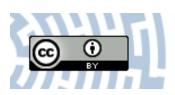


You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: A separately continuous function not somewhat continuous

Author: Wojciech Bielas

Citation style: Bielas Wojciech. (2021). A separately continuous function not somewhat continuous. "Annales Mathematicae Silesianae" ([Nr] 0, 2021, art. no. 0013, s. 1-4), DOI:10.2478/amsil-2021-0013



Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Annales Mathematicae Silesianae (2021), DOI: 10.2478/amsil-2021-0013

A SEPARATELY CONTINUOUS FUNCTION NOT SOMEWHAT CONTINUOUS

WOJCIECH BIELAS

Abstract. We construct a separately continuous function $f: \mathbb{Q} \times \mathbb{Q} \to [0, 1]$ and a dense subset $D \subseteq \mathbb{Q} \times \mathbb{Q}$ such that f[D] is not dense in $f[\mathbb{Q} \times \mathbb{Q}]$, in other words, f is separately continuous and not somewhat (feebly) continuous.

1. Introduction

The notion of a feebly continuous function was introduced and examined by Z. Frolík ([1]). Some authors say somewhat continuous function instead of feebly continuous function, see for example [2]. A function f is somewhat continuous, if the preimage $f^{-1}[U]$ of any non-empty open subset U has nonempty interior. By [2, Theorem 3], any surjection $f: P \to Q$ is somewhat continuous if and only if the image f[M] of a dense subset $M \subseteq P$ is dense in Q.

If X is a Baire space, Y is of weight ω and Z is a metric space, then any separately continuous function $f: X \times Y \to Z$ is somewhat continuous, see [3]. Recall that a function $f: X \times Y \to Z$ is separately continuous, if functions $f(x, \cdot)$ and $f(\cdot, y)$ are continuous for each $(x, y) \in X \times Y$. T. Neubrunn observed that the assumption of separate continuity can be weakened, see [4, Theorem 2 and Theorem 3]. Additionally, he presented counterexamples,

Received: 08.07.2021. Accepted: 26.09.2021.

⁽²⁰²⁰⁾ Mathematics Subject Classification: 54C08, 54C30, 54G20.

Key words and phrases: separate continuity, somewhat continuous function.

^{©2021} The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

which witness that both conditions: X being Baire and Y being second countable, are necessary, see [4, Example 3 and Example 4]. In [4, Example 3], it is defined a function $f: (0,1) \times Y \to \{0,1\}$ such that all functions $f(\cdot, y)$ are quasicontinuous and all functions $f(x, \cdot)$ are somewhat continuous, but f is not somewhat continuous. But [4, Example 4] shows that there is a function $f: (\mathbb{Q} \cap (0,1)) \times (1,\infty) \to \{0,1\}$ such that all sections $f(\cdot, y)$ are quasicontinuous and all sections $f(x, \cdot)$ are somewhat continuous, but f is not somewhat continuous.

We construct a separately continuous function $f: \mathbb{Q} \times \mathbb{Q} \to [0,1]$ and a dense subset $D \subseteq \mathbb{Q} \times \mathbb{Q}$ such that the image $f[\mathbb{Q} \times \mathbb{Q}] \subseteq [0,1]$ is dense and f[D]is a singleton, hence f is not somewhat continuous. The construction relies on the following observation. If $(x_0, y_0), \ldots, (x_n, y_n)$ are such that $x_i \neq x_j$ and $y_i \neq y_j$ for $i < j \leq n$, then the intersection

$$(\{x_n\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_n\}) \cap \bigcup_{i < n} (\{x_i\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_i\})$$

is finite. Thus, having defined a continuous function on the set $\bigcup_{i < n} (\{x_i\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_i\})$, we can easily extend it to a continuous function on the set $\bigcup_{i \leq n} (\{x_i\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_i\})$. It remains to observe that there exists a dense subset $\{(x_n, y_n) : n \in \mathbb{N}\} \subseteq \mathbb{Q} \times \mathbb{Q}$ such that

$$\mathbb{Q} \times \mathbb{Q} = \bigcup_{n \in \mathbb{N}} ((\{x_n\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_n\}))$$

with $x_i \neq x_j$ and $y_i \neq y_j$ for i < j.

2. The construction

We proceed to establish the following lemma.

LEMMA 1. If $(x_0, y_0), \ldots, (x_n, y_n)$ in $\mathbb{Q} \times \mathbb{Q}$ are different points and $\xi_i, \eta_i \in [0, 1)$ for $0 \leq i < n$, then there exists a continuous function $f: (\{x_n\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_n\}) \to [0, 1]$ such that

• f(x,y) = 1 iff $(x,y) = (x_n, y_n);$

- $f(x_n, y_i) = \xi_i$ and $f(x_i, y_n) = \eta_i$, for any $0 \le i < n$;
- $\operatorname{cl} f[\{x_n\} \times \mathbb{Q}] = [0,1].$

PROOF. The set $A = \{(x_n, y_i) : i \leq n\} \cup \{(x_i, y_n) : i \leq n\}$ is finite, hence there exists a continuous function $g : \mathbb{R} \times \mathbb{R} \to [0, 1]$ such that $g(x_n, y_n) = 1$, $g(x_n, y_i) = \xi_i$ and $g(x_i, y_n) = \eta_i$, for any i < n. Let $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be given by the formula

$$h(x, y) = \max\{0, 1 - \operatorname{dist}((x, y), A)\}\$$

for any $(x, y) \in \mathbb{R} \times \mathbb{R}$. The restriction

$$(h \cdot g)|_{(\{x_n\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_n\})} = f$$

is the desired function.

If $A \subseteq X \times Y$, then the sets $A_x = \{y \in Y : (x, y) \in A\}$ and $A^y = \{x \in X : (x, y) \in A\}$ are called *sections*. Fix a subset

$$A = \{(x_n, y_n) \colon n \in \mathbb{N}\} \subseteq \mathbb{Q} \times \mathbb{Q}$$

such that all sections A_{x_n}, A^{y_n} are singletons and $\{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\} = \mathbb{Q}$.

THEOREM 1. If A is defined as above, then there exists a separately continuous function $f: \mathbb{Q} \times \mathbb{Q} \to [0, 1]$ such that f[A] is a singleton, but the image $f[\mathbb{Q} \times \mathbb{Q}]$ is dense.

PROOF. Let $f_0: (\{x_0\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_0\}) \to [0, 1]$ be any continuous function such that $f_0(x_0, y_0) = 1$ and $\operatorname{cl} f_0[\{x_0\} \times \mathbb{Q}] = [0, 1]$. Assume that we have defined functions f_0, \ldots, f_{n-1} such that if i < k < n, then

- (1) $f_k: (\{x_k\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_k\}) \to [0, 1]$ is continuous,
- (2) $f_k(x_k, y_k) = 1$,
- (3) $f_k(x_k, y_i) = f_i(x_k, y_i)$ and $f_k(x_i, y_k) = f_i(x_i, y_k)$.

Using Lemma 1 with parameters $\xi_i = f_i(x_n, y_i)$ and $\eta_i = f_i(x_i, y_n)$ for any i < n, we obtain a continuous function

$$f_n \colon (\{x_n\} \times \mathbb{Q}) \cup (\mathbb{Q} \times \{y_n\}) \to [0,1]$$

such that conditions (1)–(3) are satisfied for $i < k \leq n$. Finally, let $f: \mathbb{Q} \times \mathbb{Q} \to [0,1]$ be given by the formula $f(x_m, y_n) = f_m(x_m, y_n)$ for $m, n \in \mathbb{N}$.

Fix $(x_m, y_n) \in \mathbb{Q} \times \mathbb{Q}$. For each $y_k \in \mathbb{Q}$, we have $f(x_m, y_k) = f_m(x_m, y_k)$, which implies that $f|_{\{x_m\} \times \mathbb{Q}}$ is continuous. By condition (3), $f_k(x_k, y_n) = f_n(x_k, y_n)$, hence $f(x_k, y_n) = f_k(x_k, y_n) = f_n(x_k, y_n)$, which implies that $f|_{\mathbb{Q} \times \{y_n\}}$ is continuous.

Functions f and f_0 agree on the set $\{x_0\} \times \mathbb{Q}$, hence $\operatorname{cl} f[\{x_0\} \times \mathbb{Q}] = [0, 1]$. \Box

COROLLARY 1. There exists a separately continuous function $f : \mathbb{Q} \times \mathbb{Q} \to [0,1]$ which is not somewhat continuous.

PROOF. It suffices to assume that the set A in Theorem 1 is also dense in $\mathbb{Q} \times \mathbb{Q}$.

References

- Z. Frolík, Remarks concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11(86) (1961), no. 3, 381–385.
- [2] K.R. Gentry, H.B. Hoyle III, Somewhat continuous functions, Czechoslovak Math. J. 21(96) (1971), no. 1, 5–12.
- [3] N.F.G. Martin, Quasi-continuous functions on product spaces, Duke Math. J. 28 (1961), no. 1, 39–43.
- [4] T. Neubrunn, Generalized continuity and separate continuity, Math. Slovaca 27 (1977), no. 3, 307–314.

Institute of Mathematics University of Silesia in Katowice Bankowa 14 40-007 Katowice Poland e-mail: wojciech.bielas@us.edu.pl