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Abstract: This study investigated the micromechanical and tribological properties of WE43 alloy (Mg-
Y-Nd-Zr) alloy subjected to cryogenic treatment and precipitation hardening. Microindentation tests
were carried out in the range of load from 100 to 1000 mN. The introduction of deep cryogenic
treatment (DCT) was shown to increase hardness and Young’s modulus, and reduce the total
indentation work. As the load set during the tests increased, a gradual decrease in the measured
values was observed, indicating a significant relationship between the indent size and the value of
the measured parameters. Cryogenic treatment used in conjunction with precipitation hardening
(after solutioning and after aging) reduces the tribological wear of the alloy. Tests have shown an
almost twofold reduction in the area of the wear trace and in the volumetric wear of the alloy, as well
as a more than twofold reduction in linear wear, with relatively small fluctuations in the coefficient of
friction. Abrasion was the main mechanism of wear. Areas where microcutting, adhesion and plastic
deformation occurred were also observed. The results indicate the significant effectiveness of the
applied heat treatment in improving the service life of the WE43 alloy containing rare earth metals.

Keywords: WE43 magnesium alloy; precipitation hardening; deep cryogenic treatment;
microindentation; friction; wear

1. Introduction

Magnesium is one of the most common metallic elements found in the earth’s crust,
estimated to be about 2% of the total mass of the earth’s crust [1]. Due to a number of
beneficial properties, such as high rigidity, high strength and low density (more than
four times lower than iron and two and a half times lower than titanium), it is used as a
component of many alloys, mostly in the automotive and aerospace industries [1–5].

Magnesium alloys are also increasingly used as third-generation biomaterials, the lat-
ter showing an advantageous combination of biodegradability and bioactivity. Magnesium
rare earth alloys, such as the WE43, have high biocompatibility (mechanical properties
similar to the cortical bone) [6]. This is a major advantage over previous generations of
biomaterials (first and second), for it allows the reduction of stress shield effects [7–9].
Research has also shown that magnesium alloys do not cause inflammatory reactions in the
body during the biodegradation process, and magnesium itself is an essential microelement
involved in human metabolism; it also occurs naturally in bone tissues [10–13]. The use of
rare earth elements makes it possible to modify the properties of the alloy by means of a
precipitation hardening process [14]. This leads to improved mechanical, tribological and
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corrosive properties. At the same time, an addition of zirconium in the WE43 improves the
tensile strength and allows a grain size reduction [1,4].

Cryogenic treatment is a material modification technology known since the early
half of the 19th century [15]. It is most often used as a shallow (−80 ◦C, CT) and deep
cryogenic treatment (−196 ◦C, DCT) [16]. Sub-zero treatment of alloys improves both their
mechanical and tribological properties, while at the same time reducing the stresses present
in them. Cryogenic treatment was first applied to steels [17], allowing a 50% decrease in
the manufacturing cost of machining materials [18,19]. In the case of magnesium alloys,
however, DCT studies focus on alloys with aluminium and gadolinium [15,20–26]. There
is a lack of research results in the literature concerning the effect of combining precipitation
hardening with deep cryogenic treatment [16]. This applies in particular to magnesium
alloys with rare earth elements. The few exceptions are two earlier papers by the authors
about the WE54 alloy [27,28]. The aim of the present study was to determine the changes in
micromechanical properties and tribological behavior induced by the proposed treatment.
The effect of increasing the load in micromechanical tests of the WE43 alloy on the results
obtained was also investigated.

2. Materials and Methods

Commercially available WE43 magnesium alloy (manufactured by Luxfer MEL Tech-
nologies, Manchester, UK) was used for the study. The chemical composition of the alloy
as confirmed by the manufacturer’s certificate is shown in Table 1.

Table 1. Chemical composition of the as-delivered alloy WE43.

Content of Components, wt.-%

Y Nd Zr Zn Mn Cu RE Mg
4.0 2.3 0.49 0.01 0.02 0.002 3.0 residue

The alloy was supplied in the form of 1000 mm long rods, 25.4 mm (1 inch) in diameter.
Disc-shaped samples with the nominal diameter of the rod and 5 mm thick were cut for the
tests. Deep cryogenic treatment (DCT) was conducted in liquid nitrogen at (−196 ◦C) for
24 h, combining it with different stages of precipitation hardening (solution heat treatment
and aging). The alloy was cooled to liquid nitrogen temperature for 1 h, and after deep
cryogenic treatment, it was heated at room temperature.

Solutioning and aging were carried out in a laboratory muffle furnace, FCF-5M
(Czylok, Jastrzębie-Zdrój, Poland), in the air atmosphere. The time and temperature of
solutioning were set at 8 h and 545 ◦C during the previous tests, while the aging time was
set at 24 h at 250 ◦C [14,27,28]. Five different variants of the state of the test material were
obtained: as-delivered alloy, after deep cryogenic treatment (DCT), after solutioning and
subsequent deep cryogenic treatment (S + DCT), and after precipitation hardening without
(S + A) and with deep cryogenic treatment (S + DCT + A + DCT). Table 2 summarizes the
different treatments of WE43 magnesium alloy.

The surfaces of the samples after heat treatment and sub-zero treatment were prepared
by grinding with abrasive paper with a grit size from 320 to 4000, so as to obtain a surface
roughness of Ra = 0.064 µm ± 0.006 µm. The samples were then cleaned in isopropyl
alcohol using an ultrasonic washer.

Micromechanical testing was conducted using the Micro Combi Tester—MCT3 (Anton
Paar, Corcelles-Cormondrèche, Switzerland) at room temperature. A Berkovich indenter
with an angle ofα = 65.3◦ ± 0.3◦ was used. Load-unload curves were recorded continuously
for 4 different values of maximum load, Fmax: 100 mN, 250 mN, 500 mN and 1000 mN;
the load hold and unloading time was set at 30 s, in accordance with the ISO 14577
standard [29], and the maximum load hold time was 10 s. For each sample, 24 indents
were made. Hardness HIT and Young’s modulus EIT were determined using the standard
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Oliver-Pharr method [30,31], which uses the tangent slope to the initial part of the unload
curve in the calculations. The initial part of the curve is described by the formula:

F(h) = α
(

h− h f

)m
. (1)

where: F—indenter load, h—depth of indenter penetration, hf—indent depth after unload-
ing, α—a constant comprising the modulus of elasticity and Poisson’s coefficient for the
indenter material and the sample, m—exponent depending on the indenter geometry.

Table 2. Summary of heat treatment applied to WE43 alloy.

Sample
Heat Treatment Applied

Solution
Treatment

Deep Cryogenic
Treatment Aging Deep Cryogenic

Treatment

WE43 in initial state - - - -
WE43–DCT - −196 ◦C/24 h - -

WE43–S + DCT 545 ◦C/8 h −196 ◦C/24 h - -
WE43–S + A 545 ◦C/8 h - 250 ◦C/24 h -

WE43–S + DCT + A + DCT 545 ◦C/8 h −196 ◦C/24 h 250 ◦C/24 h −196 ◦C/24 h
S—solution treatment; A—aging treatment; DCT—∆ deep cryogenic treatment.

The rigidity of the system, S, was calculated by differentiating the equation with
respect to the depth of penetration, h:

S =

(
dF
dh

)
m

(2)

On this basis, the contact depth, hc, was determined using the dependence:

hc = h− ε
Fmax

S
(3)

where: h—depth of indenter penetration, ε—constant dependent on the indenter geometry,
Fmax—maximum load imposed on the indenter, S—system rigidity.

On this basis, the relationship between the cross-sectional area of the indenter, Ap, and
the depth of its penetration, hc, was determined: Ap = f(h).

Hardness HIT, and the reduced modulus of elasticity, Er, were calculated from formulas:

HIT =
Fmax

Ap
(4)

where: Fmax—maximum load imposed on the indenter, Ap—indent area after unload-
ing (calibrated).

Er =

√
π · S

2β ·
√

Ap(hc)
(5)

where: S—system rigidity, β—a correction factor associated with the indenter shape ranging
from 1.0226 to 1.085, about 1.05 for a Berkovich indenter [30,31], Ap—indent area after
unloading, hc—contact depth.

After transforming the above relation, the Young’s modulus was calculated, EIT:

1
Er

=
1− v2

EIT
+

1− v2
i

Ei
(6)

where: EIT, ν—Young’s modulus and Poisson’s coefficient for the investigated material,
Ei, νi—Young’s modulus and Poisson’s coefficient for the indenter material (diamond
Ei = 1141 GPa, νi = 0.07)
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An example of a measurement of the micromechanical properties of WE43 alloy on a
Micro Combi Tester (MCT3) is shown in Figure 1.
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For each tested variant, 4 measurements were carried out. Ceramic balls made of zir-
conium dioxide, ZrO2, 6 mm in diameter, were used as counter-specimens. 

Figure 1. Performing an indentation measurement (a); microscopic observation of the indents
made (b).

Wear tests in rotational motion were carried out on a TRN tribological tester (Anton
Paar, Corcelles-Cormondrèche, Switzerland) in the ball-on-disc system (Figure 2). Test
parameters were set based on previous studies [14,27,28] and the recommendations of the
ASTM G99 standard [32]. The tests were performed in the following conditions:

• Load—Fn: 10 (N)
• Friction distance radius—r: 7 (mm)
• Linear velocity—v: 0.15 (m/s)
• Distance—s: 100 (m)
• Ambient temperature: 21 ± 1 (◦C)
• Air humidity: 40% ± 5 (%)
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Figure 2. Diagram of a tribological couple (a); example of a WE43 magnesium alloy sample in its
initial state after tribological test (b).

For each tested variant, 4 measurements were carried out. Ceramic balls made of
zirconium dioxide, ZrO2, 6 mm in diameter, were used as counter-specimens.

During tribological tests the following parameters were determined: average area of
the wear trace P; volumetric wear Vw, linear wear LW, and mean friction coefficient µmean.
The coefficient of friction was recorded continuously during the tests.

Measurement of the average area of the wear trace, P, was made using a Form Talysurf
Series 2–50 i profilometer (Taylor-Hobson, Leicester, UK). The entire area of the wear trace,
i.e., 16 × 16 mm, was examined while maintaining the sampling distance of x = 10 µm,
y = 50 µm. The wear trace formed during tribological tests was visualized by means of the
TalyMap Universal (Version 3.2.0; Taylor Hobson Precision: Leicester, UK) and OriginPro
(Version 2021. OriginLab Corporation, Northampton, MA, USA) software, acquiring an
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isometric 3D image of the surface studied along with a color change map. Volumetric wear,
VW, was determined from the formula:

VW =
V

Fn · s

(
mm3

N ·m

)
(7)

where: V—volume of the wear trace of the disc determined from the formula: V = P·2πr
(mm3), P—average area of the wear trace (mm2), r—radius of the friction distance (mm),
Fn—the load applied (N), s—friction distance (m).

The linear wear, LW, was measured and verified during profilometric measurements.
Observation of the microstructure and morphology of the wear traces was conducted

using an Olympus GX-51 light microscope equipped with a camera and Stream Essentials
software (Olympus, Tokyo, Japan), as well as a JEOL JSM-6480 scanning electron micro-
scope (Jeol, Tokyo, Japan) equipped with an adapter for X-ray microanalysis by the EDS
method (IXRF, Austin, TX, USA). Images were acquired at a magnification within the range
from 30 to 4000×, which allowed observation of the microstructure after various stages of
treatment and identification of the wear mechanisms occurring during friction.

3. Research Results and Discussion
3.1. Micromechanical Tests

Microindentation tests first determined the effect of deep cryogenic treatment (DCT)
combined with precipitation hardening on the micromechanical properties of WE43 mag-
nesium alloy and next, the effect of increasing the load applied during the tests on the
measurement results was analyzed. Figure 3 shows an example of load-unload curves F(h)
for different variants of the applied treatment and at different indenter loads.
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Figure 3. Load–unload curves F(h) for alloy WE43 in its initial state (a), after deep cryogenic treatment
(b), after solution treatment and sub-zero treatment (c) and after precipitation hardening combined
with deep cryogenic treatment (d).

Figures 4–6 present the dependence of hardness HIT, Young’s modulus EIT, maximum
depth of indenter penetration hmax, total work of indentation Wtot and the percentage of
the work of elastic recovery ηIT on the maximum indenter load Fmax.
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(σHIT = 9.97–38.26 MPa; σEIT = 0.36–3.58 GPa).

Materials 2021, 14, 7343 7 of 15 
 

 

the number of β-phase precipitates and decrease in the grain area compared to the alloy 
aged without sub-zero treatment. The large number of additional precipitates formed as 
a result of deep cryogenic treatment after solution treatment can be explained by the for-
mation of additional nucleation sites in magnesium alloys [15], which also occurs, among 
others, in magnesium alloys with aluminum and with gadolinium [20–26,33,34]. 

Changes in the microstructure after different phases of treatment observed for the 
WE43 alloy are shown in Figure 5. There is a clear increase in the amount of precipitates 
for the sample subjected to precipitation hardening combined with deep cryogenic treat-
ment (S + DCT + A + DCT) compared to solution treatment and aging alone (S + A). The 
amount of precipitates produced by deep cryogenic treatment (DCT) in the precipitation 
hardening process is comparable to the state after doubling the aging time of a magnesium 
rare earth alloy without sub-zero treatment. The combination of DCT with precipitation 
hardening; therefore, allows the aging time to be reduced from 48 to 24 h, leading to a 
large reduction of processing costs. 

 
Figure 5. Microstructure of the WE54 magnesium alloy in the initial state, after deep cryogenic treatment (DCT), after 
solution treatment and deep cryogenic treatment (S + DCT), after solution treatment and aging (S + A), and after precipi-
tation hardening combined with deep cryogenic treatment (S + DCT + A + DCT). 

 
Figure 6. Maximum depth of indenter penetration hmax during microindentation tests of WE43 mag-
nesium alloy. The error bars represent a standard deviation (σhmax = 0.02–0.13 µm). 

Observation of the load–unload curves F(h) for different values of maximum indenter 
load, Fmax, and the micromechanical properties determined from them (Figures 3, 4, 6 and 
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Figure 6. Maximum depth of indenter penetration hmax during microindentation tests of WE43
magnesium alloy. The error bars represent a standard deviation (σhmax = 0.02–0.13 µm).

Analysis of the microindentation test results showed that the introduction of deep
cryogenic treatment to the heat treatment process of the WE43 significantly improves
its properties. The alloy subjected to DCT after solution heat treatment and aging was
characterized by the highest hardness, HIT, and the highest Young’s modulus, EIT. An
approximate 15% increase in mechanical properties was observed compared to the alloy in
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its initial state (Figure 4). The sub-zero treatment alone, in turn, resulted in an approximate
5–8% increase in micromechanical properties. The observed effects are the result of changes
in the structure of the Mg-Y-Nd alloy studied by the authors in previous articles [27,28],
where it was shown that deep cryogenic treatment caused a twofold increase in the number
of β-phase precipitates and decrease in the grain area compared to the alloy aged without
sub-zero treatment. The large number of additional precipitates formed as a result of
deep cryogenic treatment after solution treatment can be explained by the formation of
additional nucleation sites in magnesium alloys [15], which also occurs, among others, in
magnesium alloys with aluminum and with gadolinium [20–26,33,34].

Changes in the microstructure after different phases of treatment observed for the
WE43 alloy are shown in Figure 5. There is a clear increase in the amount of precipitates for
the sample subjected to precipitation hardening combined with deep cryogenic treatment
(S + DCT + A + DCT) compared to solution treatment and aging alone (S + A). The amount
of precipitates produced by deep cryogenic treatment (DCT) in the precipitation hardening
process is comparable to the state after doubling the aging time of a magnesium rare earth
alloy without sub-zero treatment. The combination of DCT with precipitation hardening;
therefore, allows the aging time to be reduced from 48 to 24 h, leading to a large reduction
of processing costs.

Observation of the load–unload curves F(h) for different values of maximum indenter
load, Fmax, and the micromechanical properties determined from them (Figures 3, 4, 6 and 7)
also allowed noticing that for the WE43 magnesium alloy, there was a significant decrease in
the measured quantities as the indenter load increased. This phenomenon is explained on the
basis of the Taylor’s dislocation model and the relation proposed by the team of Nix, Gao [35]
between the hardness, H, and the depth of indent, h (8), determined for crystalline materials
and called “geometrically necessary dislocations (GNDs) model” underneath an indenter tip:

H2

H2
0
=

√
1 +

h∗

h
(8)

where: H—the hardness for a given depth of indentation h; H0—the hardness in the limit
of infinite depth; h*—characteristic length that depends on the shape of the indenter, the
shear modulus and H0.
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Figure 7. Total work of indentation Wtot (a) and percentage of elastic deformation work ηIT (b) of
WE43 magnesium alloy as a function of maximum indenter load Fmax. The error bars in the figures
represent a standard deviation (σWtot = 0.002–0.094 µJ; σηIT = 0.08–1.36%).

The tests also show that, irrespective of the applied value of the maximum indenter
load, the dependence of the tested quantities in relation to the applied heat treatment was
maintained. In the case of hardness and Young’s modulus, the measurements showed a
small scatter of results, 3% on average.

Figure 7 shows the effect of deep cryogenic treatment added to the precipitation
hardening process on the variation of total indentation work, Wtot, and the percentage of
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elastic deformation work, ηIT, as a function of maximum indenter load. Analysis of the
results reveals a direct correlation between the deformation resistance of the magnesium
alloy studied, observed by changing parameters such as indenter penetration depth, surface
area and volume of the indent. For precipitation hardening combined with DCT, the lowest
values of total indentation work are observed as well as an approximately 14% share of
elastic deformation work due to increase in hardness and Young’s modulus.

3.2. Sliding Wear Tests on WE43 Magnesium Alloy

The consequence of the improvement in the micromechanical properties of WE43
magnesium alloy induced by sub-zero treatment and precipitation hardening are changes
in tribological properties. Figure 8 presents SEM microscope images and examples of
isometric 3D images from profilometric measurements of wear traces obtained in rotary
motion, and Figure 9 shows the volumetric wear of the alloy, Vw, calculated on their basis
after different heat treatment variants. Figure 10 presents the linear wear, Lw, and the mean
stabilized friction coefficient, µmean, of the investigated alloy.

Materials 2021, 14, 7343 9 of 15 
 

 

 
Figure 8. SEM microscope images and isometric 3D images of wear traces of WE43 magnesium alloy 
in the initial state (a,b) and after deep cryogenic treatment combined with precipitation hardening 
(c,d). 

 
Figure 9. Volumetric wear Vw of WE43 alloy in the initial state and after different heat treatment 
variants. The error bars represent a standard deviation (σVw = 0.43 × 104 –1.57 × 104 mm3/Nm). 

The tribological tests that were carried out by the authors showed that the magne-
sium alloy in its initial state was characterized by the worst tribological properties (the 
largest surface area of the wear trace and the volumetric wear calculated on its basis, Vw = 
2.32 × 10−3 mm3/Nm) (Figures 8 and 9). The application of deep cryogenic treatment alone 
allows for a 30% reduction in wear of the alloy, Vw, while the combination of deep cryo-
genic treatment with precipitation hardening reduces the volumetric wear of the WE43 
alloy by more than double to 1.14 × 10−3 mm3/Nm. 

Figure 8. SEM microscope images and isometric 3D images of wear traces of WE43 magnesium
alloy in the initial state (a,b) and after deep cryogenic treatment combined with precipitation harden-
ing (c,d).

The tribological tests that were carried out by the authors showed that the magne-
sium alloy in its initial state was characterized by the worst tribological properties (the
largest surface area of the wear trace and the volumetric wear calculated on its basis,
Vw = 2.32× 10−3 mm3/Nm) (Figures 8 and 9). The application of deep cryogenic treatment
alone allows for a 30% reduction in wear of the alloy, Vw, while the combination of deep
cryogenic treatment with precipitation hardening reduces the volumetric wear of the WE43
alloy by more than double to 1.14 × 10−3 mm3/Nm.

The analysis of the results linear wear Lw (Figure 10a) confirms a significant reduction
of this type of wear for the WE43 alloy subjected to sub-zero treatment at −196 ◦C/24 h,
after solution treatment at 545 ◦C/8 h, and after aging for 24 h. The alloy in the initial state
was characterized by linear wear of Lw = 92.4 µm, while the treatment that was carried
out allowed for reducing this value by more than 53%, to 43 µm. The mean stabilized
coefficient of dry friction, µmean, in rotary motion for the friction couple ZrO2 ball/WE43
alloy (Figure 10b) oscillated around µmean = 0.48 for the samples in the initial state. Lower
values were recorded for samples after sub-zero treatment and after solution treatment
combined with sub-zero treatment, µmean = 0.41, and µmean = 0.44 after sub-zero treatment
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combined with precipitation hardening. The above results corroborate that increasing the
amount of β-phase lamellar precipitates by introducing deep cryogenic treatment to the
precipitation hardening process effectively reduces the tribological wear of the investigated
alloy. Similar observations can be found in the literature in works on magnesium alloys
with aluminium [16,21] and gadolinium [22–26] additions, and in our previous papers
concerning WE54 magnesium alloy [27,28].
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Figure 10. Linear wear, Lw—(a) mean stabilized friction coefficient, µmean—(b) of WE43 alloy in
the initial state and after different heat treatment variants. The error bars in the figures represent a
standard deviation (σLw = 1.32–6.82 µm; σµmean = 0.046–0.064).

The results of microanalysis of the chemical composition (EDS) of the wear traces of
the WE43 alloy shown in Figure 11 confirm that the applied heat treatment and the friction
process itself did not have a significant influence on the change of the alloy composition.
Moreover, no deposition of wear products of the counterpartners, i.e., the ZrO2 balls, was
observed on the surface, which was confirmed by the absence of their wear observed
during profilometric and microscopic measurements. The analysis results are consistent
with the alloy certificate provided by the manufacturer, Luxfer Mel Technologies.
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3.3. Determination of Wear Micromechanisms of WE43 Alloy in Rotary Motion

Figure 12 shows the results of examination of the wear trace morphologies (after dry
friction in rotary motion) of WE43 magnesium alloy performed on a scanning electron
microscope (SEM). Figure 13 presents SEM images of the surface of ZrO2 balls interacting
with the studied alloy during tribological tests.
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Figure 13. SEM images of ZrO2 balls after tribological tests in a pair with as-delivered WE43 alloy—
(a); after deep cryogenic treatment—(b); after solution treatment combined with DCT—(c) and after
sub-zero treatment combined with precipitation hardening—(d).

Observation of the wear traces (Figure 12) of the WE43 alloy allows for concluding
that during wear in rotary motion, abrasive wear is the dominant wear mechanism. The
images show numerous grooves and depressions parallel to the direction of sliding (mi-
croploughing). After solution treatment, areas of microcutting of the alloy can also be
observed. Deep cryogenic treatment introduced to the precipitation hardening procedure
effectively reduces this process. The images also show adhesion formed as a result of the
detachment of wear particles from the alloy surface, which were displaced and reattached
to the alloy. Profilometric investigations and observation of SEM images allow also to
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notice that DCT combined with precipitation hardening significantly reduces the process
of deep scratches formation. The wear tracks are much smaller in comparison with WE43
alloy in the as-delivered condition. These mechanisms do not differ from the alloy with
a higher yttrium content studied in our previous articles [14,27,28]. Similar findings can
be found in the literature on magnesium–aluminum alloys, such as AE42, AZ91 [33,36] or
Mg–1.5 Zn–0.15 Gd [22].

Microscopic observation after tribological testing was also performed on the ZrO2
counter-specimens, on which no wear was observed. However, areas of material transferred
from the tested WE43 magnesium alloy samples are visible (Figure 13a–c). Deep cryogenic
treatment combined with precipitation hardening also facilitates reduction of this process
(Figure 13d). The absence of wear of the ZrO2 balls is mainly due to the large difference in
hardness of the materials tested.

4. Conclusions

The paper presents the results of micromechanical and tribological studies, and the
analysis of wear mechanisms occurring during the process of dry friction in rotary motion
of magnesium alloy with a 4% yttrium content (WE43), after deep cryogenic treatment and
after various stages of precipitation hardening combined with sub-zero treatment. The
research carried out by the authors allows the following conclusions to be reached:

1. Deep cryogenic treatment (DCT) combined with precipitation hardening by changing
the structure effectively improves the micromechanical and tribological properties of
alloy WE43. Among others, a more than 15% increase in hardness HIT and Young’s
modulus EIT, as well as a change in parameters such as maximum indenter penetration
depth, surface area and indent volume were demonstrated. The lowest values of total
indentation work Wtot were observed with an about 14% share of elastic deformation
work ηIT.

2. As the maximum indenter load Fmax increased, a considerable decrease in the mi-
cromechanical properties (HIT, EIT) was observed, which indicates a strong effect of
the increase in the surface area of the indents made on the WE43 magnesium alloy
on the values measured by means of microindentation. The measurements showed a
small scatter of results, 3% on average, and dependence of the tested quantities on
the applied heat treatment was preserved for all loads.

3. The tribological tests and the parameters tested, such as: volumetric wear Vw, linear
wear Lw and stabilized friction coefficient µmean, indicate a twofold improvement
in wear resistance of WE43 magnesium alloy subjected to deep cryogenic treat-
ment in combination with precipitation hardening, compared to the alloy in the
as-delivered condition.

4. Profilometric studies, microscopic observation and microanalysis of the chemical
composition (EDS) showed that the proposed treatment (DCT + precipitation hard-
ening) is effective in reducing the area (depth and width) of the wear traces of the
magnesium-rare earth alloy and reduces the cutting process as well as the adhesion of
alloy material to counter-specimens, i.e., ZrO2 balls, The heat treatment applied and
the friction process itself have no significant effect on the change in alloy composition.

5. The examination of the morphology of the wear traces allows for the conclusion that
abrasive wear was the main wear mechanism of the WE43 alloy. The SEM images
showed phenomena characteristic of this wear mechanism, such as microploughing,
microcutting and adhesion.

6. Further research is being conducted to understand the exact mechanism affecting the
improvement of properties of magnesium alloys with rare earth metals under deep
cryogenic treatment. The combination of deep cryogenic treatment and precipitation
hardening is an effective method to improve the service life of WE43 magnesium alloy.
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