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Abstract: The article concerns the problem of classification based on independent data sets—local
decision tables. The aim of the paper is to propose a classification model for dispersed data using a
modified k-nearest neighbors algorithm and a neural network. A neural network, more specifically
a multilayer perceptron, is used to combine the prediction results obtained based on local tables.
Prediction results are stored in the measurement level and generated using a modified k-nearest
neighbors algorithm. The task of neural networks is to combine these results and provide a common
prediction. In the article various structures of neural networks (different number of neurons in the
hidden layer) are studied and the results are compared with the results generated by other fusion
methods, such as the majority voting, the Borda count method, the sum rule, the method that is based
on decision templates and the method that is based on theory of evidence. Based on the obtained
results, it was found that the neural network always generates unambiguous decisions, which is a
great advantage as most of the other fusion methods generate ties. Moreover, if only unambiguous
results were considered, the use of a neural network gives much better results than other fusion
methods. If we allow ambiguity, some fusion methods are slightly better, but it is the result of this
fact that it is possible to generate few decisions for the test object.

Keywords: neural network; fusion method; independent data sources; k-nearest neighbors algorithm;
dispersed data

1. Introduction

The article is devoted to the issue of classification based on dispersed data. More
precisely, data collected in many local decision tables, which were provided by independent
units, are considered. This approach is considered for example in federated learning [1,2]
and fog computing [3] approaches.

The considered approach differs from an ensemble classifiers approach mainly due to
the form of data that is considered. In ensemble learning, a set of local tables is generated
based on one decision table in a controlled manner. Thus, we can define the form of
attributes’ sets and objects’ sets in local tables, and that simplifies a lot. It is completely
different in the case of dispersed data. The set of local decision tables is already collected
independently, and we have no influence on its form. In addition, sets of attributes in
local tables can be quite different, but some elements may be common between sets. A
similar property applies to sets of objects. In addition, we cannot expect that we have
universal identifiers for objects in all local tables, so it is impossible to verify which objects
are common between local tables.

In real applications, very often, data are collected in such a dispersed way. In special-
ized departments located in various hospitals, various banks, or even on smart phones—
information about the user. Each application installed locally can collect a personalized
local table. The domain of such dispersed data can be very different. However, the general
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problem remains the same—how to use dispersed data efficiently considering all inconsis-
tent local tables at the same time. This is very significant and one of the top problems in
today’s multi-devices world.

This leads to completely different considerations, causes inconsistencies and conflicts
between local tables. In addition, there are very important issues regarding data protection
and data privacy [4]. We do not deal with this problem in the publication; however, we
follow all the rules by not sharing raw data, only prediction results in central domain.

A common approach to deal with dispersed data is to build a separate local model
based on each local table and then combine the local prediction results [5–7]. In the stage
of combining the prediction results, we can use fusion methods [8] from three different
levels (measurement level, rank level and abstract level). Another approach is to build a
meta-model that will train on how to generate global results based on predictions obtained
from local models.

Fusion methods very often generate ambiguous results in the case of dispersed data
(ties occur). The motivation of the study is to propose a model that will generate unam-
biguous results for dispersed data. We know that neural networks can learn to recognize
even multilayer and complex patterns very well. Prediction results generated by local
tables (especially from the measurement level) are often contradictory, ambiguous and it is
difficult to generate a global decision based on them. Therefore, neural networks seem to
be the appropriate approach to working with such data.

This paper proposes the use of a neural network in conjunction with a modified
k-nearest neighbors algorithm for classification problems based on dispersed data. In
the literature, we can find applications of neural networks in the stage of predictions
fusion [9–11]. These applications are in specialized fields and rely on the use of completely
different methods to generate local predictions than those proposed in this paper.

The contribution of this paper is to propose a classification model for dispersed data
using a modified k-nearest neighbors algorithm and a neural network. The first step in
the model is to use the k-nearest neighbors algorithm to generate prediction vectors based
on local tables. Prediction vectors are defined over the decision classes. Therefore, it was
required to modify this algorithm due to the need to generate certainty that the object
belongs to each specific decision class. This algorithm ensures that the prediction vector
will be determined based on the most relevant objects to the currently considered test object.
In the next stage, it is proposed to use a neural network to generate the final decision. The
network is trained to make the correct decision based on such prediction vectors. It is
not an easy task, because total agreement is very unlikely to be obtained in the prediction
vectors. Particular systems of values in vectors may indicate a specific decision value.
It may happen that some local tables are better in recognizing objects from a specified
subspace. Neural networks seem to be an appropriate model for recognizing all these
complex relationships.

The paper is organized as follows. In Section 2, the proposed classification model
using dispersed data is described. Each of the stages in the model—generating local
predictions and combining local predictions is presented in a separate subsection. The
algorithm’s description and the discussion about the computational complexity are given.
Then, a graphical presentation of the method and an overall overview are presented. In the
last subsection, other fusion methods that are used in this article as the baseline method are
also discussed. Section 3 addresses the data sets that were used and presents the conducted
experiments and discussion on obtained results. Section 4 is on conclusions and future
research plans.

2. Materials and Methods

This section describes the classification model for dispersed data available in many
local decision tables. This classification process consists of two stages:

• At the first stage, a model is built based on each local decision table. Using a modified
k-nearest neighbors algorithm, predictions from the measurement level are designated.
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• At the second stage, a neural network is used to aggregate the predicted results to
determine the final classification.

2.1. The First Stage in a Dispersed Classification Model

We assume that a set of decision tables is given. The tables were collected indepen-
dently by separate units. Based on each table, a classifier is built. We assume that a set of
decision tables Dag = (Uag, Aag, d), ag ∈ Ag from one discipline is available, where Uag is
the universe, a set of objects; Aag is a set of conditional attributes; d is a decision attribute.
Decision tables are collected independently, so both sets of objects and sets of attributes
can have any form. They can have common elements between tables, but do not have to.
The only condition that must be met by local tables is collecting data from one discipline.
Formally, this is satisfied by the assumption that the same decision attribute is present in all
tables. Aggregation for such tables is difficult and can generate inconsistencies, therefore
aggregation is not performed, but predictions are made separately based on each table.

Ag is a set of classifiers and an identifier ag ∈ Ag is a classifier that is built based on a
decision table Dag. In general, any classifier may be used for this purpose. In this study, the
modified k-nearest neighbors classifier with the Gower similarity measure was used. For
each local table and for each test object x, a probability vector over decision classes (denoted
by µag(x)) is designated. The dimension of vectors µag(x) = [µag,1(x), . . . , µag,c(x)] is equal
to the number of decision classes c = card{Vd}, where Vd is a set of decision attribute
values from all decision tables and card{Vd} is the cardinality of this set. Each coefficient
µag,j(x) is determined using the k-nearest neighbors of the test object x belonging to a given
decision class j and decision table Dag. The Gower similarity measure [12] is used because
it allows the analysis of data with different types of attributes and data with missing values.
At the end of this stage, we obtain for each test object a set of vectors over the decision
classes in a cardinality equal to the number of local tables.

In this way, we obtain local predictions, but not the final global decision. The k-nearest
neighbors method is used for the computation of local predictions, because this method is
not computationally complex and easily scalable even for large and multidimensional data.
Moreover, in the k-nearest neighbors algorithm, predictions rely strictly on the relevant
objects from the data sets. Thanks to this, we obtain diversified classifiers for dispersed data
(as local tables are independent), which, as we know from the literature [13], is important
for an ensemble of classifiers. In addition, the k-nearest neighbors method has already
been used in previous studies for dispersed data [14,15] and has produced good results.
To generate the final global decision, we propose training a neural network in making the
final decision using the probability vectors generated based on local tables.

The pseudo-code of the algorithm that generates predictions based on local tables is
given in Algorithm 1.

The computational complexity of the above algorithm is rather small and equal to
O(card{Ag} ×maxag∈Ag card{Uag} × card{Utest}).

2.2. The Second Stage in a Dispersed Classification Model

As the results of the previous stage, we obtain a set of vectors over the decision classes
µag(x), x ∈ Utest, ag ∈ Ag. However, we do not have a final decision for test objects. To
determine a global decision for the test object x, we must fuse the vectors µag(x), ag ∈ Ag.
We propose the use of a neural network for this purpose. More formally, a multilayer
perceptron is applied. We use one network structure. This network consists of three layers:
an input, a hidden layer and an output layer. The input of the neural network are the
values of vectors generated in the previous step of classification. The number of neurons in
the input layer is equal to the number of local decision tables multiplied by the number of
decision classes card{Ag} × card{Vd}. Thus, the greater the data dispersion, the greater
the complexity. The number of neurons in the output layer is equal to the number of
decision classes. Each of the neurons determines the probability with which the test object
belong to a given decision class.
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Algorithm 1 Pseudo-code of algorithm generating predictions based on local tables
Input: A set of local decision tables Dag = (Uag, Aag, d), ag ∈ Ag; test set—a decision table
Dtest = (Utest, Atest, dtest), Atest =

⋃
ag∈Ag Aag

Output: A set of vectors over decision classes µag(x), ag ∈ Ag, x ∈ Utest.

foreach x ∈ Utest

foreach ag ∈ Ag
Calculate the value of the Gower similarity measure for each object in the set Uag
and the test object x (using only the attributes from the set Aag).
For each j-th decision class, find the k nearest neighbors objects to x from j-th
decision class of the decision table Dag.
µag,j(x) is equal to the mean of similarity of the k nearest neighbors objects from
the j-th decision class of the decision table Dag.

end foreach
end foreach

In this study, different numbers of neurons in the hidden layer are analyzed. Such a
number should depend on the number of neurons in the input layer, and this is dependent
on the data. Therefore, the following values will be analyzed: {1, 3, 4, 4.25, 4.5, 4.75, 5}×
the number of neurons in the input layer. For the hidden layer, the ReLU (Rectified Linear
Unit) activation function is used, as it is the most popular activation function and gives
very good results [16]. For the output layer, the SoftMax activation function is used, which
is recommended when we deal with a multi-class problem [17]. In this paper, data sets
containing from four to 19 decision classes are analyzed. The neural network is trained
using the backpropagation method. A gradient descent method, with an adaptive step
size is used in the backpropagation method. It is known that the SoftMax layer give good
results with the Adam optimizer [18]. The Adam optimizer was proposed in [19] and is one
of the most popular adaptive step size methods. From [20] we know that the categorical
cross-entropy loss gives best results with SoftMax layer. That is why the Adam optimizer
and the categorical cross-entropy loss function are used in the study.

The code that is used defines a neural network using Keras library in Python.
The pseudo-code of the algorithm that defines a neural network with one hidden layer

is given in Listing 1.

Listing 1. Neural network with one hidden layer.

def neural_model ( inputDim : int , neurons : i n t ) :
model = Sequent ia l ( )
model . add ( Dense ( neurons , input_dim=inputDim ,

a c t i v a t i o n = ’ r e l u ’ ) )
model . add ( Dense ( c l a s s e s , a c t i v a t i o n = ’ softmax ’ ) )
model . compile ( l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,

opt imizer= ’adam ’ , metr i cs =[ ’ accuracy ’ ] )
return model

The neural network is trained based on the test set. It should be emphasized that the
objects from the training set are not used for this purpose. The objects from the training set
are used to determine the probability vectors, i.e., the k-nearest neighbors classifier is used
for the training set. Thus, to study the classification quality of neural network, the 10-fold
cross-validation method is used for test set. Thus, each time nine folds from the test set are
used to train the neural network, while the last fold is used to analyze the classification
quality.

Figure 1 presents the described above stages in a dispersed classification model.
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Figure 1. Stages in the dispersed classification model.

In the proposed model, two main algorithms are used. A modified k-nearest neigh-
bors algorithm and a neural network. The first one has low computational complexity
and classifies test objects based on dispersed local tables. Due to the dispersion of data
and the differences in the attributes sets in local tables, it is not possible to generate an
aggregated result using this algorithm. Therefore, it is necessary to use a different method
of designating the global decision. For this purpose, a neural network is used. The training
process of the neural network is a complex process. However, it should be remembered
that it is only implemented once. The process of test objects’ classification in the neural
network is a task with very low computational complexity. It consists only of performing
arithmetic operations in the number depending on the number of layers in the network
and the number of neurons in each layer. The great advantage of neural network used
as a fusion method is obtaining unambiguous results. This approach does not generate
ties—one decision class is generated always.

2.3. Other Fusion Methods

The results obtained using the proposed method are compared with the results gener-
ated by other fusion methods known from the literature. These methods can be used to
aggregate the predictions in the form of probability vectors. Thus, a modified k-nearest
neighbors algorithm is used as described above. However, instead of a neural network, the
results are aggregated using the fusion method.

For this purpose, five methods were selected. The chosen methods are from different
measurement groups, they are characterized by completely different criteria and have
different degrees of complexity. Three of the methods are simple and very popular. The
other two methods are much more computationally complex and sophisticated.

The first method from the measurement level is the sum rule. The sum rule consists
of the designation of the sum of the probability values assigned to one decision class by
each of local tables. The set of decisions that have the maximum of these sums is the
final decision

arg max
j∈{1,...,c}

{
∑

ag∈Ag
µag,j(x)

}
.

The next fusion method, the Borda count method, belongs to the rank level, which
means that the ranks vectors are generated based on the probability vectors. Ranks are
assigned within vectors in such a way that decision classes that have greater probability
also have higher rank. The method consists of designating the sum of the number of classes
ranked below the given class by each local decision table. Thus, the value is determined

for each decision class j ∑ag∈Ag

(
card{Vd} − rag,j(x)

)
, where rag,j(x) is the rank assigned

based on the probability value µag,j(x). The set of classes that have the maximum value of
the Borda count is the final decision.

The third fusion method that is used is the majority voting method and belongs to the
abstract level. In this method, each local table gives one vote for each decision that has the
maximum probability in the probability vectors. Final decisions are those which received
the maximum number of votes.
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The next two methods are much more complex and sophisticated, both require a
training stage.

The method that is based on decision templates belongs to the measurement level
and was proposed in the paper [21]. The method uses decision profile, i.e., the matrix
with dimension number of local tables × number of decision classes. The rows of the
matrix are the probability vectors from the measurement level generated based on local
tables. This is the way of presenting the local tables outputs for any object. For each class,
the decision templates are defined based on the decision profiles that are constructed for
the objects from the training set. The decision template DTj for class j is the average of
the decision profiles of the objects of the training set in class j. These decision templates
can be seen as patterns for decision classes and the process of determining them is the
training process of the method. When a test object is considered, first a decision profile
for the object is determined, then, the similarity between the decision profile for the test
object and the decision template for each class is calculated. For this purpose, one of the
distance measures is used. The Euclidean distance, the Hamming distance, the Jaccard
similarity or the Symmetric difference are usually applied. The set of classes that have the
maximum value of similarity is the final decision. In this article, the Hamming distance is
used, because based on previous experience [22] it produces the best results.

The method that is based on the theory of evidence belongs to the measurement level
and was proposed in the paper [23]. In this method as in the previous method, the decision
templates for decision classes DTj, j ∈ {1, . . . , c} are designated based on the training set.
The decision templates and the decision profile for the test object are compared using the
Dempster-Shafer theory and the belief is calculated. The following steps are performed in
the Dempster-Shafer algorithm:

1. Let DTj(m, ·) denote the m-th row of the decision template for class j and DPm,·(x)
denote the m-th row of the decision profile for the object x. The proximity between the
prediction calculated based on the m-th local table DPm,·(x) and the m-th row of the
decision template for every class j ∈ {1, . . . , c} and for each local table m is calculated

φj,m(x) =
(1 +

∥∥DTj(m, ·)− DPm,·(x)
∥∥2
)−1

∑c
k=1(1 + ‖DTk(m, ·)− DPm,·(x)‖2)−1

where ‖·‖ is the norm. The Euclidean norm was applied in this study.
2. For every class j ∈ {1, . . . , c} and for each local table m the following belief degrees

are calculated

Belj(DPm,·(x)) =
φj,m(x)∏k 6=j(1− φk,m(x))

1− φj,m(x)[1−∏k 6=j(1− φk,m(x))]
.

3. The Dempster-Shafer membership degrees for every class j ∈ {1, . . . , c} are calculated

µj(x) = K ∏
m

Belj(DPm,·(x))

where K is a constant that ensures that µj(x) ≤ 1.

The set of classes that have the maximum value of the Dempster-Shafer membership
degrees is the final decision.

All the above-mentioned fusion methods can generate ties. In such a situation, instead
of one final decision, a set of decisions is generated. In this article, these ties are not solved.
In the next section, two measures of classification quality are analyzed to compare the
ambiguity of results.

3. Results

The experiments were conducted with the data taken from the UC Irvine Machine
Learning Repository and one artificially generated data. Each data available in the repos-
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itory is stored in a single table. Before the experiments were performed, the data were
dispersed. For this reason, not all data sets could be used for analysis. An important issue
is the presence of many conditional attributes in the data. Moreover, the proposed model
uses the Gower measure, which is dedicated to data with different types of attributes
(qualitative, quantitative, binary). Therefore, it is important that the attributes in the data
set are of different types. The existence of multi-decision classes in a data set is also an
important matter, as some of the fusion methods used for comparison may generate ties.
Ties in the case of a small number of decision classes (in extreme cases two decision classes)
are not acceptable.

Three data sets meeting the above conditions were selected for the analysis: the
Lypmhography, the Vehicle Silhouettes and the Soybean (Large) data sets. For the Soybean
data set, the two independent data sets: a test set and a training set are available in the
repository. The Vehicle and the Lymphography data sets were randomly divided into two
disjoint subsets, the training set (70% of objects) and the test set (30% of objects). This was
done to apply the same testing strategy for all analyzed data sets (train and test method).

The artificial data were generated using the Weka software [24]. For this purpose,
the function RandomRBF was used. This function, at first, randomly generates centers
for each decision class. Then to each center, a weight is randomly assigned and a central
point per attribute, and a standard deviation. The new object is generated as follows. The
center is selected—according to the weights. Attribute values are randomly generated and
offset from the center. Then the vector is scaled so that its length equals a value sampled
randomly from the Gaussian distribution of the center. The decision class is assigned based
on the center. The following settings were used:

• Number of numerical conditional attributes—30
• Number of objects—399
• Number of decision classes—7
• Number of centroids (To make the set more difficult, several centroids were used to

generate objects from one decision class)—50
• Seed for generating random numbers—1

Thus, unbalanced data were obtained, the numbers of objects in individual decision
classes are as follows: 21, 36, 31, 57, 58, 107, 89. The data set was randomly divided into two
disjoint subsets, the training set (299 objects) and the test set (100 objects) in a stratified
mode. Additionally, noise has been added to each attribute in the training set. For this
purpose, the values generated from the normal distribution with an average of 0 and a
standard deviation of 0.3 were used and added to each value in the training set.

For dispersed data, the cross-validation method is too complex. Moreover, the cross-
validation method would be difficult to apply because the test set should contain objects
that have defined values on all the conditional attributes that belong to local tables. In
addition, this restricts, and even makes it impossible to draw independently from local
tables. Data characteristics are given in Table 1.

Table 1. Data set characteristics.

Data Set # The Training # The Test # Conditional # Decision
Set Set Attributes Classes

Vehicle Silhouettes 592 254 18 4
Lymphography 104 44 18 4

Soybean 307 376 35 19
Artificial Data 299 100 30 7

The training sets of the above-mentioned data sets were dispersed. To check for
different degrees of dispersion for each data set, five different dispersed versions with 3, 5,
7, 9 and 11 local tables were prepared. Conditional attributes for local tables were selected
randomly, but each local table contained only a small subset of the full set of attributes.
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Certain attributes were common to several local tables. The decision attribute was included
in each of the tables. The full set of objects is also stored in each of the local tables, but
without identifiers. This reflects the real situation where we cannot identify the objects
between the tables.

The quality of classification was evaluated based on the test set. Three measures
were analyzed. The first measure is the estimator of classification error e. It is a fraction
of the total number of objects in the test set that were classified incorrectly. An object is
considered to be correctly classified when its correct decision class belongs to the generated
decision set. The second measure is the estimator of classification ambiguity error eONE. It
is also a fraction of the total number of objects in the test set that were classified incorrectly.
However, this time an object is considered to be correctly classified when only one correct
decision class was generated. More strictly, this measure does not accept ambiguity. The
third measure is the average number of generated decisions sets d̄. The third measure
allows an assessment of how often and how numerous are the draws generated by the
dispersed classification model and the fusion methods.

It should be noted once again that to use the neural network, a 10-fold cross-validation
was used on the test set, i.e., the neural network was trained 10 times with 9 folds and tested
on one remaining fold. In addition, each test was performed three times to ensure that the
results were reliable and not distorted by the influence of randomness. The results for the
neural network approach that are given below are the average of the obtained results.

The experiments were carried out according to the following scheme:

• Generating vectors of predictions based on local tables using the k-nearest neighbors
classifier. For each data set, three different values of the k parameter were tested,
namely k ∈ {1, 5, 10}. One parameter value was selected for each data set that
produced the best overall results. For the Vehicle Silhouettes data set—k = 5, for the
Lymphography data set—k = 10, for the Soybean data set—k = 1, for the artificial
data set—k = 1 were selected.

• Generating a global decision using a neural network with one hidden layer and
different number of neurons in the hidden layer. For each data set, the following
number of neurons in the hidden layer were tested: {1, 3, 4, 4.25, 4.5, 4.75, 5}× the
number of neurons in the input layer. Different number of neurons in the hidden layer
was also checked. However, it was noticed that the accuracy of the respective models
improves as the number of neurons in the hidden layer increases, but significant
improvement declines around 5× the number of neurons in the input layer. The
number of neurons in the input layer depends on the number of local tables. Thus, the
more dispersed data we have, the more complex the structure of the neural network is.

• Generating a global decision using one of the fusion methods: the sum rule, the Borda
count, the majority vote, the method that is based on decision templates and the
method that is based on theory of evidence.

Comparison of experimental results was made in terms of:

• The quality of classification for different numbers of neurons in the hidden layer;
• The quality of classification of the proposed dispersed classification model vs. other

fusion methods (the sum rule, the Borda count, the majority vote, the method that is
based on decision templates and the method that is based on theory of evidence).

3.1. Comparison of Experimental Results for Different Numbers of Neurons in the Hidden Layer

Table 2 presents average classification error e, average classification ambiguity error
eONE and the average number of generated decisions set d̄ for all dispersed data sets and
the neural network approach with different number of neurons in the hidden layer. Using
10-fold cross-validation method, experiments were repeated 3 times. The minimal mean
errors have been marked in bold. A very important thing that should be noticed is that all
generated results are unambiguous. Always a single decision class is generated. So, for the
proposed model we have the property e = eONE and d̄ = 1.
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Table 2. Results of classification error e, classification ambiguity error eONE and the average number of generated decisions
d̄ for the dispersed system with neural network. Designation #Input is used for the number of neurons in the input layer.

Data No. on No. of Neurons in Hidden Layer

Set Local 1 × #Input 3 × #Input 4 × #Input 4.25 × #Input 4.5 × #Input 4.75 × #Input 5 × #Input
Tables e = eONE/d̄ e = eONE/d̄ e = eONE/d̄ e = eONE/d̄ e = eONE/d̄ e = eONE/d̄ e = eONE/d̄

Lypmho 3 0.286/1 0.281/1 0.246/1 0.259/1 0.251/1 0.288/1 0.273/1
graphy 5 0.194/1 0.251/1 0.258/1 0.264/1 0.253/1 0.258/1 0.259/1

7 0.326/1 0.328/1 0.308/1 0.316/1 0.314/1 0.321/1 0.339/1
9 0.278/1 0.256/1 0.256/1 0.249/1 0.249/1 0.271/1 0.249/1

11 0.244/1 0.278/1 0.276/1 0.269/1 0.276/1 0.271/1 0.294/1
Vehicle 3 0.365/1 0.296/1 0.279/1 0.283/1 0.284/1 0.096/1 0.089/1

5 0.331/1 0.284/1 0.278/1 0.278/1 0.294/1 0.296/1 0.291/1
7 0.326/1 0.299/1 0.291/1 0.281/1 0.304/1 0.284/1 0.298/1
9 0.298/1 0.284/1 0.275/1 0.293/1 0.307/1 0.314/1 0.295/1

11 0.327/1 0.303/1 0.274/1 0.293/1 0.284/1 0.315/1 0.302/1
Soybean 3 0.093/1 0.092/1 0.091/1 0.084/1 0.085/1 0.096/1 0.089/1

5 0.088/1 0.094/1 0.091/1 0.099/1 0.093/1 0.093/1 0.085/1
7 0.099/1 0.093/1 0.090/1 0.089/1 0.087/1 0.090/1 0.093/1
9 0.078/1 0.081/1 0.073/1 0.081/1 0.075/1 0.079/1 0.084/1

11 0.068/1 0.069/1 0.068/1 0.071/1 0.074/1 0.061/1 0.077/1
Artificial 3 0.393/1 0.190/1 0.113/1 0.103/1 0.106/1 0.090/1 0.106/1

Data 5 0.193/1 0.056/1 0.060/1 0.023/1 0.026/1 0.033/1 0.233/1
7 0.166/1 0.030/1 0.033/1 0.016/1 0.010/1 0.233/1 0.233/1
9 0.143/1 0.036/1 0.036/1 0.033/1 0.036/1 0.026/1 0.033/1

11 0.130/1 0.050/1 0.043/1 0.036/1 0.050/1 0.043/1 0.040/1

average e 0.221 0.183 0.172 0.171 0.173 0.187 0.197

Based on results from Table 2, the calculated means and the individual results for
the dispersed data sets, it can be seen that the best results are obtained for the number
of neurons in the hidden layer of approximately equal 4× the number of neurons in the
input layer.

The Friedman’s test was performed. All results (the number of neurons in the hidden
layer: {1, 3, 4, 4.25, 4.5, 4.75, 5}× the number of neurons in the input layer) were selected—
each number of neurons as a separate group, the test confirmed that differences among the
classification error in these seven groups are significant, with a level of p = 0.002599. Then,
to determine the pairs of groups between which statistically significant differences occur,
the Wilcoxon each pair test for dependent groups were performed. The test showed that
there is significant difference with p < 0.05 between

• Group 1 (1 × #Input) and four other groups (Group 2—3 × #Input, Group 3—4 × #In-
put, Group 4—4.25 × #Input and Group 5—4.5 × #Input),

• Group 2 (3 × #Input) and three other groups (Group 3—4 × #Input, Group 4—
4.25 × #Input and Group 5—4.5 × #Input),

• Group 3 (4 × #Input) and Group 7—5 × #Input,
• Group 4 (4.25 × #Input) and Group 7—5 × #Input.

Additionally, comparative box-plot chart for the values of the classification error was
created (Figure 2). As can be observed, distributions of the classification error values in
groups are quite different—especially better results are visible for the numbers of neurons
in the hidden layer equal to 4 × #Input and 4.25 × #Input.
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Figure 2. Box-plot chart with (Median, the first quartile—Q1, the third quartile—Q3) the value of
classification error e for the neural network with different numbers of neurons in the hidden layer.

3.2. Comparison of Experimental Results for the Proposed Dispersed Classification Model versus
Other Fusion Methods

Table 3 presents classification error e, classification ambiguity error eONE and the
average number of generated decisions set d̄ for all dispersed data sets and fusion methods:
the sum rule, the Borda count, the majority voting, the method that is based on decision
templates and the method that is based on theory of evidence. These results were obtained
using train and test method. The tests were performed on the test sets on which the neural
network was trained and tested at an earlier stage of the experiments. As before, the
following k values were used in the modified k nearest neighbors algorithm: the Vehicle
Silhouettes data set—k = 5, for the Lymphography data set—k = 10, for the Soybean data
set—k = 1 and for the artificial data set—k = 1. The tests were performed only once as
these fusion methods are deterministic. As can be seen, virtually all results are ambiguous.
Only for the method that is based on decision templates and the method that is based on
theory of evidence always one decision class is generated. Additionally for the Vehicle data
set and the sum rule one decision class is generated.

Table 3. Results of classification error e, classification ambiguity error eONE and the average number of generated decisions
d̄ for fusion methods—the sum rule, the Borda count, the majority voting, the method that is based on decision templates
and the method that is based on theory of evidence.

Data No. of Sum Rule Borda Count Majority Vote Decision Templates Theory of Evidence
Set Local e/eONE/d̄ e/eONE/d̄ e/eONE/d̄ e/eONE/d̄ e/eONE/d̄Tables

Lypmho 3 0.250/0.250/1 0.159/0.386/1.227 0.136/0.409/1.273 0.159/0.159/1 0.273/0.273/1
graphy 5 0.273/0.318/1.045 0.205/0.318/1.114 0.205/0.318/1.114 0.318/0.318/1 0.318/0.318/1

7 0.273/0.341/1.068 0.205/0.432/1.227 0.205/0.409/1.250 0.364/0.364/1 0.364/0.364/1
9 0.205/0.364/1.159 0.182/0.409/1.227 0.182/0.409/1.227 0.409/0.409/1 0.364/0.364/1

11 0.273/0.545/1.273 0.205/0.568/1.364 0.205/0.568/1.364 0.205/0.205/1 0.273/0.273/1
Vehicle 3 0.260/0.260/1 0.256/0.276/1.035 0.232/0.307/1.165 0.315/0.315/1 0.366/0.366/1

5 0.299/0.299/1 0.280/0.319/1.067 0.264/0.362/1.150 0.417/0.417/1 0.472/0.472/1
7 0.276/0.276/1 0.291/0.331/1.055 0.283/0.331/1.079 0.394/0.394/1 0.398/0.398/1
9 0.354/0.354/1 0.339/0.390/1.063 0.299/0.402/1.146 0.402/0.402/1 0.472/0.472/1

11 0.315/0.315/1 0.358/0.417/1.067 0.311/0.429/1.161 0.535/0.535/1 0.567/0.567/1
Soybean 3 0.117/0.170/1.085 0.120/0.189/1.106 0.082/0.215/1.247 0.314/0.314/1 0.303/0.303/1

5 0.101/0.152/1.077 0.117/0.191/1.106 0.082/0.184/1.199 0.343/0.343/1 0.327/0.327/1
7 0.088/0.202/1.149 0.109/0.253/1.189 0.072/0.234/1.295 0.327/0.327/1 0.237/0.237/1
9 0.072/0.160/1.106 0.104/0.191/1.101 0.061/0.168/1.146 0.242/0.242/1 0.221/0.221/1

11 0.088/0.213/1.157 0.088/0.229/1.184 0.090/0.226/1.181 0.215/0.215/1 0.160/0.160/1
Artificial 3 0.050/0.050/1 0.060/0.060/1.020 0.030/0.070/1.080 0.060/0.060/1 0.060/0.060/1

Data 5 0.060/0.060/1 0.050/0.060/1.030 0.060/0.070/1.040 0.060/0.060/1 0.060/0.060/1
7 0.060/0.060/1 0.060/0.060/1 0.040/0.090/1.080 0.080/0.080/1 0.070/0.070/1
9 0.070/0.070/1 0.070/0.080/1.010 0.060/0.100/1.050 0.100/0.100/1 0.090/0.090/1

11 0.080/0.080/1 0.060/0.090/1.030 0.140/0.180/1.100 0.130/0.130/1 0.110/0.110/1
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If we compare the ambiguous results (values e) generated by the fusion methods
and those obtained with the use of the neural network, then it can be concluded that the
results generated by the neural network are worse, in most cases not much (for example
the Soybean data set). However, such a comparison is not objective, as this improvement
is obtained by allowing ambiguity. It is only in the case of the artificial data set that the
neural network approach produces better results. This is due to the fact that the artificial
data have numerical attributes and the fusion methods do not generate as much ambiguity.

Table 4 presents the eONE values obtained with the use of neural network (best for all
tested numbers of neurons in the hidden layer) and the considered fusion methods. The
smallest ambiguity errors have been marked in bold.

Table 4. Classification ambiguity error eONE for neural network and other fusion methods.

Data No. on Neural Sum Borda Majority Decision Theory of

Set Local Network Rule Count Vote Templates Evidence
Tables eONE eONE eONE eONE eONE eONE

Lypmho 3 0.246 0.250 0.386 0.409 0.159 0.273
graphy 5 0.194 0.318 0.318 0.318 0.318 0.318

7 0.308 0.341 0.432 0.409 0.364 0.364
9 0.249 0.364 0.409 0.409 0.409 0.364

11 0.244 0.545 0.568 0.568 0.205 0.273
Vehicle 3 0.274 0.260 0.276 0.307 0.315 0.366

5 0.278 0.299 0.319 0.362 0.417 0.472
7 0.281 0.276 0.331 0.331 0.394 0.398
9 0.275 0.354 0.390 0.402 0.402 0.472

11 0.274 0.315 0.417 0.429 0.535 0.567
Soybean 3 0.084 0.170 0.189 0.215 0.314 0.303

5 0.085 0.152 0.191 0.184 0.343 0.327
7 0.087 0.202 0.253 0.234 0.327 0.237
9 0.073 0.160 0.191 0.168 0.242 0.221

11 0.061 0.213 0.229 0.226 0.215 0.160
Artificial 3 0.090 0.050 0.060 0.070 0.060 0.060

Data 5 0.023 0.060 0.060 0.070 0.060 0.060
7 0.010 0.060 0.060 0.090 0.080 0.070
9 0.026 0.070 0.080 0.100 0.100 0.090

11 0.036 0.080 0.090 0.180 0.130 0.110

average eONE 0.160 0.227 0.262 0.274 0.269 0.275

Based on results from Table 4, it can be seen that the best results are obtained for the
neural network approach. Moreover, it can also be seen that for more dispersed data (on
a larger number of local tables) the proposed model still generates good results. On the
other hand, other fusion methods generate increasingly worse results in the case of large
dispersion of data.

The Friedman’s test was performed. All results were selected—each fusion method as
a separate group, the test confirmed that differences among the classification ambiguity er-
ror in these four groups are significant, with a level of p < 0.000001. Then, to determine the
pairs of groups between which statistically significant differences occur, the Wilcoxon each
pair test for dependent groups were performed. The test showed that there is significant
difference with p < 0.05 for all pairs except between:

• Group 3 (Borda count) and two other groups (Group 5—Decision templates and
Group 6—Theory of evidence),

• Group 4 (Majority voting) and two other groups (Group 5—Decision templates and
Group 6—Theory of evidence),

• Group 5 (Decision templates) and Group 6 (Theory of evidence).

Additionally, comparative box-plot chart for the values of the classification ambiguity
error was created (Figure 3). As can be observed, distributions of the classification ambigu-
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ity error values in groups are completely different—especially better results were obtained
for the proposed neural network method.

Figure 3. Box-plot chart with (Median, the first quartile—Q1, the third quartile—Q3) the value of
classification ambiguity error e for the neural network and other fusion methods.

All experiments were performed on a portable computer with the following technical
specifications:

• Intel i7-8565U CPU,
• 16 GB of RAM memory,
• Ubuntu 18.04.5 LTS operating system.

The algorithm has been implemented in Python and all the data-related calculations
have been saved in a text document.

The main advantages and limitations of the proposed approach using the k-nearest
neighbors algorithm and the neural network are listed below.

The main advantages are:

• The proposed model always generates unambiguous results for both numerical and
qualitative data set.

• When the unambiguous results are compared, a much better quality of classification
are obtained using the proposed model than using the other fusion methods: the
majority voting, the Borda count method, the sum rule, the method that is based on
decision templates and the method that is based on theory of evidence.

• The deviation of the results obtained by the proposed model is much smaller compared
to the deviation of the results obtained for other fusion methods, which can be seen
on Figure 3.

• Based on the performed experiments, it can be concluded that in most cases the
number of neurons in the hidden layer equal to 4× the number of neurons in the
input layer generates the best results. This parameter value can be adopted for related
future work without the need to use a complex analysis of the network structure for
each new data set separately.

The main limitations are:

• Unfortunately, neural networks do not provide a clear and human-interpretable
formula for global decision making. A human readable principle, a rule for combining
decisions or some pattern, is not generated.

• To apply the proposed model, we must have quite a large test set available to train the
neural network. In the case of other fusion methods, such a condition does not have
to be met. They can generate a global decision even in the case of only one test object
being available.

4. Conclusions

In this article, a new model using a modified k-nearest neighbors algorithm in con-
junction with a neural network to generate decisions based on dispersed data—available
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from independent data sources is proposed. The paper presents a comparison of the
results obtained with the use of the proposed model in comparison with other fusion
methods known from the literature. This comparison was made using the data sets from
the repository and an artificially generated data set. Both numerical and qualitative data
were checked. Moreover, various degrees of dispersion into local tables of the analyzed
data were analyzed. In the article, various structures of the neural network in terms of the
number of neurons in the hidden layer were studied.

The obtained results show that the proposed model always generates unambiguous
decisions. This is a big advantage of this approach as fusion methods very often generate
ties, especially for qualitative data. In addition, it can be seen that the proposed model can
deal equally well with data that is finely dispersed (11 local decision tables) and those that
are less dispersed (three local decision tables). This statement is not true for other fusion
methods which definitely produce worse results for highly dispersed data.

The comparison of the ambiguity classification error clearly showed that the proposed
model generates better results than the other considered fusion methods. When accepting
ties, fusion methods especially the Borda count method and the majority voting produce
better results, but this is the result of allowing for ambiguity. Moreover, the results obtained
with the use of the proposed approach are characterized by a much smaller deviation.

In the paper, the optimal number of neurons in the hidden layer of the neural network
was determined. It is similar for all analyzed data sets; therefore, it can be used in related
future works for new data sets.

The main limitations of the proposed approach are the need to provide a quite large
test set to train the neural network. The model does not generate clear and interpretable
rules according to which the global decision is determined.

In future research, it is planned to use different activation functions in the neural
network. It is also planned to allow for ambiguity by applying multiple logistic regressions
function in the output layer of neural network.

It would be very interesting to compare the performance of the proposed model
with neural networks for different parameters of the data sets. It is planned to perform
comparative experiments in future research:

• generating artificial data with a different number of conditional attributes, e.g., from
20 to 100 in steps of 20; the influence of the dimensionality of the data set;

• generating artificial data of different noise intensity; use the normal distribution
with the standard deviation from 0.1 to 0.5 in steps of 0.1; the influence of the noise
intensity;

• generating artificial data with a different number of outliers.

The presented studies focus on showing that the proposed approach has potential and
will be developed in the future.
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