined by

PQ(x,A) :=
∫

X

Q(y,A)P (x, dy) for any x ∈ E, A ∈ B(E). (2.1)

According to this rule, we can also define recursively the so-called n-step kernel Pn, by setting P 1 := P and
Pn+1 := PnP for every n ∈ N.

For any (sub)stochastic kernel P , we can consider two operators (which will be denoted by the same
symbol), one acting on M(E), and the second one acting on Bb(E), defined by

µP (A) :=
∫

E

P (x,A)µ(dx) for µ ∈ M(E), A ∈ B(E), (2.2)

Pf(x) :=
∫

E

f(y)P (x, dy) for f ∈ Bb(E), x ∈ E. (2.3)

ote that these operators are related to each other in the following way:

⟨f, µP ⟩ = ⟨Pf, µ⟩ for any f ∈ Bb(E), µ ∈ M(E).

bviously, the nth iterations (·)Pn and Pn(·) are induced by the n-step kernel Pn. If P is a stochastic kernel,
hen P : M(E) → M(E), given by (2.2), is called a (regular) Markov operator, and P : Bb(E) → Bb(E),

defined by (2.3), is said to be its dual operator. Let us stress that formula (2.3) will be sometimes applied,
with a slight abuse of notation, to unbounded above functions as well; for example, we shall write Pρ(·, x∗)
(for a fixed x∗ ∈ E).

A family of stochastic kernels {Pt}t∈R+ (or the induced family of Markov operators) is called a Markov
emigroup if PsPt = Ps+t for any s, t ≥ 0 in the sense of (2.1), and P0(x, ·) = δx for every x ∈ E. In terms
f Markov operators, this is obviously equivalent to saying that Ps ◦ Pt = Ps+t for all s, t ≥ 0, and (·)P0 is
he identity map.

Given a stochastic kernel P on E × B(E) and µ ∈ Mprob(E), by a time-homogeneous Markov chain with
one-step) transition law P and initial distribution µ we mean a sequence of E-valued random variables

:= {Φn}n∈N0 , defined on some probability space (Ω ,F ,Pµ), such that, for any A ∈ B(E) and n ∈ N,

Pµ(Φ0 ∈ A) = µ(A), (2.4)
Pµ(Φn+1 ∈ A | Fn) = P(Φn+1 ∈ A | Φn) = P (Φn, A), (2.5)

here Fn is the σ-field generated by Φ0, . . . ,Φn. The expectation operator with respect to Pµ is then denoted
y Eµ. In the case where µ = δx with some x ∈ E, we simply write Px and Ex rather than Pδx and Eδx ,
espectively. Obviously Px = Pµ(·|Φ0 = x) for any x ∈ E.

One can easily check that, for every k ∈ N, the k-step transition probabilities of Φ are determined by
he kernels P k, i.e. P(Φn+k ∈ A | Φn) = P k(Φn, A). Consequently, it follows that the Markov operator (·)P
escribes the evolution of the distribution of Φ, i.e. µn+1 = µnP for any n ∈ N0, where µn is the distribution
f Φn. In this connection, it is reasonable to call (·)P the transition operator of Φ. Furthermore, it is also
orth noting that the dual operator of (·)Pn can be expressed as

n
P f(x) = Ex[f(Φn)] for any x ∈ E, f ∈ Bb(E), n ∈ N. (2.6)
5
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On the other hand, it is well-known that, for any stochastic kernel P on E×B(E) and any µ ∈ Mprob(E),
n some probability space (Ω ,F ,Pµ), there exists a time-homogeneous Markov chain Φ with transition law P

nd initial measure µ (see e.g. [38]). In practice, it is convenient to assume that Ω := EN0 , F := B(EN0)
where EN0 is endowed with the product topology), and that {Φn}n∈N0 is a sequence of canonical projections
rom Ω to E, that is, Φn(ω) = xn for any ω = (x0, x1, . . .) ∈ Ω , with x0, x1, . . . ∈ E. Then, for each

∈ Mprob(E), one can construct a probability measure Pµ on F such that

Pµ(F ) =
∫

E

∫
E

. . .

∫
E

1A0×···×An(x0, . . . , xn)P (xn−1, dxn) . . . P (x0, dx1)µ(dx0) (2.7)

or any n ∈ N0 and F = {Φ0 ∈ A0, . . . ,Φn ∈ An}, where A0, . . . , An ∈ B(E). It then follows easily that Φ

beys (2.4) and (2.5) for every µ ∈ Mprob(E), and, what is more, we have

Pµ(F ) =
∫

X

Px(F )µ(dx) for any F ∈ F , µ ∈ Mprob(E). (2.8)

he Markov chain constructed in this way is called a canonical one.
Given a Markov semigroup {Pt}t∈R+ of stochastic kernels on E× B(E) and a measure µ ∈ Mprob(E), by

time-homogeneous Markov process with transition semigroup {Pt}t∈R+ and initial distribution µ we mean
family of E-valued random variables Ψ := {Ψ(t)}t∈R+ on some probability space (Ω ,F ,Pµ) such that, for

ny A ∈ B(E) and s, t ≥ 0,

Pµ(Ψ(0) ∈ A) = µ(A),
Pµ(Ψ(s+ t) ∈ A | F(s)) = Pµ(Ψ(s+ t) ∈ A | Ψ(s)) = Pt(Ψ(s), A), (2.9)

here F(s) is the σ-field generated by {Ψ(h) : h ≤ s}. From (2.9) it obviously follows that µ(s+ t) = µ(s)Pt

or any s, t ≥ 0, where µ(t) stands for the distribution of Ψ(t) for every t ≥ 0. Moreover, analogously as in
he discrete case, the dual operator of Pt can be expressed as

Ptf(x) = Ex[f(Ψ(t))] for any x ∈ E, f ∈ Bb(E), t ≥ 0. (2.10)

Let us now briefly recall some notions concerning the ergodicity of Markov operators, which will be used
hroughout the paper.

First of all, a Markov operator P is called Feller if its dual operator preserves continuity, that is,
(Cb(E)) ⊂ Cb(E). Furthermore, a Markov semigroup {Pt}t∈R+ is called Feller if Pt is Feller for any t ≥ 0.
A measure µ∗ ∈ M(E) is said to be invariant for a Markov operator P if µ∗P = µ∗. By analogy, we say

hat µ̃∗ ∈ M(E) is invariant for a Markov semigroup {Pt}t∈R+ whenever µ̃∗Pt = µ̃∗ for every t ≥ 0.
We finalize this section with the definitions of two properties that will be verified in the main results of

his paper.

efinition 2.1. Let P be a transition operator of an E-valued Markov chain Φ. Given a Borel measurable
unction V : E → [0,∞), we shall say that P (or the chain Φ) is V -exponentially ergodic in dF M,ρ if it
dmits a unique invariant probability measure µΦ

∗ , such that µΦ
∗ ∈ MV

prob(E), and there exists a constant
∈ (0, 1) such that, for every µ ∈ MV

prob(E) and some C(µ) < ∞, we have

dF M,ρ

(
µPn, µΦ

∗
)

≤ C(µ)qn for any n ∈ N.

efinition 2.2. Let {Pt}t∈R+ be a transition semigroup of an E-valued Markov process Ψ . Given a Borel
easurable function V : E → [0,∞), we shall say that {Pt}t∈R+ (or the process Ψ) is V -exponentially

rgodic in dF M,ρ if it admits a unique invariant probability measure µΨ
∗ , such that µΨ

∗ ∈ MV
prob(E), and

here exists a constant γ > 0 such that, for every µ ∈ MV
prob(E) and some C̄(µ) < ∞, we have

dF M,ρ

(
µPt, µ

Ψ
∗

)
≤ C̄(µ)e−γt for any t ≥ 0.
6
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m

3. The model under study

Let (Y, ρY ) be a complete separable metric space, and let I be a finite set endowed with the discrete
etric d, i.e. d(i, j) = 1 if i ̸= j and d(i, j) = 0 otherwise. In what follows, we shall also refer to the spaces

X := Y × I and X̄ := X × R+,

considered with the product topologies. Additionally, we assume that X is endowed with a metric ρX,c of
the form

ρX,c(x1, x2) = ρY (y1, y2) + cd(i1, i2) for x1 = (y1, i1), x2 = (y2, i2) ∈ X, (3.1)

where c is a given positive constant, whose value will be relevant in Section 7. The Fortet–Mourier distance
in M(X), induced by the metric ρX,c, will be simply denoted by dF M,c (rather than dF M,ρX,c

). Throughout
the paper, we will also refer to the standard bounded metric induced by ρX,c, that is,

ρ̄X,c(x1, x2) := ρX,c(x1, x2) ∧ 1 for any x1, x2 ∈ X, (3.2)

where ∧ stands for the minimum.
Consider a collection {Si : i ∈ I} of jointly continuous semiflows acting from R+ × Y to Y . By calling Si

a semiflow we mean, as usual, that

Si(s, Si(t, y)) = Si(s+ t, y) and Si(0, y) = y for any s, t ∈ R+, y ∈ Y.

Furthermore, suppose that we are given a right stochastic matrix {πij : i, j ∈ I}, i.e.

πij ∈ R+ for any i, j ∈ I, and
∑
j∈I

πij = 1 for every i ∈ I,

a positive constant λ, as well as an arbitrary stochastic kernel J : Y × B(Y ) → [0, 1].
Let us now define a stochastic kernel P̄ : X̄ × B(X̄) → [0, 1] by setting

P̄ ((y, i, s), Ā) =
∑
j∈I

πij

∫ ∞

0
λe−λh

∫
Y

1Ā(u, j, h+ s) J(Si(h, y), du) dh (3.3)

for any y ∈ Y , i ∈ I, s ∈ R+ and Ā ∈ B(X̄). Moreover, let P : X × B(X) → [0, 1] denote the kernel given by

P ((y, i), A) := P̄ ((y, i, 0), A× R+) for y ∈ Y, i ∈ I, A ∈ B(X), (3.4)

where P̄ is given by (3.3).

Remark 3.1. Taking into account the continuity of the maps Y ∋ y ↦→ Si(t, y), t ≥ 0, i ∈ I, it is easy to
see that P is Feller whenever so is the kernel J .

By Φ̄ := {(Yn, ξn, τn)}n∈N0 we will denote a time-homogeneous Markov chain with state space X̄ and
transition law P̄ , wherein Yn, ξn, τn take values in Y , I, R+, respectively. More precisely, Φ̄ will be regarded
as the canonical Markov chain, constructed on the coordinate space Ω := X̄N0 , equipped with the σ-field
F := B

(
X̄N0

)
and a suitable family {Pν : ν ∈ Mprob(X̄)} of probability measures on F , where the subscript

ν indicates the initial distribution of Φ̄. For every ν ∈ Mprob(X̄), we therefore have

Pν(Φ̄0 ∈ Ā) = ν(Ā) for any Ā ∈ B(X̄),
Pν(Φ̄n+1 ∈ Ā | Φ̄n = (y, i, s)) = P̄ ((y, i, s), Ā) for any (y, i, s) ∈ X̄, Ā ∈ B(X̄), n ∈ N0.
7
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Obviously, the sequences Φ := {(Yn, ξn)}n∈N0 , {ξn}n∈N0 and {τn}n∈N0 are Markov chains with respect to
heir own natural filtrations, and their transition laws satisfy

Pν(Φn+1 ∈ A | Φn = (y, i)) = P ((y, i), A) for (y, i) ∈ X, A ∈ B(X),
Pν(ξn+1 = j | ξn = i) = πij for i, j ∈ I (3.5)

Pν(τn+1 ≤ t | τn = s) = 1[s,∞)(t)
(

1 − e−λ(t−s)
)

for s, t ∈ R+. (3.6)

oreover, note that the increments ∆τn := τn − τn−1, n ∈ N, form a sequence of independent, exponentially
istributed random variables with the same rate parameter λ, and thus τn ↑ ∞, as n → ∞, Pν-a.s. (due to
he strong law of large numbers).

The main focus of our study will be a PDMP Ψ := {(Y (t), ξ(t))}t∈R+ with jump times τn, n ∈ N0, defined
ia interpolation of the chain Φ, so that:

Y (t) := Sξn(t− τn, Yn), ξ(t) = ξn whenever t ∈ [τn, τn+1) for n ∈ N0. (3.7)

he transition semigroup of this process will be denoted by {Pt}t∈R+ . Obviously, the discrete-time model
with transition law P , determined by (3.4), can be viewed as the Markov chain given by the post-jump

ocations of Ψ , since

Φn = (Yn, ξn) = (Y (τn), ξ(τn)) = Ψ(τn) for every n ∈ N0.

ooking at the shape of the kernel P̄ , one can say (somewhat informally) that the probability of visiting
given set B right after the (n+ 1)th jump, given Sξn(∆τn+1, Yn) = y, is equal to J(y,B).

emark 3.2. As has been already mentioned in the introduction, the above-described model (Φ,Ψ) is
generalization of that considered in [14] (apart from the probabilities πij , which are constant here); cf.

lso [17]. More specifically, in [14], the kernel J is a transition law of some randomly perturbed iterated
unction system, i.e. it has the form:

J(y,B) =
∫

supp ν

∫
Θ

1B(wθ(y) + v) pθ(y)ϑ(dθ)ν(dv) for B ∈ B(Y ).

n that case, Y is a closed subset of a Banach space H, ν ∈ Mprob(H) is a probability measure with bounded
upport, Θ stands for an arbitrary topological space, endowed with a Borel measure ν, {wθ : θ ∈ Θ} is
given family of continuous transformations from Y to itself, such that wθ(Y ) + v ⊂ Y for any v ∈ supp ν,

nd Θ ∋ θ ↦→ pθ(y) ∈ R+, y ∈ Y , are the associated (state-dependent) probability density functions with
espect to ϑ. We shall come back to this particular case in Section 7.2.

. Assumptions on the model components

Let us begin this section by listing all the conditions that will be used throughout the remainder of
he paper. The list can be naturally divided into two parts. The first one contains assumptions referring to
he deterministic part of the model (i.e., the flows Si and the probabilities πij), which read as follows:

S1) For some y∗ ∈ Y , we have ∫ ∞

0
e−λtρY (Si(t, y∗), y∗) dt < ∞ for any i ∈ I. (4.1)

S2) There exist L > 0 and α ∈ R such that

ρY (Si(t, y1), Si(t, y2)) ≤ LeαtρY (y1, y2) for y1, y2 ∈ Y, i ∈ I, t ≥ 0.
8



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 215 (2022) 112678

(

(

(

w
k
u
t
e

R

(
m

S3) There exist a Lebesgue measurable function φ : R+ → R+ and a function L : Y → R+, bounded on
bounded sets, such that

Kφ :=
∫ ∞

0
e−λtφ(t) dt < ∞

and
ρY (Si(t, y), Sj(t, y)) ≤ φ(t)L(y) for any t ≥ 0, y ∈ Y, i, j ∈ I.

S4) There exists j0 ∈ I such that mini∈I πij0 > 0.

The second part of the list includes certain conditions on the kernel J , governing the post-jump locations.
They are as follows:

(J1) There exist y∗ ∈ Y and constants ã > 0, b̃ ≥ 0 for which J satisfies

JρY (·, y∗)(y) ≤ ãρY (y, y∗) + b̃ for any y ∈ Y. (4.2)

J2) There exists a substochastic kernel QJ : Y 2 × B(Y 2) → [0, 1] such that

QJ((y1, y2), B × Y ) ≤ J(y1, B) and QJ((y1, y2), Y ×B) ≤ J(y2, B) (4.3)

for any y1, y2 ∈ Y and B ∈ B(Y ), which enjoys the following properties:∫
Y 2
ρY (u, v)QJ((y1, y2), du× dv) ≤ ãρY (y1, y2) for any y1, y2 ∈ Y, (4.4)

inf
(y1,y2)∈Y 2

QJ((y1, y2), Ũ (ãρY (y1, y2))) ≥ η for some η > 0, (4.5)

where
Ũ(r) := {(u, v) ∈ Y 2 : ρY (u, v) ≤ r} for r > 0, (4.6)

and ã is the constant for which (J1) holds, as well as there exists l̃ > 0 such that

QJ((y1, y2), Y 2) > 1 − l̃ρY (y1, y2) for any y1, y2 ∈ Y. (4.7)

(J3) For every function g ∈ Cb(Y × R+), the map Y × R+ ∋ (y, t) ↦→ Jg(·, t)(y) is jointly continuous.

In the main results, these two kinds of assumptions will be linked with each other by requiring that the
constants L > 0, α ∈ R and ã > 0, appearing in (S2) and (J1), respectively, satisfy the inequality

ãL+ α

λ
< 1, (4.8)

hich, in turn, guarantees that the dual of the Markov operator P , induced by (3.4), enjoys a property
nown as the Foster–Lyapunov drift condition (see Lemma 4.1, given below). Such a condition is commonly
sed while studying the ergodic properties of Markov processes (see e.g. [36,37]). It is worth nothing here
hat, in particular, the inequality above yields that α < λ. An assumption similar to (4.8) appears,
.g., in [31, Proposition 5.1], where a Poisson driven stochastic differential equation is considered.

emark 4.1. Obviously, condition (J3) is a strengthened form of the Feller property for J .

Remark 4.2. Note that, if (4.1) is fulfilled for some y∗ ∈ Y , then it is also valid for every y∗ ∈ Y , whenever
S2) holds with some α < λ. Hence, while considering the conjunction of conditions (S1), (S2) and (J1), we
ay and we will always assume that (4.1) and (4.2) hold with the same y∗.
9
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Lemma 4.1. Suppose that (S1), (S2) and (J1) hold with L,α, ã satisfying inequality (4.8). Then P fulfils
he Foster–Lyapunov condition with the function V : X → [0,∞) of the form

V (x) := ρY (y, y∗) for x = (y, i) ∈ X, (4.9)

here y∗ is specified by (J1), that is, there exist a ∈ (0, 1) and b ∈ [0,∞) such that

PV (x) ≤ aV (x) + b for all x ∈ X. (4.10)

oreover, the constants a, b can be chosen as

a := ãλL

λ− α
and b := ãλmax

i∈I

∫ ∞

0
e−λtρY (Si(t, y∗), y∗) dt+ b̃ (4.11)

ith L,α, ã, b̃ and y∗ determined by (S2) and (J1).

roof. Let a, b be defined as above. Then b ≥ 0 (since ã, b̃ ≥ 0), and (4.8) yields that a ∈ (0, 1). Finally,
e are led to the conclusion by the following estimates:

PV (y, i) =
∫ ∞

0
λe−λhJρY (·, y∗)(Si(h, y)) dh ≤ ã

∫ ∞

0
λe−λhρY (Si(h, y), y∗) dh+ b̃

≤ ã

∫ ∞

0
λe−λh [ρY (Si(h, y), Si(h, y∗)) + ρY (Si(h, y∗), y∗)] dh+ b̃

≤ ã

∫ ∞

0
λe−λh

[
LeαhρY (y, y∗) + ρ(Si(h, y∗), y∗)

]
dh+ b̃

= ãλL

(∫ ∞

0
e−(λ−α)h dh

)
V (y, i) + ãλ

∫ ∞

0
e−λhρ(Si(h, y∗), y∗) dh+ b̃

≤ aV (y, i) + b for any y ∈ Y, i ∈ I. □

In Section 7, we also assume that the constant c, appearing in (3.1), is sufficiently large. More precisely,
aving imposed conditions (S1)–(S3), (J1) and (4.8), we require that

c ≥ λ− α

L

(
MLKφ + MLMφ

λ

)
+ 1, (4.12)

here

ML := sup{L(y) : ρY (y, y∗) ≤ 4b/(1 − a)}, (4.13)

Mφ := sup
{
φ(t) : t ≤ lim

s→α
s−1 ln

(
λ(λ− s)−1)}

, (4.14)

and the constants a and b are given by (4.11).
Conditions (S1)–(S3) are satisfied, for example, for the flows generated by some classes of dissipative

differential equations. This rests on the following observation (cf. [28]):

Remark 4.3. Suppose that Y is a closed subset of a Hilbert space H, endowed with an inner product ⟨·|·⟩,
inducing the norm ∥·∥. Let Ai : Y → H, i ∈ I, be a finite collection of α-dissipative operators with some
α ≤ 0, i.e.

⟨Aiy1 −Aiy2 | y1 − y2⟩ ≤ α ∥y1 − y2∥2 for any y1, y2 ∈ Y, i ∈ I. (4.15)

Furthermore, assume that the so-called range condition holds, that is, there exists a positive constant T such
that

Y ⊂ Range(id −tA ) for all t ∈ (0, T ), i ∈ I. (4.16)
Y i

10
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Then, according to [28, Theorem 5.11], for any i ∈ I and y ∈ Y , the initial value problem

u′(t) = Ai u(t) for t ≥ 0, u(0) = y,

as a unique (strong) solution R+ ∋ t ↦→ Si(t, y) ∈ Y , which obviously generates a semiflow. What is more,
y virtue of [28, Theorem 5.3 and Corollary 5.4], the semiflows Si satisfy

∥Si(t, y1) − Si(t, y2)∥ ≤ eαt ∥y1 − y2∥ for any y1, y2 ∈ Y,

∥Si(t, y) − y∥ ≤ t ∥Aiy∥ for any y ∈ Y.

his, in turn, implies that conditions (S1)–(S3) hold for such Si, i ∈ I, with an arbitrarily fixed y∗ ∈ Y ,
he dissipativity constant α,

L = 1, L(y) = 2 max
i∈I

∥Aiy∥ and φ(t) = t,

rovided that Ai, i ∈ I, are bounded on bounded sets. Obviously, if I contains only one element, then (S3)
s satisfied trivially (with L ≡ φ ≡ 0), and thus the assumption of the boundedness on bounded sets is
uperfluous in this case.

On the other hand, the following simple example (inspired by [3, Example 5.2]) demonstrates that
S1)–(S3) may also hold for the flows generated by α-dissipative equations with a positive α.

xample 4.1. Suppose that (Y, ∥·∥) is a Banach space, and let z ∈ Y , α ∈ R be fixed. Consider the semiflows
1, S2 : R+ × Y → Y induced by the differential equations (in Y )

u′(t) = αu(t) and u′(t) = α(u(t) − z) for t ≥ 0,

espectively, that is

S1(t, y) = eαty, S2(t, y) = eαt(y − z) + z for t ≥ 0, y ∈ Y.

hen conditions (S1)–(S3) are satisfied for {S1, S2} with the given α, L = 1, L ≡ 1 and φ(t) = |1 − eαt| ∥z∥.

A significant example of a stochastic kernel J enjoying hypotheses (J1)–(J3) is the transition law
f an iterated function system (or, more generally, the kernel specified in Remark 3.2), provided that
he involved transformations and the associated probability densities satisfy certain usual conditions. This
ase will be discussed in detail within Section 7.2.

. Correspondence between invariant distributions of Ψ and Φ

In the first part of the study, we shall establish a one-to-one correspondence between invariant probability
easures for the transition operator P of the chain Φ, induced by (3.4), and those for the transition

emigroup {Pt}t∈R+ of the process Ψ , specified by (3.7). For this aim, let us consider the Markov operators
,W : M(X) → M(X) generated by the stochastic kernels given by

G((y, i), A) =
∫ ∞

0
λe−λt1A(Si(t, y), i) dt, (5.1)

W ((y, i), A) :=
∑
j∈I

πij

∫
Y

1A(u, j)J(y, du) (5.2)

or any (y, i) ∈ X and A ∈ B(X), where J stands for the kernel appearing in (3.3). It is easy to check that

W = P .

11
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Having defined such operators, we can state the following result:

Theorem 5.1. Let P and {Pt}t∈R+ denote the transition operator of the chain Φ and the transition
emigroup of the PDMP Ψ , respectively. Further, suppose that the kernel J , appearing in (3.3), satisfies (J3).
hen

a) if µΦ
∗ is an invariant probability measure of P , then the measure µΨ

∗ := µΦ
∗ G is invariant for {Pt}t∈R+ ,

and we have µΨ
∗ W = µΦ

∗ ;
(b) if µΨ

∗ is an invariant probability measure of {Pt}t∈R+ , then the measure µΦ
∗ := µΨ

∗ W is invariant for P ,
and we have µΦ

∗ G = µΨ
∗ .

Theorem 5.1 can be proved exactly in the same way as [14, Theorem 4.4], which refers to the case where
the kernel J is defined explicitly (as mentioned in Remark 3.2). In order to adapt this proof to our setting
(with an arbitrary stochastic kernel J), one only needs to establish the properties collected in the lemma
given below.

Lemma 5.1. The following statements hold for the transition semigroup {Pt}t∈R+ of the process Ψ :

(i) If J is Feller, then {Pt}t∈R+ is Feller.
(ii) For any f ∈ Bb(X), there exists a bounded Borel measurable map uf : X × R+ → R such that

limt→0 ∥uf (·, t)∥∞ /t = 0, and

Ptf(y, i) = e−λtf(Si(t, y), i) + λe−λt

∫ t

0
ψf ((y, i), s, t) ds+ uf ((y, i), t),

for any (y, i) ∈ X and t > 0, where

ψf ((y, i), s, t) :=
∑
j∈I

πij

∫
Y

f(Sj(t− s, u), j)J(Si(s, y), du) for s ∈ [0, t], t > 0.

(iii) {Pt}t∈R+ is stochastically continuous, i.e.

lim
t→0

Ptf(y, i) = f(y, i) for any (y, i) ∈ X, f ∈ Cb(X).

(iv) If (J3) holds then, for any function s : R+ → R+ satisfying 0 ≤ s(t) ≤ t for all t ≥ 0, the map
t ↦→ ψf ((y, i), s(t), t) is continuous at t = 0 for every f ∈ Cb(X) and any (y, i) ∈ X. Moreover,
ψf (·, 0, 0) = Wf , where W is the operator induced by (5.2).

Proof. Throughout the proof, we will write x̄ := (x, 0) for any given x ∈ X. Moreover, for every i ∈ I, we
put f(Si(h, ·)) := 0 if h < 0.

Let t ∈ R+ and f ∈ Bb(X). Then, according to (2.10), for every x ∈ X, we can write

Ptf(x) = Ex̄f(Y (t), ξ(t)) =
∞∑

n=0
Ex̄

[
1[τn,τn+1)(t)f(Sξn(t− τn, Yn), ξn)

]
=

∞∑
n=0

Ex̄

[
1[0,t](τn)f(Sξn(t− τn, Yn), ξn) · 1(t,∞)(τn+1)

]
.

(5.3)

Taking into account (2.7), it is clear that, for any g, h ∈ Bb(X̄) and n ∈ N0,

Ex̄[g(Φ̄n)h(Φ̄n+1)] =
∫

X̄

∫
X̄

g(w)h(z) P̄ (w, dz)P̄n(x̄, dw)

=
∫

g(w)P̄ h(w)P̄n(x̄, dw) = P̄n(gP̄h)(x̄).
(5.4)
X̄

12
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Hence, defining
gt(u, j, s) := 1[0,t](s)f(Sj(t− s, u), j) and ht(u, j, s) := 1(t,∞)(s) (5.5)

for any u ∈ Y , j ∈ I and s ∈ R+, we see that

Ptf(x) =
∞∑

n=0
Ex̄[gt(Yn, ξn, τn)ht(Yn+1, ξn+1, τn+1)]

=
∞∑

n=0
P̄n(gtP̄ ht)(x̄) for every x ∈ X.

(5.6)

(i): Suppose that the kernel J is Feller, and that f ∈ Cb(X). To prove that Ptf is continuous, we first
bserve that, for any function φ ∈ Bb(X̄) such that X ∋ x ↦→ φ(x, s) is continuous for every s ≥ 0 (which is
he case for gt and ht), the map X ∋ x ↦→ P̄φ(x, s) is continuous for any s ≥ 0 as well, since

P̄φ(x, s) =
∑
j∈I

πij

∫ ∞

0
λe−λh Jφ(·, j, h+ s)(Si(h, y)) dh for any x = (y, i) ∈ X, s ≥ 0.

his implies that all the maps X ∋ x ↦→ P̄n(gtP̄ ht)(x̄), t ≥ 0, n ∈ N0, are continuous. Further, considering
he Poisson process (N(s))s∈R+ of the form

N(s) := max{n ∈ N0 : τn ≤ s}, s ≥ 0, (5.7)

and bearing in mind (5.4), we see that

|P̄n(gtP̄ ht)(x̄)| =
⏐⏐Ex̄[1{N(t)=n}f(Sξn(t− τn, Yn), ξn)]

⏐⏐ ≤ ∥f∥∞ Px̄(N(t) = n)

= ∥f∥∞ e−λt (λt)n

n! for any x̄ ∈ X̄, n ∈ N0.
(5.8)

sing (5.6), (5.8) and the discrete analogue of the Lebesgue dominated convergence theorem, we can
herefore conclude that Ptf is indeed continuous.

(ii): Let us define

uf (x, t) :=
∞∑

n=2
P̄n(gtP̄ ht)(x̄) for x ∈ X.

rom (5.6) it now follows that

Ptf(x) = gtP̄ ht(x̄) + P̄ (gtP̄ ht)(x̄) + uf (x, t) for any x ∈ X. (5.9)

eferring to (5.8), we get

|uf (x, t)|
t

≤ ∥f∥∞
1
t
e−λt

∞∑
n=2

(λt)n

n! = ∥f∥∞
1
t
e−λt(eλt − 1 − λt)

= ∥f∥∞

(
1 − e−λt

t
− λe−λt

) (5.10)

for any x ∈ X, which obviously gives limt→0 ∥uf (·, t)∥∞ /t = 0. Further, having in mind (3.3) and (5.5), we
btain

gtP̄ ht(y, i, s) = 1[0,t](s)f(Si(t− s, y), i)
∫ ∞

0
λe−λh1(t,∞)(h+ s) dh

= 1[0,t](s)f(Si(t− s, y), i)e−λ(t−s) for any y ∈ Y, i ∈ I, s ≥ 0,
(5.11)

and, in particular (for s = 0),

¯ ¯ −λt
gtPht(x̄) = gtPht(y, i, 0) = e f(Si(t, y), i) for every x = (y, i) ∈ X.

13
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Furthermore, appealing to (3.3) and (5.11), we can also conclude that

P̄ (gtP̄ ht)(x̄) =
∑
j∈I

πij

∫ ∞

0
λe−λh

∫
Y

gt(u, j, h)P̄ ht(u, j, h) J(Si(h, y), du) dh

=
∑
j∈I

πij

∫ ∞

0
λe−λh

∫
Y

1[0,t](h)f(Sj(t− h, u), j)e−λ(t−h) J(Si(h, y), du) dh

= λe−λt

∫ t

0

∑
j∈I

πij

∫
Y

f(Sj(t− h, u), j) J(Si(h, y), du) dh

= λe−λt

∫ t

0
ψf ((y, i), h, t) dh for all x = (y, i) ∈ X.

(5.12)

Finally, assertion (ii) follows from (5.9)–(5.12).
(iii): Condition (iii) follows immediately from (ii) and the boundedness of ψf .
(iv): For the proof of (iv), fix f ∈ Cb(X), (y, i) ∈ X, and define

g(u, t) :=
∑
j∈I

πijf(Sj(t− s(t), u), j) for (u, t) ∈ Y × R+.

Since Sj are jointly continuous, so is g, and thus g ∈ Cb(Y × R+). Moreover, we have

Jg(·, t)(Si(s(t), y)) = ψf ((y, i), s(t), t) for any t ≥ 0.

Hence, s ↦→ ψf ((y, i), s(t), t) is continuous at 0 whenever (J3) holds and s(t) → 0, as t → 0. The identity
ψf (·, 0, 0) = Wf is just a consequence of the definition of W . □

6. A coupling argument (involving Φ) for establishing the exponential ergodicity of both Φ and Ψ

The main goal of this section is to prove that the existence of an appropriate coupling between two
copies of the chain Φ, which brings them closer to each other on average at a geometric rate, combined with
the Foster–Lyapunov condition on P (cf. Lemma 4.1) and suitable assumptions on the flows implies that
both Φ and Ψ are exponentially ergodic in the Fortet–Mourier metric.

More specifically, we shall consider a coupling between two copies of the chain Φ, enhanced with a copy
of the sequence {τn}n∈N0 , that is, a time-homogeneous Markov chain Φ̂ := {(Φ(1)

n ,Φ
(2)
n , τ̃n)}n∈N0 evolving

on the space Z := X2 × R+, whose transition law P̂ : Z × B(Z) → [0, 1] satisfies

P̂ ((x1, x2, s), A×X × R+) = P (x1, A), P̂ ((x1, x2, s), X ×A× R+) = P (x2, A),

P̂ ((x1, x2, s), X2 × T ) =
∫ ∞

0
λe−λt1T (t+ s) dt =: Eλ(s, T )

(6.1)

for any x1, x2 ∈ X, s ≥ 0, A ∈ B(X) and T ∈ B(R+).
Such an augmented coupling Φ̂ will be regarded as a canonical Markov chain, defined on the co-

ordinate space (Ω̂ , F̂), with Ω̂ := ZN0 and F̂ := B
(
ZN0

)
, equipped with an appropriate collection{

P̂(µ1,µ2) : µ1, µ2 ∈ Mprob(X)
}

of probability measures on F̂ such that

P̂(µ1,µ2)(Φ̂0 ∈ D) = (µ1 ⊗ µ2 ⊗ δ0)(D) for any D ∈ B(Z),
P̂(µ1,µ2)(Φ̂n+1 ∈ D | Φ̂n = z) = P̂ (z,D) for any z ∈ Z, D ∈ B(Z), n ∈ N0,

where δ0 stands for the Dirac measure at 0 on B(R+). The expectation operator corresponding to P̂(µ1,µ2)
will be denoted by Ê(µ1,µ2). In the case where µ1 = δx1 and µ2 = δx2 with some x1, x2 ∈ X, we will write

(x1, x2) instead of (δx1 , δx2) in the subscripts.

14
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We begin the analysis by establishing a general connection between the exponential ergodicity of P and
he existence of an appropriate coupling of Φ, based on the Lyapunov condition. It is worth noting here
hat, in fact, the result below does not depend on the shape of the transition law P .

emma 6.1. Suppose that P is Feller. Furthermore, assume that the transition law P̂ of the chain Φ̂,
atisfying (6.1), can be constructed so that

Ê(x1,x2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
≤ C0(V (x1) + V (x2) + 1)qn for all n ∈ N, x1, x2 ∈ X, (6.2)

here ρ̄X,c is given by (3.2), q ∈ (0, 1), C0 < ∞, and V : X → [0,∞) is an arbitrary continuous function such
that (4.10) holds for some a ∈ (0, 1) and some b ∈ [0,∞). Then there exists a unique invariant distribution
µΦ

∗ for P such that µΦ
∗ ∈ MV

prob(X) and

dF M,c(µPn, µΦ
∗ ) ≤ C0(⟨V, µ⟩ +

⟨
V, µΦ

∗
⟩

+ 1)qn for any n ∈ N, µ ∈ Mprob(X). (6.3)

Proof. First of all, note that, for any µ1, µ2 ∈ Mprob(X) and n ∈ N,

dF M,c(µ1P
n, µ2P

n) ≤ C0(⟨V, µ1⟩ + ⟨V, µ2⟩ + 1)qn. (6.4)

To see this, it suffices to observe that, for every f ∈ Lipb,1(X),

| ⟨f, µ1P
n − µ2P

n⟩ | =
⏐⏐⏐Ê(µ1,µ2)

[
f(Φ(1)

n ) − f(Φ(2)
n )

]⏐⏐⏐ ≤ Ê(µ1,µ2)

⏐⏐⏐f(Φ(1)
n ) − f(Φ(2)

n )
⏐⏐⏐

≤ Ê(µ1,µ2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
=

∫
X2

Ê(x1,x2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
(µ1 ⊗ µ2)(dx1, dx2)

≤ C0

(∫
X

∫
X

(V (x1) + V (x2) + 1)µ1(dx1)µ2(dx2)
)
qn

= C0(⟨V, µ1⟩ + ⟨V, µ2⟩ + 1)qn,

where the first equality follows from (2.6), and the second one is due to (2.8).
The next step is to prove that P admits an invariant probability measure. For this purpose, let us fix

arbitrarily x0 ∈ X and notice that {δx0P
n}n∈N is a Cauchy sequence in the metric space (Mprob(X), dF M,c).

Indeed, applying (6.4) with µ1 = δx0 and µ2 = δx0P
k (for each k ∈ N0), together with (4.10), we can conclude

that

dF M,c(δx0P
n, δx0P

k+n) ≤ C0(V (x0) + P kV (x0) + 1)qn

≤ C0

(
V (x0) + akV (x0) + b

1 − a
+ 1

)
qn

≤ C0

(
2V (x0) + b

1 − a
+ 1

)
qn for any n ∈ N, k ∈ N0.

Consequently, since (Mprob(X), dF M,c) is complete, {δx0P
n}n∈N is weakly convergent to some µ∗ ∈ Mprob

X). From the Feller property it follows that µ∗ is invariant for P , since, for any f ∈ Cb(X),

⟨f, µ∗P ⟩ = ⟨Pf, µ∗⟩ = lim
n→∞

⟨Pf, δx0P
n⟩ = lim

n→∞

⟨
f, δx0P

n+1⟩
= ⟨f, µ∗⟩ .

bviously, (6.4), together with the invariance of µ∗, ensure that (6.3) holds with µΦ
∗ := µ∗.

In order to show that µ∗ ∈ MV
prob(X), consider Vk(x) := min(V (x), k) for any x ∈ X and k ∈ N. Then

Vk}k∈N is a non-decreasing sequence of functions of Cb(X). From (4.10) it follows that

PnVk ≤ PnV ≤ anV + b for all k, n ∈ N,
1 − a
15



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 215 (2022) 112678

B

b
h

w

a

whence
⟨Vk, µ∗⟩ = lim

n→∞
⟨Vk, δx0P

n⟩ = lim
n→∞

PnVk(x0) ≤ b

1 − a
for every k ∈ N.

y using the Lebesgue monotone convergence theorem, we therefore obtain

⟨V, µ∗⟩ = lim
k→∞

⟨Vk, µ∗⟩ ≤ b

1 − a
< ∞. (6.5)

What is left is to show that there are no other invariant measures for P . To this end, it is enough to know

lim
n→∞

dF M,c(µPn, µ∗) = 0 for any µ ∈ Mprob(X), (6.6)

ut this can be easily derived from (6.3) and (6.5). More precisely, these conditions guarantee that (6.6)
olds for any µ ∈ MV

prob(X), and so, in particular, we have

Pnf(x) = ⟨f, δxP
n⟩ → ⟨f, µ∗⟩ , as n → ∞, for any x ∈ X and f ∈ Cb(X).

Now, letting µ be an arbitrary probability measure and applying the Lebesgue dominated convergence
theorem, we obtain

⟨f, µPn⟩ = ⟨Pnf, µ⟩ → ⟨f, µ∗⟩ , as n → ∞, for any f ∈ Cb(X),

which obviously gives (6.6) and completes the proof. □

Given an augmented coupling Φ̂ := {(Φ(1)
n ,Φ

(2)
n , τ̃n)}n∈N0 between any two copies of Φ, and writing

Φ(i)
n = (Y (i)

n , ξ(i)
n ) for n ∈ N0, i ∈ {1, 2},

to indicate the coordinates Y (i)
n and ξ

(i)
n with values in Y and I, respectively, we can consider the two

corresponding copies Ψ (1) and Ψ (2) of the process Ψ , defined as follows:

Ψ (i)(t) := (Y (i)(t), ξ(i)(t)) for t ≥ 0, i ∈ {1, 2},

here

Y (i)(t) := S
ξ

(i)
n

(
t− τ̃n, Y

(i)
n

)
, ξ(i)(t) = ξ(i)

n whenever t ∈ [τ̃n, τ̃n+1) , n ∈ N0, i ∈ {1, 2}.

Our aim now is to show that any two copies of the process Ψ , defined as above on the path space of Φ̂, get
closer to each other on average at an exponential rate, whenever Φ̂ satisfies (6.2) and the flows enjoy (S2)
(with α < λ). This will be a crucial step in deriving the exponential ergodicity of the semigroup {Pt}t∈R+ .
The proof of this result, given below, is inspired by certain ideas developed in [10].

Lemma 6.2. Let R ⊂ Mprob(X), and suppose that the transition law P̂ of the chain Φ̂, satisfying (6.1),
can be constructed so that there exist q ∈ (0, 1) and C : R2 → R+ such that

Ê(µ1,µ2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
≤ C(µ1, µ2)qn for all µ1, µ2 ∈ R, n ∈ N. (6.7)

Furthermore, assume that condition (S2) holds with some L > 0 and some α < λ. Then there exist γ > 0
nd C̄ : R2 → R+ such that

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)]
≤ C̄(µ1, µ2) e−γt for all µ1, µ2 ∈ R, t ≥ 0. (6.8)
16
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Proof. Fix µ1, µ2 ∈ R, and let κ be the coupling time for
{(
ξ

(1)
n , ξ

(2)
n

)}
n∈N0

, that is,

κ := inf{n ∈ N0 : ξ(1)
n = ξ(2)

n }.

rom (6.7) we infer that, for every n ∈ N,

P̂(µ1,µ2)(κ > n) ≤ P̂(µ1,µ2)

(
ξ(1)

n ̸= ξ(2)
n

)
= Ê(µ1,µ2)

⎡⎣1{
ξ

(1)
n ̸=ξ

(2)
n

}⎤⎦
= Ê(µ1,µ2)

[
d(ξ(1)

n , ξ(2)
n )

]
≤ Ê(µ1,µ2)

[
ρ̄X,c(Φ(1)

n ,Φ(2)
n )

]
≤ C(µ1, µ2)qn,

(6.9)

which, in particular, shows that P(µ1,µ2)(κ < ∞) = 1.
In what follows, the processes {ξ(2)

n }n∈N0 and {Ψ (2)(t)}t∈R+ will be identified with their copies {ξ̃(2)
n }n∈N0

and {Ψ̃ (2)(t)}t∈R+ , respectively, defined as follows:

ξ̃(2)
n :=

{
ξ

(2)
n if n < κ,

ξ
(1)
n if n ≥ κ,

Ψ̃ (2)(t) :=
(
S

ξ̃
(2)
n

(
t− τ̃n, Y

(2)
n

)
, ξ̃(2)

n

)
, whenever t ∈ [τ̃n, τ̃n+1) for n ∈ N0.

By (Ñ(s))s∈R+ we will denote the Poisson process given by

Ñ(s) := max{n ∈ N0 : τ̃n ≤ s} for s ≥ 0.

Moreover, we will write {Fn}n∈N0 for the natural filtration of Φ̂ =
{(

Φ
(1)
n ,Φ

(2)
n , τ̃n

)}
n∈N0

.
Let n ∈ N0 and t ≥ 0 be arbitrary. Keeping in mind that ρ̄X,c ≤ 1, we can write

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)
1{Ñ(t)=n} | Fn

]
≤ Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)1/2
1{Ñ(t)=n} | Fn

]
≤ Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)1/2
1{Ñ(t)=n}1{κ≤n} | Fn

]
+ Ê(µ1,µ2)

[
1{Ñ(t)=n}1{κ>n} | Fn

]
.

(6.10)

Defining
L̄ = max{L, 1} and ᾱ = max{α, 0}

we see that (S2) gives

ρY (Si(t, u), Si(t, v)) ∧ 1 ≤ L̄eᾱt (ρY (u, v) ∧ 1) for any u, v ∈ Y, i ∈ I, t ≥ 0. (6.11)

Taking into account that {Ñ(t) = n} = {τ̃n ≤ t < τ̃n+1}, and that ξ(1)
n = ξ

(2)
n whenever n ≥ κ (due

the adopted identification ξ(2) = ξ̃(2)), we may apply (6.11) to estimate the first term on the right-hand side
of (6.10) as follows:

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)1/2
1{Ñ(t)=n}1{κ≤n} | Fn

]
= 1{τ̃n≤t}1{κ≤n}

[
ρY

(
S

ξ
(1)
n

(
t− τ̃n, Y

(1)
n

)
, S

ξ
(2)
n

(
t− τ̃n, Y

(2)
n

))
∧ 1

]1/2

× Ê(µ1,µ2)

[
1{τ̃n+1>t} | Fn

]
≤ 1{τ̃n≤t}1{κ≤n}L̄

1/2 eᾱ(t−τ̃n)/2
[
ρY

(
Y (1)

n , Y (2)
n

)
∧ 1

]1/2
P̂(µ1,µ2)(τ̃n+1 > t | Fn)

≤ 1 1 L̄1/2 eᾱ(t−τ̃n)/2 ρ̄
(
Φ(1),Φ(2)

)1/2
P̂ (τ̃ > t | F ).

(6.12)
{τ̃n≤t} {κ≤n} X,c n n (µ1,µ2) n+1 n

17
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Since, according to (3.6),

P̂(µ1,µ2)(τ̃n+1 > t | Fn) = P̂(µ1,µ2)(τ̃n+1 > t | τn) = e−λ(t−τ̃n) on {τ̃n ≤ t},

it follows that

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)1/2
1{Ñ(t)=n}1{κ≤n} | Fn

]
≤ 1{τ̃n≤t}1{κ≤n}L̄

1/2 e−(λ−ᾱ/2)te(λ−ᾱ/2)τ̃n ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)1/2
.

(6.13)

Consequently, due to (6.10) and (6.13), we obtain

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)
1{Ñ(t)=n} | Fn

]
≤ 1{τ̃n≤t}1{κ≤n}L̄

1/2e−(λ−ᾱ/2)te(λ−ᾱ/2)τ̃n ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)1/2

+ Ê(µ1,µ2)

[
1{Ñ(t)=n}1{κ>n} | Fn

]
.

(6.14)

Taking the expectation of both sides of the last inequality and using the Cauchy–Schwarz inequality gives

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)
1{Ñ(t)=n}

]
≤ L̄1/2 e−(λ−ᾱ/2)t Ê(µ1,µ2)

[
1{τ̃n≤t}e

(λ−ᾱ/2)τ̃n ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)1/2
]

+ Ê(µ1,µ2)

[
1{Ñ(t)=n}1{κ>n}

]
≤ L̄1/2 e−(λ−ᾱ/2)t

(
Ê(µ1,µ2)

[
1{τ̃n≤t}e

(2λ−ᾱ)τ̃n

])1/2

×
(
Ê(µ1,µ2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)])1/2
+ P̂(µ1,µ2)(Ñ(t) = n)1/2 P̂(µ1,µ2)(κ > n)1/2.

(6.15)

What is left is to estimate the right-hand side of (6.15). To do this, we first observe that, for any λ0 > 0,

Ê(µ1,µ2)

[
1{τ̃n≤t}e

(2λ−ᾱ)τ̃n

]
=

∫ t

0
e(2λ−ᾱ)se−λs λ

nsn−1

(n− 1)! ds

= λ0

(
λ

λ0

)n ∫ t

0
e(λ−ᾱ)s (λ0s)n−1

(n− 1)! ds

≤ λ0

(
λ

λ0

)n ∫ t

0
e(λ−ᾱ)seλ0s ds

= λ0

(
λ

λ0

)n ∫ t

0
e(λ+λ0−ᾱ)s ds

≤ λ0

λ+ λ0 − ᾱ

(
λ

λ0

)n

e(λ+λ0−ᾱ)t,

(6.16)

where the first equality follows from the fact that τ̃n has the Erlang distribution with rate λ. Consequently,
applying (6.16), together with hypothesis (6.7), we see that

L̄1/2 e−(λ−ᾱ/2)t
(
Ê(µ1,µ2)

[
1{τ̃n≤t}e

(2λ−ᾱ)τ̃n

])1/2 (
Ê(µ1,µ2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)])1/2

≤ C(µ1, µ2)1/2
(

L̄λ0
)1/2 (

qλ
)n/2

e−(λ−λ0)t/2.

(6.17)
λ+ λ0 − ᾱ λ0
18
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Moreover, from (6.9) it follows that, for any q̄ > 0,

P̂(µ1,µ2)(Ñ(t) = n)1/2 P̂(µ1,µ2)(κ > n)1/2 ≤
(
e−λt (λt)n

n! · C(µ1, µ2)qn

)1/2

= C(µ1, µ2)1/2e−λt/2
(

(λqq̄−1t)n

n!

)1/2

q̄ n/2

≤ C(µ1, µ2)1/2e−λt/2eλqq̄ −1t/2 q̄ n/2

= C(µ1, µ2)1/2e−λ(1−qq̄ −1)t/2 q̄ n/2.

(6.18)

Let us now take q̄ ∈ (q, 1) and choose λ0 ∈ (0, λ) so that qλλ−1
0 < 1. This choice guarantees that

γ := min
{
λ− λ0

2 ,
λ(1 − qq̄−1)

2

}
> 0 and r := max

{(
qλ

λ0

)1/2
, q̄1/2

}
∈ (0, 1).

rom (6.15), (6.17) and (6.18) we can now conclude that

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)
1{Ñ(t)=n}

]
≤ C(µ1, µ2)1/2

[(
L̄λ0

λ+ λ0 − α

)1/2

+ 1
]
rne−γt.

Finally, defining C̃(µ1, µ2) := C(µ1, µ2)1/2[(L̄λ0)1/2(λ+ λ0 − α)−1/2 + 1], we infer that

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)]
≤

∞∑
n=0

C̃(µ1, µ2)rne−γt = C̃(µ1, µ2)
1 − r

e−γt.

ence (6.8) holds with C̄(µ1, µ2) := C̃(µ1, µ2)(1 − r)−1 for µ1, µ2 ∈ R. The proof is now complete. □

Lemmas 6.1, 6.2 and Theorem 5.1 enable us to prove the main result of this section, which reads as follows:

heorem 6.1. Let P be the transition operator of the chain Φ, induced by (3.4), and let {Pt}t∈R+ denote
he transition semigroup of the process Ψ , defined by (3.7). Further, suppose that conditions (S1), (S2) and
J1) are fulfilled with L,α, ã satisfying (4.8), and that the following holds:

(C) There exists an augmented coupling Φ̂ = {(Φ(1)
n ,Φ

(2)
n , τ̃n)}n∈N0 of the chain Φ, with transition law

P̂ satisfying (6.1), such that (6.2) holds with certain constants q ∈ (0, 1), C0 < ∞ and the function V

defined by (4.9).

Then, if J is Feller, the operator P is V -exponentially ergodic in dF M,c (in the sense of Definition 2.1).
Moreover, assuming that J enjoys the strengthened Feller property specified by (J3), also the semigroup
{Pt}t∈R+ is V -exponentially ergodic in dF M,c (in the sense of Definition 2.2).

Proof. First of all, from Lemma 4.1 it follows that P satisfies condition (4.10) with V given by (4.9) and
the constants a ∈ (0, 1), b ≥ 0 specified in (4.11). Consequently, if J is Feller (and thus so is P , due to
Remark 3.1), then, by virtue of Lemma 6.1, the operator P is exponentially ergodic in dF M,c.

It therefore remains to prove that {Pt}t∈R+ is also exponentially ergodic, provided that the Feller property
of J is strengthened to condition (J3).

Let µΦ
∗ ∈ MV

prob(X) be the unique invariant probability measure of P (which exists by Lemma 6.1). Then,
upon assuming (J3), Theorem 5.1 guarantees the existence of exactly one invariant probability measure µΨ

∗
for {Pt}t∈R+ , which can be expressed as µΨ

∗ = µΦ
∗ G, where G is the Markov operator induced by (5.1).

Moreover, conditions (S1) and (S2) yield that µΨ ∈ MV (X).
∗ prob

19
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Now, to complete the proof, it suffices to show that there exists a constant γ > 0 and C̄ : MV
prob(X)2 → R+

uch that
dF M,c(µ1Pt, µ2Pt) ≤ C̄(µ1, µ2)e−γt for any µ1, µ2 ∈ MV

prob(X), t ≥ 0. (6.19)

As we have already seen in the proof of Lemma 6.1, from hypothesis (C) it follows that

Ê(µ1,µ2)

[
ρ̄X,c(Φ(1)

n ,Φ(2)
n )

]
≤ C(µ1, µ2)qn for any µ1, µ2 ∈ MV

prob(X), n ∈ N,

here
C(µ1, µ2) := C0(⟨V, µ1⟩ + ⟨V, µ2⟩ + 1) with some C0 ∈ R.

n view of Lemma 6.2, this, together with (S2), implies the existence of γ > 0 and C̄ : MV
prob(X)2 → R+

uch that

Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)]
≤ C̄(µ1, µ2) e−γt for all µ1, µ2 ∈ MV

prob(X), t ≥ 0.

inally, it suffices to observe that, for any µ1, µ2 ∈ MV
1 (X) and f ∈ Lipb,1(X),

|⟨f, µ1Pt − µ2Pt⟩| =
⏐⏐⏐Ê(µ1,µ2)

[
f

(
Ψ (1)(t)

)
− f

(
Ψ (2)(t)

)]⏐⏐⏐
≤ Ê(µ1,µ2)

⏐⏐⏐f (
Ψ (1)(t)

)
− f

(
Ψ (2)(t)

)⏐⏐⏐
≤ Ê(µ1,µ2)

[
ρ̄X,c

(
Ψ (1)(t),Ψ (2)(t)

)]
≤ C̄(µ1, µ2)e−γt,

hich obviously assures (6.19), and thus ends the proof. □

emark 6.1. It is worth noting that condition (6.19) is achieved by using only (C) and (S2).

. Sufficient conditions for the exponential ergodicity

This section is intended to construct a suitable coupling of Φ, for which condition (C) of Theorem 6.1 is
atisfied, which, in turn, will enable us to state a verifiable criterion for the exponential ergodicity of P and
Pt}t∈R+ in the Fortet–Mourier distance. To do this, we shall need to employ all the hypotheses stated in
ection 4 (except condition (J3)) and assume that the constant c, associated with the metric ρX,c, defined
y (3.1), is large enough to assure (4.12).

.1. The main result

Assuming that Qj : Y 2 × B(Y 2) → [0, 1] is a substochastic kernel satisfying (4.3), let us consider
¯

P : Z × B(Z) → [0, 1] (where Z = X2 × R+), given by

Q̄P ((x1, x2, s), D) :=
∑
j∈I

(πi1,j ∧ πi2,j)
∫ ∞

0
λe−λh

∫
Y 2

1D((u1, j), (u2, j), h+ s)

×QJ((Si1(h, y1), Si2(h, y2)), du1 × du2) dh
(7.1)

or any x1 := (y1, i1), x2 := (y2, i2) ∈ X, s ∈ R+ and D ∈ B(Z).
It is then easy to see that QP is also a substochastic kernel, and, for any x1, x2 ∈ X, s ∈ R+, A ∈ B(X)

nd T ∈ B(R+), we have
Q̄P ((x1, x2, s), A×X × R+) ≤ P (x1, A),
Q̄P ((x1, x2, s), X ×A× R+) ≤ P (x2, A),

¯ 2

(7.2)

QP ((x1, x2, s), X × T ) ≤ Eλ(s, T ),

20



D. Czapla, K. Horbacz and H. Wojewódka-Ściążko Nonlinear Analysis 215 (2022) 112678

a

w

f
I
Φ

T

P
(
s

h
Q

w
e
t

(
l

T

where Eλ(s, ·) denotes the distribution with density t ↦→ 1[s,∞)(t)λeλ(t−s). This enables us to define
a substochastic kernel R̄P : Z × B(Z) → [0, 1] so that, on cubes D := A1 × A2 × T , where A1, A2 ∈ B(X)
nd T ∈ B(R+), the measure R̄P ((x1, x2, s), ·) is given by

R̄P ((x1, x2, s), D) := 1[
1 − Q̄P ((x1, x2, s), Z)

]2

×
[
P (x1, A1) − Q̄P ((x1, x2, s), A1 ×X × R+)

]
×

[
P (x2, A2) − Q̄P ((x1, x2, s), X ×A2 × R+)

]
×

[
Eλ(s, T ) − Q̄P ((x1, x2, s), X2 × T )

]
(7.3)

hen Q̄P ((x1, x2, s), Z) < 1, and R̄P ((x1, x2, s), D) := 0 otherwise.
A simple computation shows that P̂ : B(Z) × Z → [0, 1] given by

P̂ ((x1, x2, s), D) := Q̄P ((x1, x2, s), D) + R̄P ((x1, x2, s), D) (7.4)

or any x1, x2 ∈ X, s ≥ 0 and D ∈ B(Z) defines a stochastic kernel satisfying conditions (6.1).
n other words, the kernel defined in this way can play the role of transition law of the augmented couplingˆ := {(Φ(1)

n ,Φ
(2)
n , τ̃n)}n∈N0 discussed in Section 6.

What is more, one can show that, under suitable assumptions, such a coupling fulfils hypothesis (C) of
heorem 6.1, which is stated precisely in the following result:

roposition 7.1. Suppose that conditions (S1)–(S4), (J1) and (J2) hold with constants L,α, ã satisfying
4.8). Then the coupling Φ̂ with transition law P̂ defined by (7.4) satisfies (6.2) with V given by (4.9),
ufficiently large c, specified by (4.12), and certain constants q ∈ (0, 1) and C0 < ∞.

The proof of this statement proceeds almost in the same way as that of [15, Lemma 2.3], provided that
ypotheses (B1)–(B5) stated in [15, Section 2] are fulfilled for the operator P , given by (3.4), and the kernel
P : X2 × B(X2) → [0, 1] of the form

QP ((x1, x2), C) := Q̄P ((x1, x2, 0), C × R+), x1, x2 ∈ X, C ∈ B(X2), (7.5)

here Q̄P is defined by (7.1). These hypotheses (also assumed in [29, Theorem 2.1]) can be derived quite
asily from the assumptions of Proposition 7.1. The proof of this claim, as well as a suitable adaptation of
he reasoning employed in [15], which eventually proves Proposition 7.1, are postponed to Section 7.3.

In view of Proposition 7.1, we can replace hypothesis (C) of Theorem 6.1 with conditions (S3), (S4) and
J2), which, together with (S1), (S2) and (J1), guarantee the existence of a suitable coupling of Φ. This
eads us to the main result of the paper:

heorem 7.1. Suppose that conditions (S1)–(S4), (J1) and (J2) hold with L,α, ã satisfying (4.8). Further,
let V be given by (4.9), and let c be large enough to assure (4.12). Then, if J is Feller, the transition operator P
of the chain Φ, induced by (3.4), is V -exponentially ergodic in dF M,c. Moreover, if (J3) holds as well, then
also the transition semigroup {Pt}t∈R+ of the process Ψ , defined by (3.7), is V -exponentially ergodic in dF M,c.

7.2. Application to the model with jumps generated by random iterations

Let us look closer at the case that has already been mentioned in Remark 3.2. For simplicity of notation,
we will skip the perturbations (the linear structure of Y is then not required). In such a case, the kernel J is
the transition law of an iterated function system, consisting of an arbitrary set {w : θ ∈ Θ} of continuous
θ
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transformations from Y to itself and the associated collection of probability densities Θ ∋ θ ↦→ pθ(y) ∈ R+,
∈ Y , with respect to ϑ, for which

∫
Θ
pθ(y)ϑ(dθ) = 1 for any y ∈ Y . Here, (Θ ,B(Θ), ϑ) is a topological space

with a non-trivial Borel measure ϑ. Moreover, we assume that the maps (y, θ) ↦→ wθ(y) and (y, θ) ↦→ pθ(y)
re product measurable.

In the above-described setting, J is given by

J(y,B) =
∫
Θ

1B(wθ(y)) pθ(y)ϑ(dθ) for y ∈ Y, B ∈ B(Y ), (7.6)

nd P takes the form

P ((y, i), A) =
∑
j∈I

πij

∫ ∞

0
λe−λh

∫
Θ

1A(wθ(Si(h, y), j)) pθ(Si(h, y))ϑ(dθ) dh (7.7)

or any y ∈ Y , i ∈ I and A ∈ B(X). Moreover, note that, in this framework, the first coordinate of the chain Φ

an be expressed explicitly by the recursive formula:

Yn+1 = wθn+1(Y (τn+1−)) = wθn+1(Sξn(∆τn+1, Yn)) a.s for n ∈ N0,

here {θn}n∈N is an appropriate sequence of random variables with values in Θ , such that

Pν(θn+1 ∈ D | Sξn(∆τn+1, Yn) = y) =
∫

D

pθ(y)ϑ(dθ) for D ∈ B(Θ), y ∈ Y, n ∈ N, (7.8)

and the transition laws of {ξn}n∈N0 and {τn}n∈N0 are determined by (3.5) and (3.6), respectively.
We shall impose the following assumptions on the transformations y ↦→ wθ(y) and densities θ ↦→ pθ(y)

(in the spirit of those made in [29, Proposition 3.1]; cf. also [41] and [42, Theorem 3.1]): there exist y∗ ∈ Y ,
for which

b̃ := sup
y∈Y

∫
Θ

ρY (wθ(y∗), y∗)pθ(y)ϑ(dθ) < ∞, (7.9)

and positive constants ã, η and l̃ such that, for any y1, y2 ∈ Y ,∫
Θ

ρY (wθ(y1), wθ(y2)) pθ(y1)ϑ(dθ) ≤ ãρY (y1, y2), (7.10)∫
Θ(y1,y2)

pθ(y1) ∧ pθ(y2)ϑ(dθ) ≥ η, (7.11)

here
Θ(y1, y2) := {θ ∈ Θ : ρY (wθ(y1), wθ(y2)) ≤ ãρY (y1, y2)},

nd ∫
Θ

|pθ(y1) − pθ(y2)|ϑ(dθ) ≤ l̃ρY (y1, y2). (7.12)

emark 7.1. Note that (7.9) is trivially satisfied in the case where Θ is compact, and θ ↦→ wθ(y∗) is
ontinuous for some y∗ ∈ Y .

Theorem 7.1 allows us to establish the following result:

roposition 7.2. Suppose that the kernel J is of the form (7.6), and the transformations wθ are continuous.
urther, assume that there exist y∗ ∈ Y and positive constants ã, b̃, η, l̃ such that conditions (7.9)–(7.12) hold.
hen (J1)–(J3) are satisfied with the same y∗, ã, b̃, η and l̃. If, additionally, conditions (S1)–(S4) are fulfilled

with L and α such that (4.8) holds, then both the transition operator P of Φ (induced by (7.7) in this case)
and the transition semigroup {Pt}t∈R+ of Ψ , defined by (3.7), are V -exponentially ergodic in dF M,c with
V given by (4.9) and sufficiently large c, specified by (4.12).
22
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Proof. In view of Theorem 7.1, it suffices to show that conditions (J1)–(J3) hold.
First of all, note that (J1) follows immediately from (7.9) and (7.10), since

JρY (·, y∗)(y) =
∫
Θ

ρY (wθ(y), y∗)pθ(y)ϑ(dθ) ≤ ãρY (y∗, y) + b̃ for all y ∈ Y.

Now, we will show that (J2) is fulfilled with QJ : X2 × B(X2) → [0, 1] given by

QJ((y1, y2), C) :=
∫
Θ

1C(wθ(y1), wθ(y2))(pθ(y1) ∧ pθ(y2))ϑ(dθ) (7.13)

or any y1, y2 ∈ Y and C ∈ B(Y 2). Obviously, QJ is a substochastic kernel satisfying (4.3). Condition (7.10)
yields that, for any y1, y2 ∈ Y ,

QJρY (y1, y2) =
∫
Θ

ρY (wθ(y1), wθ(y2))(pθ(y1) ∧ pθ(y2))ϑ(dθ) ≤ ãρY (y1, y2),

hich gives (4.4). Further, (7.11) implies (4.5), since, for any y1, y2 ∈ Y , we have

QJ((y1, y2), Ũ(ãρY (y1, y2))) =
∫
Θ(y1,y2)

pθ(y1) ∧ pθ(y2)ϑ(dθ) ≥ η > 0,

ith Ũ(·) defined by (4.6). Finally, (4.7) can be easily concluded from hypothesis (7.12) and the inequality
∧ t ≥ s− |s− t|, which is valid for any s, t ∈ R.
What is left is to show that (J3) holds. To this end, let g ∈ Cb(Y ×R+) and fix (y0, t0) ∈ Y × R+. Then,

gain using (7.12), we see that

|Jg(·, t0)(y0) − Jg(·, t)(y)| ≤
∫
Θ

|g(wθ(y0), t0)pθ(y0) − g(wθ(y), t)pθ(y)|ϑ(dθ)

≤
∫
Θ

|g(wθ(y0), t0) − g(wθ(y), t)|pθ(y0)ϑ(dθ)

+ ∥g∥∞ l̃ρY (y0, y) for any (y, t) ∈ Y × R+.

onsequently, having in mind the continuity of g and wθ, we can conclude that Y × R+ ∋ (y, t) ↦→ Jg(·, t)(y)
s jointly continuous, by applying the Lebesgue dominated convergence theorem. The use of Theorem 7.1
ow ends the proof. □

emark 7.2. Obviously, Proposition 7.2 remains valid if J is defined exactly as in Remark 3.2 (provided
hat Y is a closed subset of a Banach space). The proof is then almost the same as that given above. In that
ase, however, one needs to consider QJ of the form

QJ((y1, y2), C) :=
∫

supp ν

∫
Θ

1C(wθ(y1) + v, wθ(y2) + v)(pθ(y1) ∧ pθ(y2))ϑ(dθ) ν(dv).

xample 7.1. A simple consequence of Proposition 7.2 is that conditions (J1)–(J3) are satisfied with ã = 1
or every stochastic kernel J defined as the shift of a Borel probability measure on a separable Banach space
Y, ∥·∥) with finite first moment with respect to ∥·∥. In particular, the conclusions of Theorem 7.1 are then
alid whenever (S1)–(S4) hold with L + αλ−1 < 1. More specifically, let ϑ be a Borel probability measure
n Y such that ∫

Y

∥y∥ϑ(dy) < ∞, (7.14)

nd consider J(y,B) = ϑ(B − y) for y ∈ Y , B ∈ B(Y ). Then, taking Θ = Y , we can write J in the form
7.6) with wθ(y) = y + θ and pθ(y) = 1 for any y, θ ∈ Y . Having this in mind, one only needs to note that
7.9)–(7.12) hold with y∗ = 0, ã = 1, η = 1 and any l̃ > 0. It is also worth mentioning here that, according to

he celebrated Fernique theorem [23], condition (7.14) holds, e.g., for every centred Gaussian measure on Y .
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In the case where J is defined by (7.6) with pθ(y) = 1 for all θ ∈ Θ , y ∈ Y (assuming that ϑ is
probability measure on Θ), the process {Y (t)}t∈R+ can be viewed as the solution to a Poisson-driven

tochastic differential equation (see [17]), close in spirit to those examined, e.g., in [26,30,32]. The following
xample provides an interpretation of Proposition 7.2 in this particular case.

xample 7.2 (A Poisson-driven stochastic differential equation). Suppose that Y is a closed subset of
separable Hilbert space H, endowed with an inner product ⟨· | ·⟩, and that ∥·∥ is the norm induced by

· | ·⟩. Further, let ϑ be a Borel probability measure on Θ .
Consider a Poisson random measure N on B(R+ × Θ) with compensator ℓ1 ⊗ λϑ (where ℓ1 stands for

he Lebesgue measure restricted to B(R+)), i.e., such that the expectation of N(t,D) := N([0, t] × D) is
qual to tλϑ(D) for any t ≥ 0 and D ∈ B(Θ). By [40, Theorem 54 and Corollary 55] (cf. also [27]) we know
hat such a random measure do exist on some probability space, and, what is more, the proof of this result
hows that it can be written as

N(t,D) =
∞∑

n=1
1[0,t]×D(τn, θn) for any t ≥ 0, D ∈ B(Θ),

here {τn}n∈N and {θn}n∈N are independent sequences of random variables taking values in R+ and Θ ,
espectively, such that the increments ∆τn := τn − τn−1, n ∈ N (where τ0 := 0) are mutually independent
nd exponentially distributed with the same rate λ, while θn, n ∈ N, are identically distributed with common
ensity h. Then, for any given D ∈ B(Θ), the variables τn can be viewed as the jump times of the Poisson

process {N(t,D)}t∈R+ .
Finally, given continuous functions σ : Y × Θ → Y , Ai : Y → H, i ∈ I, and a sequence {ξn}n∈N0 of

I-valued random variables, consider the stochastic differential equation of the form

dY (t) = Aξ(t)(Y (t))dt+
∫
Θ

σ(Y (t−), θ) N(dt, dθ), t ≥ 0, (7.15)

for an unknown process {Y (t)}t≥0 taking values in Y , with initial condition Y (0) = Y0, where ξ(t) := ξn

whenever N(t,Θ) = n (or equivalently, t ∈ [τn, τn+1)) for every n ∈ N. By a solution of this initial value
problem we mean a càdlàg process {Y (t)}t∈R+ satisfying

Y (t) = Y0 +
∫ t

0
Aξ(s)(Y (s))ds+

∫ t

0

∫
Θ

σ(Y (s−), θ) N(ds, dθ), t ≥ 0.

As we have mentioned in Remark 4.3, upon assuming that Ai are dissipative and enjoy the range
condition, that is, (4.15) and (4.16) hold with some α ≤ 0, for every i ∈ I, there exists a semiflow
Si : R+ × Y → Y such that R+ ∋ t ↦→ Si(t, y) is the unique solution of the problem u′(t) = Aiu(t), u(0) = y

for any y ∈ Y . Then, following the reasoning in [17, §5.2], one can show that the solution of (7.15) has
the form

Y (t) =
{
Sξn(t− τn, Y (τn)) if t ∈ [τn, τn+1),
wθn+1(Y (τn+1−)) if t = τn+1,

(7.16)

where wθ(y) := y + σ(y, θ) for y ∈ Y and θ ∈ Θ , and {θn}n∈N is a sequence of Θ-valued random variables
with conditional distributions specified by (7.8) with pθ(y) = 1 for all y ∈ Y and θ ∈ Θ . This means that
the Markov process Ψ := {(Y (t), ξ(t))}t∈R+ introduced in Section 3, for which the kernel J is given by (7.6)
with wθ and pθ defined as above, solves (7.15). We can therefore conclude from Proposition 7.2 that Ψ is

V -exponentially ergodic in dF M,c with V (y, i) := ∥y∥ (for (y, i) ∈ Y × I) and sufficiently large c, provided
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that the following conditions hold:

(i) For some y∗ ∈ Y we have
∫
Θ

∥σ(y∗, θ)∥ϑ(dθ) < ∞;
(ii) There exists aσ > 0 such that∫

Θ

∥σ(y1, θ) − σ(y2, θ)∥ϑ(dθ) ≤ aσ ∥y1 − y2∥ for any y1, y2 ∈ Y ;

(iii) There exists η > 0 such that ϑ({θ ∈ Θ : ∥σ(y1, θ) − σ(y2, θ)∥ ≤ aσ ∥y1 − y2∥}) ≥ η for all y1, y2 ∈ Y ;
(iv) For every i ∈ I, the operator Ai is bounded on bounded sets, it satisfies (4.15) with α < −λaσ, and

(4.16) holds.
(v) mini∈I πij0 > 0 for some j0 ∈ I.

To see this, it suffices to observe that hypotheses (i)–(iii) imply that (7.9)–(7.11) are fulfilled with y∗ = 0,
ã := 1 + aσ and the given η, whilst (7.12) holds trivially. Moreover, using (iv) we can deduce (by referring
to Remark 4.3) that (S1)–(S3) are satisfied with the given α, L = 1, L(y) = 2 maxi∈I ∥Aiy∥ and φ(t) = t,
and that ã+ α/λ = 1 + aσ + α/λ < 1, which yields (4.8). Finally, condition (S4) is just assumed in (v).

It is worth stressing here that, in fact, the assumption of the boundedness on bounded sets in (iii), imposed
on Ai, is only needed in the presence of switching, i.e., if I contains more than one element (since otherwise
(S3) is satisfied trivially).

Remark 7.3. Let us note that Eq. (7.15) (without switching between dynamics) also resembles the one
considered in [35], except the latter involves the so-called compensated Poisson measure instead of N itself.
In the setup of Example 7.2, the equation from [35] takes the form

dY (t) = A(Y (t))dt+
∫
Θ

σ(Y (t−), θ) (N − ℓ1 ⊗ λϑ)(dt, dθ). (7.17)

In [35], the authors assume that Y is a reflexive Banach space such that Y ↪→ H ↪→ Y ∗ (where Y ∗ is
the dual of Y ) with dense and continuous embeddings, where Y ↪→ H is also compact, A : Y → Y ∗ is
a strongly-weakly closed operator, and σ : H × Θ → H is a measurable map such that∫

Θ

∥σ(y, θ)∥2
ϑ(dθ) < ∞ for any y ∈ Y. (7.18)

Within this framework, they prove (see [35, Theorem 2.4]), among others, that the initial value problem as-
sociated with (7.17) admits a unique solution process (with almost all values in Y ), which is V -exponentially
ergodic (with V (y) = ∥y∥) in the Fortet–Mourier distance. This is done (by entirely different methods than
those used here) under condition (7.18), certain coercivity and growth hypotheses (involving the maps A
and σ), and the assumption that

2 ⟨Ay1 −Ay2 | y1 − y2⟩ + λ

∫
Θ

∥σ(y1, θ) − σ(y1, θ)∥2
ϑ(dθ) ≤ α̃ ∥y1 − y2∥2 (7.19)

for any y1, y2 ∈ Y and some α̃ < 0. In connection with Example 7.2, it is worth observing that, if we
strengthen hypotheses (i) and (ii) by requiring, instead, that

(i′)
∫
Θ

∥σ(y∗, θ)∥2
ϑ(dθ) < ∞ for some y∗ ∈ Y ,

(ii′) There exists aσ > 0 such that∫
∥σ(y1, θ) − σ(y2, θ)∥2

ϑ(dθ) ≤ aσ ∥y1 − y2∥2 for any y1, y2 ∈ Y,

Θ
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then we will get (7.18), and by applying (ii′) in conjunction with (iv), we can also derive (7.19) with
˜ = 2α+ λaσ, where α̃ < 0 due to the assumption that α < −λaσ. This comparison shows that
he exponential ergodicity for the solution of (7.17) can also be attained by replacing (7.18) and (7.19) by
onditions similar to those in Example 7.2, i.e. (i′), (ii′) and (iv) (at least under the coercivity and growth
ssumptions from [35]).

At the end of this section, let us illustrate the usefulness of Proposition 7.2 by investigating a simple
odel of gene expression, which has already been mentioned in the introduction.

xample 7.3 (Gene Expression). Let Y (t) ∈ R+ describe the concentration of some protein (encoded by
single structural gene) in a prokaryotic cell at time t. The protein molecules undergo degradation, which

s interrupted by transcription occurring in the so-called bursts, followed by variable periods of inactivity.
e assume that the bursts appear at random times τ1 < τ2 < · · · , and that the inactivity periods ∆τn are

xponentially distributed with a common intensity λ, which is reasonable from the biological perspective.
ince a prokaryotic mRNA can be efficiently transcribed and translated at the same time, the variables τn

etermine the moments of the protein production as well.
Moreover, we assume that the degradation rate depends linearly on the current amount of the gene

roduct, and the proportionality coefficient changes under the influence of the bursts (which may cause
ccasional fluctuations in the environment, somehow perturbing the degradation dynamics). More precisely,
iven a finite collection {αi : i ∈ I} of negative real numbers, we assume that the dynamics of the degrada-
ion process in the time interval [τn, τn+1), provided that Y (τn) = y, is governed by one of the initial-value
roblems

u′(t) = αi u(t), u(0) = y, where i ∈ I,

hich generate the semiflows of the form Si(t, y) = eαity for t, y ≥ 0 and i ∈ I. Furthermore, we assume that
he index i of the dynamics in the interval [τn, τn+1) is specified by an I-valued random variable ξn, which
epends only on ξn−1, so that (3.5) holds. Consequently, we get Y (t) = Sξn(t − τn, y) for t ∈ [τn, τn+1),
henever Y (τn) = y.
Finally, we let the amount of the protein produced at time τn be a random variable θn with values in

ome compact interval Θ := [0,M ], and we assume that it depends on Y (τn−) in accordance with (7.8).
he process {Y (t)}t≥0 then changes from Y (τn−) to Y (τn) = Y (τn−) + θn for every n ∈ N.
In view of the above, defining wθ(y) := y + θ for y ∈ R+, θ ∈ Θ , and putting τ0 := 0, we see that

Y (t)}t∈R+ (evolving on Y = R+) is of the form (7.16). Hence the process Ψ := {(Y (t), ξ(t))}t∈R+ , where
(t) := ξn for t ∈ [τn, τn+1), can be viewed as an instance of the PDMP introduced in Section 3, for which
he kernel J is of the form (7.6). Furthermore, it is easily seen that conditions (7.9), (7.10) and (S1)–(S3)
old for this model with y∗ = 0, ã = 1, L = 1, α = maxi∈I αi, φ(t) = 2eαt and L(y) = y. Since α < 0,
e also get ãL + αλ−1 = 1 + αλ−1 < 1, which ensures (4.8). Consequently, according to Proposition 7.2,

he process Ψ is V -exponentially ergodic in dF M,c with V (y, i) = y and sufficiently large c, provided that
ini∈I πij0 > 0 for some j0 ∈ I and the densities θ ↦→ pθ(y), y ∈ Y , are such that (7.11) and (7.12) hold.
ne can check that the latter is attained whenever c ≥ 8M(−α)−1(λ− α)(2λ− α) + 1.

.3. Proof of Proposition 7.1

Let P and QP be the kernels defined by (3.4) and (7.5), respectively. Moreover, consider the augmented
oupling Φ̂ of the chain Φ (constructed in Section 6) with transition law P̂ defined by (7.4). In particular,
(Φ(1)

n ,Φ
(2)
n )}n∈N0 itself is then governed by the kernel

P̃ ((x , x ), C) := P̂ ((x , x , 0), C × R ) for x , x ∈ X, C ∈ B(X2). (7.20)
1 2 1 2 + 1 2
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In order to prove Proposition 7.1, we first need to derive hypotheses (B1)–(B5), used in [15, Section 2]
(and also assumed in [29, Theorem 2.1]), from conditions (S1)–(S4), (J1) and (J2), imposed in combination
with (4.8) and (4.12). To begin, let a, b be the constants specified in (4.11), and let V stand for the function
iven by (4.9). Further, define F := G ∪K, where

G := {((y1, i1), (y2, i2)) ∈ X2 : i1 = i2},

K := {((y1, i1), (y2, i2)) ∈ X2 : V (y1, i1) + V (y2, i2) < R} with R := 4b
1 − a

.
(7.21)

Lemma 7.1. Suppose that conditions (S1)–(S4), (J1) and (J2) hold with L,α, ã satisfying (4.8) and that c
s large enough to assure (4.12). Then the following statements are fulfilled:

B1) We have a ∈ (0, 1), b ≥ 0, and PV (x) ≤ aV (x) + b for all x ∈ X.
B2) suppQP ((x1, x2), ·) ⊂ F and∫

X2
ρX,c(w1, w2)QP ((x1, x2), dw1 × dw2) ≤ aρX,c(x1, x2) for any (x1, x2) ∈ F.

B3) Defining U(r) := {(w1, w2) ∈ X2 : ρX,c(w1, w2) ≤ r} for any r > 0, we have

inf
(x2,x2)∈F

QP ((x1, x2), U(aρX,c(x1, x2))) > 0,

B4) There exists l > 0 such that

QP ((x1, x2), X2) ≥ 1 − lρX,c(x1, x2) for any (x1, x2) ∈ F.

B5) There exist γ ∈ (0, 1) and Cγ > 0 such that

Ê(x1,x2)(γ−σK ) ≤ Cγ whenever V (x1) + V (x2) < R,

where σK := inf{n ∈ N : (Φ(1)
n ,Φ

(2)
n ) ∈ K}.

Proof. First of all, note that condition (B1) is guaranteed by Lemma 4.1.
The proof of the first part of (B2) goes as follows. Let (x1, x2) := ((y1, i1), (y2, i2)) ∈ X2. Since X2 is

endowed with the product topology, we may consider it as a metric space with the distance

ρX2,c((w1, w2), (z1, z2)) := ρX,c(w1, z1) + ρX,c(w2, z2) for (w1, w2), (x1, x2) ∈ X2.

The support of QP (x1, x2, ·) can be then expressed as

suppQP ((x1, x2), ·) = {(z1, z2) ∈ X2 : QP ((x1, x2), BX2((z1, z2), ε)) > 0 for any ε > 0},

where BX2((z1, z2), ε) is the open ball in (X2, ρX2,c) centred at (z1, z2) with radius ε. Let

(z1, z2) := ((u1, j1), (u2, j2)) ∈ X2\F.

Then, in particular, (z1, z2) /∈ G, and thus j1 ̸= j2. This implies that, for any (w1, w2) := ((v1, j), (v2, j)) ∈ G,
we have

ρX2,c((w1, w2), (z1, z2)) ≥ c(d(j, j1) + d(j, j2)) ≥ c,

whence BX2((z1, z2), c)∩G = ∅. Taking into account the definition of QP , given in (7.5), we therefore obtain

QP ((x1, x2), BX2((z1, z2), c)) = QP ((x1, x2), BX2((z1, z2), c) ∩G) = 0,

2
which yields that (z1, z2) ∈ X \ suppQP ((x1, x2), ·).
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Passing to the proof of the second part of (B2), let (x1, x2) = ((y1, i1), (y2, i2)) ∈ F . Then i1 = i2 or
y1, y2 ∈ BY (y∗, R) (due to the definition of V ). Hence, from (S2) and (S3) it follows that

ρY (Si1(t, y1), Si2(t, y2)) ≤ ρY (Si1(t, y1), Si1(t, y2)) + ρY (Si1(t, y2), Si2(t, y2))
≤ LeαtρY (y1, y2) + φ(t)L(y2)d(i1, i2)
≤ LeαtρY (y1, y2) + φ(t)MLd(i1, i2),

(7.22)

here ML is given by (4.13). Consequently, referring to the definition of QP , (4.4) and (4.12), we can
onclude that∫

X2
ρX,c(w1, w2)QP ((x1, x2), dw1 × w2)

=
∑
j∈I

(πi1,j ∧ πi2,j)
∫ ∞

0
λe−λh

∫
Y 2
ρY (v1, v2)QJ((Si1(h, y1), Si2(h, y2)), dv1 × dv2) dh

≤ ãλ

∫ ∞

0
e−λhρY (Si1(h, y1), Si2(h, y2)) dh

≤ ãλL

(∫ ∞

0
e−(λ−α)h dh

)
ρY (y1, y2) + ãλML

(∫ ∞

0
e−λhφ(h) dh

)
d(i1, i2)

= ãλL

λ− α
ρY (y1, y2) + ãλL

λ− α

(λ− α)MLKφ

L
d(i1, i2) ≤ a(ρY (y1, y2) + cd(i1, i2))

= a · ρX,c(x1, x2),

hich is the desired claim.
We now proceed to show condition (B3). First, define t0 := lims→α s

−1 ln
(
λ(λ− s)−1)

, which is obviously
ositive, and observe that

ãLeαt ≤ ãλL

λ− α
= a for any t ≤ t0. (7.23)

ow, let (x1, x2) = ((y1, i1), (y2, i2)) ∈ F , and note that, for any u1, u2 ∈ Y , j ∈ I, and 0 ≤ t ≤ t0, we have

(u1, u2) ∈ Ũ(ãρY (Si1(t, y1), Si2(t, y2))) ⇒ ((u1, j), (u2, j)) ∈ U(aρX,c(x1, x2)), (7.24)

here Ũ(·) and U(·) are defined as in (4.6) and (B3), respectively. To see this, it suffices to apply conditions
7.22), (7.23) and (4.12), which ensure that, for any t ≤ t0 and every (u1, u2) ∈ U(ãρY (Si1(t, y1), Si2(t, y2))),

ρX,c((u1, j), (u2, j)) = ρY (u1, u2) ≤ ãρY (Si1(t, y1), Si2(t, y2))
≤ ãLeαtρY (y1, y2) + ãMLφ(t)d(i1, i2)
≤ aρY (y1, y2) + ãMLMφd(i1, i2)

= a

(
ρY (y1, y2) + MLMφ(λ− α)

λL
d(i1, i2)

)
≤ aρX,c(x1, x2),

here Mφ given by (4.14), whence ((u1, j), (u2, j)) ∈ U(aρX,c(x1, x2)). Now, using (7.24), together with
4.5), we obtain∫

Y 2
1U(aρX,c(x1,x2))((u1, j), (u2, j))QJ((Si1(h, y1), Si2(h, y2)), du1 × du2)

≥
∫

Y 2
1

Ũ(ãρY (Si1 (h,y1),Si2 (h,y2)))(u1, u2)QJ((Si1(h, y1), Si2(h, y2)), du1 × du2)

= QJ((Si1(h, y1), Si2(h, y2)), Ũ(ãρY (Si1(h, y1), Si2(h, y2)))) ≥ η for any h ≤ t0.
28
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Finally, from (S4) it follows that

QP ((x1, x2), U(aρX,c(x1, x2)))

≥
∑
j∈I

(πi1,j ∧ πi2,j)
∫ t0

0
λe−λh

∫
Y 2

1U(aρX,c(x1,x2))((u1, j), (u2, j))

×QJ((Si1(h, y1), Si2(h, y2)), du1 × du2) dh
≥ (min

i∈I
πij0)η(1 − e−λt0) > 0,

ith η defined by (4.5), which gives (B3).
Now, we shall establish condition (B4). To do this, fix (x1, x2) := ((y1, i1), (y2, i2)) ∈ F , and note that,

ue to (4.7),

QP ((x1, x2), X2) =
∑
j∈I

(πi1,j ∧ πi2,j)
∫ ∞

0
λe−λhQJ((Si1(h, y1), Si2(h, y2)), Y 2) dh

≥
∑
j∈I

(πi1,j ∧ πi2,j) − l̃λ

∫ ∞

0
e−λhρY (Si1(h, y1), Si2(h, y2)) dh.

(7.25)

n other hand, referring again to (7.22), we get∫ ∞

0
e−λhρY (Si1(h, y1), Si2(h, y2)) dh

≤ L

(∫ ∞

0
e−(λ−α)h dh

)
ρY (y1, y2) +ML

(∫ ∞

0
e−λhφ(h) dh

)
d(i1, i2)

≤ L

λ− α
ρY (y1, y2) +MLKφd(i1, i2).

(7.26)

oreover, we can write ∑
j∈I

πi1,j ∧ πi2,j ≥ 1 − d(i1, i2). (7.27)

onsequently, taking into account (7.25), (7.26), (7.27) and (4.12), we infer that

QP ((x1, x2), X2) ≥ 1 − l̃λL

λ− α
ρY (y1, y2) − (1 + l̃λMLKφ)d(i1, i2)

≥ 1 −
(
l̃λL

λ− α
+ 1 + l̃λMLKφ

)
ρX,c(x1, x2),

hich completes the proof of (B4).
What remains is to show that (B5) holds. To do this, we shall apply [29, Lemma 2.2] to the coupling

(Φ(1)
n ,Φ

(2)
n )}n∈N0 with transition law P̃ , given by (7.20). For this purpose, it suffices to observe that, letting

Ṽ (x1, x2) := V (x1) + V (x2) = ρY (y1, y
∗) + ρY (y2, y

∗) for x1 = (y1, i1), x2 = (y2, i2) ∈ X2,

e have
P̃ Ṽ (x1, x2) ≤ aṼ (x1, x2) + 2b for any (x1, x2) ∈ X2,

hich follows directly from (B1) and (7.22). The proof of Lemma 7.1 is now complete. □

Having established Lemma 7.1, we can prove Proposition 7.1 by arguing as in the proof of [15, Lemma 2.1].
irst of all, we need to be able to distinguish the case where the next step of the chain Φ̂ is drawn only
ccording to Q̄ from the case when it is determined only by R̄ . For this aim, we consider Z⋆ := Z×{0, 1},
P P

29
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which can be viewed as a copy of Z = X2 × R+, split into two disjoint subsets Z × {0} and Z × {1}. Then
e define a new stochastic kernel P̂ ⋆ : Z⋆ × B (Z⋆) → [0, 1] by setting

P̂ ⋆((x1, x2, s, k), H) = (Q̄P ((x1, x2, s), ·) ⊗ δ⋆
1)(H) + (R̄P ((x1, x2, s), ·) ⊗ δ⋆

0)(H)

or any x1, x2 ∈ X, s ∈ R+, k ∈ {0, 1} and H ∈ B (Z⋆), where δ⋆
0 (resp. δ⋆

1) stands for the Dirac measure
t 0 (resp. at 1) on 2{0,1}. Obviously, for any (x1, x2, s, k) ∈ Z⋆ and D ∈ B(Z), we have

P̂ ⋆((x1, x2, s, k), D × {1}) = Q̄P ((x1, x2, s), D),
P̂ ⋆((x1, x2, s, k), D × {0}) = R̄P ((x1, x2, s), D),
P̂ ⋆((x1, x2, s, k), D × {0, 1}) = P̂ ((x1, x2, s), D).

Further, we introduce the canonical Markov chain Φ̂⋆ := {(Φ̂′
n, κn)}n∈N0 with transition law P̂ ⋆, whereinˆ ′ = {(Φ′(1)

n ,Φ
′(2)
n , τ ′

n)}n∈N0 is an appropriate copy of Φ̂, and κn takes values in {0, 1}. We therefore assume
that Φ̂⋆ is defined on the space (Ω⋆,F⋆) :=

(
(Z⋆)N0 ,B

(
(Z⋆)N0

))
, equipped with an appropriate family{

P̂⋆
(x1,x2) : x1, x2 ∈ X

}
of probability measures on F⋆, such that Φ̂⋆ starts at ((x1, x2, 0), 0) almost surely

with respect to P̂⋆
(x1,x2). The symbol Ê⋆

(x1,x2) will denote the expectation operator corresponding to P̂⋆
(x1,x2).

Let us now fix arbitrarily (x1, x2) ∈ X2 and n,M,N ∈ N such that n > M > N . Further, consider
the random times

σ
(N)
K := inf

{
m ≥ N :

(
Φ

′(1)
m ,Φ

′(2)
m

)
∈ K

}
, ζ := inf{m ∈ N : κi = 1 for any i ≥ m},

where K is given by (7.21), and define

HN,n := {κN = κN+1 = · · · = κn = 1}, Hc
N,n := Ω⋆\HN,n.

Taking into account that P̂⋆(Hc
N,n) ≤ P̂⋆(ζ > N), and that ρ̄X,c(w1, w2) ≤ 1 for any w1, w2 ∈ X, we can

write the following estimate:

Ê(x1,x2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
= Ê⋆

(x1,x2)

[
ρ̄X,c

(
Φ′(1)

n ,Φ′(2)
n

)]
=

∫
X2

ρ̄X,c (w1, w2) P̂⋆
(x1,x2)

(
(Φ′(1)

n ,Φ′(2)
n ) ∈ dw1 × dw2

)
≤

∫
X2

ρ̄X,c (w1, w2) P̂⋆
(x1,x2)|{

σ
(N)
K

≤M

}
∩HN,n

(
(Φ′(1)

n ,Φ′(2)
n ) ∈ dw1 × dw2

)
+ P̂⋆

(x1,x2)(σ
(N)
K > M) + P̂⋆

(x1,x2)(ζ > N),

with the convention that P̂⋆
(x1,x2)|H(·) := P̂⋆

(x1,x2)(H ∩ ·).
Since, according to Lemma 7.1, hypotheses (B1)–(B5) are fulfilled, we can now apply [15, Lemma 2.2] to

conclude that there exist constants C1, C2, C3 ≥ 0, q1, q2, q3 ∈ (0, 1) and p ≥ 1 such that

Ê(x1,x2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
≤ (C1q

n−M
1 + C2q

M−pN
2 + C3q

N
3 )(1 + V (x1) + V (x2)).

Finally, letting n ≥ ⌈4p⌉ and taking N = ⌊n/(4p)⌋, M = ⌊n/2⌋, we obtain

Ê(x1,x2)

[
ρ̄X,c

(
Φ(1)

n ,Φ(2)
n

)]
≤ C̃0(V (x1) + V (x2) + 1)qn

with q := {q1/2
1 , q

1/4
2 , q

1/(4p)
3 } and C̃0 = max{q−1

1 , q−1
3 }(C1 + 2C2 + 2C3). Obviously, since ρ̄X,c ≤ 1, this

inequality holds, in fact, for all n ∈ N with C0 := q−⌈4p⌉ max{C̃0, 1} in the place of C̃0. The proof of

Proposition 7.1 is now complete.
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