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Abstract: The results presented in this communication concern visible and near-IR emission of Pr3+

ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass
with Ga2O3, gallo-germanate glass modified by BaO/BaF2, and multicomponent fluoride glass based
on InF3. Glasses present several emission bands at blue, reddish orange, and near-infrared spectral
ranges, which correspond to 4f–4f electronic transitions of Pr3+. The profiles of emission bands and
their relative intensity ratios depend strongly on glass-host. Visible emission of Pr3+ ions is tuned
from red/orange for borate-based glass to nearly white light for multicomponent fluoride glass
based on InF3. The positions and spectral linewidths for near-infrared luminescence bands at the
optical telecommunication window corresponding to the 1G4→ 3H5, 1D2→ 1G4, and 3H4→ 3F3,3F4

transitions of Pr3+ are dependent on glass-host matrices and excitation wavelengths. Low-phonon
fluoride glasses based on InF3 and gallo-germanate glasses with BaO/BaF2 are excellent candidates
for broadband near-infrared optical amplifiers. Spectroscopic properties of Pr3+-doped glasses are
compared and discussed in relation to potential optical applications.

Keywords: inorganic glasses; Pr3+ ions; luminescence; spectroscopic properties

1. Introduction

Praseodymium-doped inorganic glasses, due to several visible and near-infrared
emission transitions, are interesting from the spectroscopic point of view. Systematic studies
demonstrate that radiative and non-radiative relaxation from the excited states of Pr3+ ions
depend significantly on the glass-host matrices. These aspects for borate [1], phosphate [2],
silicate [3], tellurite [4], germanate [5], and other non-oxide glass systems [6–10] are well
documented in literature. Emission properties of Pr3+-doped glasses have been examined
at visible wavelengths [11–17] and the near-infrared (NIR) region [18–21]. Most published
papers are related to luminescence spectroscopy of Pr3+ ions in glasses belonging to the
heavy metal glass family [22–28]. Special attention has been paid to Pr3+ ions in silicate glass
containing lead [29–31]. Further comprehensive investigations indicate that the emission
bands associated with electronic transitions of Pr3+ ions are enhanced in the presence of
silver [32–35] or gold [36] nanoparticles embedded into glass matrices.

Here we present comparative studies on selected inorganic glasses containing Pr3+, i.e.,
borate glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass
modified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Based on
luminescence spectra and their decays, several spectroscopic parameters of Pr3+ ions were
determined. Previous investigations illustrated quite well the relationship between the
structural modifications of glasses and their emission and spectroscopic properties. For
example, several glass-modifiers were introduced to borate glasses doped with Pr3+ ions.
Anjaiah et al. [37] studied luminescence properties of Pr3+-doped lithium borate glasses
modified by MO (where M = Zn, Ca, Cd). Based on some spectroscopic parameters such as
the Judd–Ofelt intensity parameter Ω2 and the bonding parameter δ, it was suggested that
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the covalent environment for Pr3+ increased in the following direction CdO < CaO < ZnO,
and glass modified by CdO becomes a better candidate for thermoluminescence among
the three studied Pr3+-doped glass systems. Spectroscopic properties of Pr3+ are also
changed during modification of the borate glass composition with lithium oxide and
fluoride. Jayasankar and Babu [38] revealed that the radiative lifetimes for the excited states
of Pr3+ ions are reduced with decreasing lithium oxide concentration, while their values
increase with increasing LiF content. The local structure and some properties of borate
glasses are also changed with Li2O [39] and Na2O [40], respectively.

Furthermore, Pr3+-doped borate-based glasses modified by MO (M = Ca, Sr, Ba)
have also been studied using emission spectroscopy. The emission bands related to
the 1D2 → 3H4 transition of Pr3+ ions are slightly shifted to lower wavelengths (nephelaux-
etic effect), and the 1D2 measured lifetimes are reduced in the presence of glass-modifiers
in the direction BaO → SrO → CaO [41]. Further modification of borate glass realized
by replacement of BaO by BaF2 results in spectral shift of the reddish orange 1D2 → 3H4
transition of Pr3+ ions toward shorter wavelengths [42]. The changes in luminescence
decays, profiles of emission bands, and their relative intensity ratios will be stronger for
glass-host matrices, including different glass-formers. These effects were examined previ-
ously for some glass systems singly doped with Tm3+ [43], Sm3+ [44], Dy3+ [45], Yb3+ [46],
and glass co-doped with Yb3+/Er3+ [47]. The intention of our work is to present how kinds
of glass-host matrix influence the spectral profiles of luminescence bands of Pr3+ ions and
their relative intensity ratios measured in the visible and near-infrared ranges. Based on
spectroscopic parameters of Pr3+ ions, the glass-host matrices are selected as promising
materials for multicolor visible light sources or broadband near-infrared optical amplifiers.

2. Materials and Methods

Selected inorganic glasses doped with Pr3+ ions were synthesized using traditional
high-temperature melt-quenching technique. Their chemical compositions and melting
conditions are given in Table 1. For the studied glass samples, the activator concentration
was the same (0.1 mol%). Pr3+-doped lead-phosphate glass with Ga2O3 (PPG-Pr) was also
selected to study reddish orange emission varying with activator concentration. Samples
of PPG-Pr with various Pr3+ concentrations were prepared. They are given in Table 2. The
appropriate precursor metal oxides and/or fluorides of high purity (99.99%) were mixed in
a Pt crucible and then melted in a special glove-box in an Ar atmosphere. Glass samples
with dimension = 10 mm × 10 mm and thickness = 2 mm were obtained.

Table 1. Chemical compositions and melting conditions for inorganic glasses doped with Pr3+.

Glass Code Chemical Composition [mol%] Melting Conditions

IZSBGL-Pr 37.9InF3-20ZnF2-20SrF2-16BaF2-4GaF3-2LaF3-0.1PrF3 900 ◦C/60 min
GBFG-Pr 60GeO2-25BaO-5BaF2-9.9Ga2O3-0.1Pr2O3 1200 ◦C/45 min
GBG-Pr 60GeO2-30BaO-9.9Ga2O3-0.1Pr2O3 1200 ◦C/45 min
PPG-Pr 45PbO-45P2O5-9.9Ga2O3-0.1Pr2O3 1100 ◦C/30 min
BBG-Pr 60B2O3-30BaO-9.9Ga2O3-0.1Pr2O3 1250 ◦C/45 min

Table 2. Chemical compositions and melting conditions for lead-phosphate glass doped with Pr3+.

Glass Code Chemical Composition [mol%] Melting Conditions

PPG-0.1Pr 45PbO-45P2O5-9.9Ga2O3-0.1Pr2O3
45PbO-45P2O5-9.5Ga2O3-0.5Pr2O3
45PbO-45P2O5-9.0Ga2O3-1.0Pr2O

345PbO-45P2O5-7.5Ga2O3-2.5Pr2O3

1100 ◦C/30 min
PPG-0.5Pr 1100 ◦C/30 min
PPG-1.0Pr 1100 ◦C/30 min
PPG-2.5Pr 1100 ◦C/30 min

In the next step, absorption and luminescence measurements were carried out. The
UV-VIS-NIR spectrophotometer (Cary 5000, Agilent Technology, Santa Clara, CA, USA) was
used to measure absorption spectra. Luminescence spectra and their decays were registered
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using a VIS/NIR laser system. The laser equipment consisted of a Photon Technology
International (PTI) Quanta-Master 40 (QM40) UV/VIS Steady State Spectrofluorometer
(Photon Technology International, Birmingham, NJ, USA) coupled with tunable pulsed
optical parametric oscillator (OPO), pumped by a third harmonic of a Nd:YAG laser (Opotek
Opolette 355 LD, OPOTEK, Carlsband, CA, USA), xenon lamp as a light source, double
200 mm monochromator, multimode UVVIS PMT R928 detector (PTI Model 914), and
Hamamatsu H10330B-75 detector (Hamamatsu, Bridgewater, NJ, USA). Resolution for
spectra measurements was ±0.2 nm. Decays were measured with an accuracy of ±2 µs.
Transmittance spectra were performed on the Nicolet iS50 ATR spectrometer (Thermo
Fisher Scientific Instruments, Waltham, MA, USA).

3. Results and Discussion

Five glass-host matrices given in Table 1 and referred to as IZSBGL-Pr, GBFG-Pr,
GBG-Pr, PPG-Pr, and BBG-Pr were selected for comparative spectroscopic investigations.
It should be noted that all glass samples were obtained under the same experimental
conditions in order to compare their spectroscopic properties. It is well known that the
conditions of synthesis are more restrictive for pure fluoride glasses in contrast to oxide
glass systems. In our case, all samples were prepared in a glove-box under an atmosphere
of dry argon (O2, H2O < 0.5 ppm). This procedure is especially important for IZSBGL-Pr,
due to fluorine evaporation during the glass synthesis. For that reason, a small amount of
ammonium bifluoride (NH4HF2) as a fluorinating agent was also added before melting.
Unfortunately, the actual concentration of fluorine ions has not been estimated. The final
composition of IZSBGL-Pr may be somewhat different from the nominal starting one due
to fluorine losses during the melting process. Previously published works suggest that the
fluorine losses could be quite large [48–52]. An another important factor that effectively
quenched the luminescence is the concentration of OH- groups, which can be calculated
from the transmittance spectrum. Figure 1 shows transmittance spectra measured for glass
samples in the 3950–2950 cm−1 frequency region. The absorption band centered at about
3400 cm−1 is ascribed to the vibration of OH- groups.
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For fluoride glass based on InF3, the concentration of OH– groups is extremely low.
The absorption coefficient and content of hydroxyl groups are close to 0.088 cm−1 and
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3.82 ppm [53], respectively. The reduced concentration of hydroxyl groups is necessary to
obtain pure fluoride glass with relatively high quantum efficiency and to enhance near-
IR and mid-IR emission [54]. Further investigations indicate that the band intensity of
hydroxyl groups is considerably smaller for mixed oxyfluoride gallo-germanate glass with
BaF2 (GBFG-Pr) than oxide glass (GBG-Pr). The residual absorption of OH- groups is
reduced drastically in gallo-germanate glass, where BaO was replaced by BaF2 [55]. These
aspects are also important for phosphate glasses due to the hygroscopic nature of P2O5. The
concentration of hydroxyl groups is usually higher in phosphate glass compared to other
oxide glasses. Our recent studies for the lead-phosphate system [56] clearly demonstrated
that the intensity of the IR band related to vibration of hydroxyl groups is considerably
lower for glass samples synthesized in glove-box than in open air. These phenomena
are very important from the optical point of view. Based on our published works [56–59],
different physicochemical properties of the studied Pr3+-doped glasses are also summarized
in Table 3.

Table 3. Different physicochemical properties of the studied Pr3+-doped inorganic glasses [56–59].

Parameters
Glass-Host

IZSBGL-Pr GBG-Pr PPG-Pr BBG-Pr

Average molecular weight (M g mol−1) 140.94 127.63 183.22 106.63
Density (d g cm−3) 4.38 4.58 4.11 3.19

Pr3+ content (molar %) 0.1 0.1 0.1 0.1
Pr3+ concentration (Nx1019 ions cm−3) 1.87 4.31 2.70 3.59

Average interionic separation (R Å) 18.5 14.0 16.3 14.9
Critical transfer distance (R0 Å) 11.3 6.5 8.5 7.8

Refractive index (n) 1.48 1.73 1.75 1.61
Glass transition temperature (Tg

◦C) 295 620 437 566
Phonon energy of the host (hω cm−1) 510 790 1120 1400
Judd–Ofelt parameters Ωt (10−20 cm2)

Ω2 2.01 6.93 1.81 2.17
Ω4 5.25 19.68 18.33 9.75
Ω6 5.10 8.95 15.51 2.62

Radiative transition rate (AJ s−1)
from 3P0 state (Pr3+) 30,200 123,050 95,250 60,450
from 1D2 state (Pr3+) 2440 8930 8330 3370

Quantum efficiency 1D2 Pr3+ (η%) 88 98 50 5

From the average molecular weight, density, Pr3+ ion concentration, and refractive
index exhibited in Table 3, various other radiative parameters were calculated. The three
phenomenological intensity parameters Ωt (where t = 2, 4, 6) were calculated by using
the appropriate relations from the Judd–Ofelt (J–O) theory. In particular, the J–O intensity
parameter Ω2 is attributed to the sensitivity to the local glass structure of the rare earth
sites. It is affected by symmetry/asymmetry sites and covalent/ionic bonding character
between Pr3+ ions and the nearest surroundings. In other words, the lower values of
Ω2 suggest a higher degree of ionic bonding between rare earth ions and their ligands.
It is clearly seen that the value of Ω2 is greater for glass GBG-Pr, in contrast to fluoride
glass IZSBGL-Pr and oxide glasses assigned to PPG-Pr and BBG-Pr, suggesting a higher
degree of covalence between Pr3+ ions and the surrounding ligands. Independently of
glass-host, the radiative transition rates obtained from the J–O calculations are significantly
higher for the 3P0 state than the lower-lying 1D2 state of Pr3+ ions. Further calculations
from the relevant expression η = τm/τrad × 100% (τm and τrad are measured and radiative
lifetime, respectively, calculated from the J–O theory) indicate that the quantum efficiency
for the excited state 1D2 (Pr3+) is significantly larger for low-phonon oxide (GBG-Pr) and
fluoride (IZSBGL-Pr) glasses, confirming their suitability for near-infrared luminescence
applications. Glass transition temperature Tg for the studied glass-host matrices was also
determined from DSC curve measurements. The value of Tg is much lower for fluoride
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glass IZSBGL-Pr compared to other systems. Glass GBG-Pr is characterized by the highest
glass transition temperature among the studied glass systems. It is also interesting to note
that the value of Tg changes from 620 ◦C (GBG-Pr) to 599 ◦C (GBFG-Pr) in gallo-germanate
glass where BaO was partially substituted by BaF2 [59]. Furthermore, the energy level
diagram for Pr3+ ions schematized in Figure 2 favors several visible and near-infrared
emission transitions.
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The spectroscopic results for Pr3+ ions in fluoride glass based on InF3 (IZSBGL-Pr),
borate glass with Ga2O3 and BaO (BBG-Pr), lead-phosphate glass with Ga2O3 (PPG-Pr),
and gallo-germanate glassses modified by BaO/BaF2 (referred to as GBG-Pr and GBFG-Pr)
are presented and discussed here.

Figure 3 presents absorption (a,b) and visible emission (c,d) spectra and emission de-
cays (e,f) from 1D2 state of Pr3+ ions in the studied glass systems. Absorption spectra consist
of characteristic bands which correspond to transitions originating from ground state 3H4 to
the higher-lying excited states of praseodymium ions. The most intense bands centered at
445 nm and 590 nm are related to 3H4→ 3P2 and 3H4→ 1D2 transitions of Pr3+, respectively.
The UV cut-off wavelength, defined as the intersection between the zero baseline and the
extrapolation of absorption edge, is located in the 300–350 nm range. In general, the absorp-
tion edge is shifted to shorter wavelengths from oxide borate glass BBG-Pr to fluoride glass
IZSBGL-Pr. Visible emission spectra were excited at 3P2 state (λexc = 445 nm) and show
several characteristic bands of Pr3+ ions. The most intense bands are located in the blue
and reddish orange spectral ranges and correspond to 3P0 → 3H4, 1D2 → 3H4, 3P0 → 3H6,
and 3P0 → 3F2 electronic transitions of Pr3+.

Further analysis demonstrates that the relative integrated intensities of emission bands
located in the blue and reddish orange region are completely different and depend strongly
on kind of glass-host. Previous studies revealed that fluorescence intensity ratio, referred
to as red-to-blue R/B [60] or orange-to-blue O/B [61], decreases with increasing Pr3+ ion
concentration. In our case, fluorescence intensity ratio IREDDISH-ORANGE/IBLUE varying
with glass-host was also estimated and schematized in Figure 3. This factor is enhanced
rapidly from fluoride glass IZSBGL-Pr to borate-based glass BBG-Pr, due to the increase in
the non-radiative rates. As a consequence, the 3P0 state is depopulated very quickly, and the
excitation energy is transferred non-radiatively to the lower-lying state 1D2 (Pr3+). It can be
well explained by the phonon energy of the host (Table 3), which increases from 510 cm−1

(IZSBGL-Pr) to 1400 cm−1 (BBG-Pr). Thus, high-phonon borate glass BBG-Pr is favored to
bridge the energy gap between 3P0 and 1D2 states of Pr3+ ions, and reddish orange emission
due to 1D2 → 3H4 transition is dominant. This was also confirmed by luminescence decay
analysis. The multi-phonon relaxation rates of Pr3+ increase with increasing phonon energy
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from IZSBGL-Pr to BBG-Pr. Owing to higher multi-phonon relaxation rates, the measured
luminescence lifetimes of 1D2 (Pr3+) are reduced from fluoride glass IZSBGL-Pr to borate-
based glass BBG-Pr. Furthermore, luminescence decays from 1D2 state in all glass samples
containing 0.1 mol% Pr3+ ions are mono-exponential. According to the excellent review
article published recently by Tanner et al. [62], mono-exponential decay using the Förster
expression for WET can be given for electric-dipole type transfer by:

ID(t) = ID(0) exp
[
−
(

1
τD

+ WET

)
t
]

(1)

or the following relation:

ID(t) = ID(0) exp

[(
−1−

(
R0

R

)6
)(

t
τD

)]
(2)

where R0 is critical transfer distance (also called Förster radius), R is the average interionic
separation, equal to (3/4πN)1/3, and N denotes activator concentration.
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The energy transfer and cross-relaxation processes are neglected when the average
interionic separation R between Pr3+ ions is greater than the critical transfer distance R0.
Our studies clearly indicate that calculated values of R for all studied glass-host matrices
containing 0.1 mol% Pr3+ ions are greater than the Förster distances R0 (Table 3). Previous
results obtained for Pr3+-doped ZBLAN fluoride glass suggest that the average distance is
smaller than the critical transfer distance and the energy transfer process will promote the
non-exponential decay from the 1D2 state for activator (Pr3+) content ≥ 0.5 mol% [63].

Among inorganic glass systems, it is also found that the measured 1D2 luminescence
lifetime is longer than the 3P0 lifetime of Pr3+ ions. This was confirmed by luminescence
decay curve measurements for Pr3+ ions in multicomponent fluoro-phosphate glasses [15],
oxyfluoroborate glasses [17], lead germanate glasses [23], and borosilicate glasses [61]
as well as tellurite [64] and zinc telluro-fluoroborate [65] glass systems. Luminescence
lifetimes for 3P0 and 1D2 states of Pr3+ ions in different glass-host matrices are presented in
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Table 4. Also, the x and y of CIE chromaticity coordinates for IZSBGL-Pr, GBFG-Pr, GBG-Pr,
PPG-Pr, and BBG-Pr systems were calculated from the emission spectra. The results are
given in Table 5. They are shown in the chromaticity diagram in Figure 4.

Table 4. Luminescence lifetimes for 3P0 and 1D2 states of Pr3+ ions in inorganic glasses.

Glass-Host Composition [mol%] 3P0 [µs] 1D2 [µs] Ref.

57ZrF4-34BaF2-4AlF3-4.5LaF3-0.5PrF3 37 - [8]
50SiO2-10Al2O3-2MgO-20CaO-15SrO-3BaO-0.1Pr2O3 115 - [11]

74.8TeO2-15Sb2O3-10WO3-0.2Pr6O11 11.73 - [12]
60P2O5-4B2O3-7Al2O3-10K2O-17.95BaO-0.05Pr2O3 - 173 [13]

49.5P2O5-10AlF3-10BaF2-10SrF2-10PbO-10MxOy-0.5Pr6O11 10–11 14–17 [15]
M = Li, Na, K, Zn, Bi

60P2O5-4B2O3-7Al2O3-10K2O-17.9BaO-0.1Pr2O3 - 137 [16]
55SiO2-8B2O3-5Al2O3-14Li2O-2Na2O-10GeO2-5.9Y2O3-0.1Pr2O3 - 73 [16]

75TeO2-20ZnO-5Na2O-0.1Pr2O3 - 51 [16]
69H3BO3-20Li2CO3-10LiF-1Pr2O3 25.1 30 [17]

60PbO-40GeO2-0.05Pr2O3 6 145 [23]
5ZnO-15PbO-20WO3-59TeO2-1Pr6O11 4.5 - [27]

44P2O5-17K2O-9Al2O3-23.9PbO-6Na2O-0.1Pr6O11 - 66 [28]
30PbO-5Bi2O3-64SiO2-1Pr2O3 69 - [31]

25Na2O-5LaF3-10CaF2-10AlF3-49.9B2O3-0.1Pr6O11 - 51 [59]
30Li2CO3-20Al2O3-10B2O3-39.9SiO2-0.1Pr2O3 85.5 108.2 [61]

60TeO2-25ZnO-10BaO-4.5La2O3-0.5Pr2O3 21 39 [64]
29.95B2O3-30TeO2-16ZnO-10ZnF2-7CaF2-7BaF2-0.05Pr2O3 45 76 [65]

10Li2O-10PbO-9.95Al2O3-70B2O3-0.05Pr6O11 - 165 [66]

Table 5. CIE chromaticity coordinates for the studied inorganic glasses doped with Pr3+.

Glass Code CIE Chromaticity Coordinates

(A) IZSBGL-Pr x = 0.380; y = 0.327
(B) GBFG-Pr x = 0.433; y = 0.370
(C) GBG-Pr x = 0.523; y = 0.353
(D) PPG-Pr x = 0.582; y = 0.374
(E) BBG-Pr x = 0.622; y = 0.366
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Spectroscopic studies indicate that PPG-Pr and BBG-Pr belong to inorganic glasses
emitting reddish orange emission, similar to other lead-free and lead-based [66–69] glass
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systems doped with Pr3+ published recently. It is noteworthy that the color of emission
is changed from reddish orange (BGB-Pr) to yellowish orange (BGFG-Pr) where BaO was
replaced by BaF2 (5 mol%). Based on the CIE diagram, we can conclude that emission can
be tuned from red/orange (BBG-Pr) to nearly white light region (IZSBGL-Pr) by changing
chromaticity parameters by varying the glass-host matrix.

Our previous investigations suggested that the spectral profiles of emission bands of
Pr3+ ions and their relative intensity ratios are changed during modification of glass-host. In
the orange-red region, two emission bands due to 1D2→ 3H4 (orange) and 3P0→ 3H6 (red)
transitions of Pr3+ are overlapped, and their intensities depend strongly on the glass-host.
This was well evidenced for gallo-germanate glasses modified by BaO/BaF2 [70]. Figure 5
shows reddish orange emission spectra dependent on glass-host matrix and Pr3+ content.
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From literature data, it is well known that multi-phonon relaxation (MPR) and cross
relaxation (CR) processes play an important role in population or depopulation of the 1D2
state of Pr3+ ions in inorganic glasses. The non-radiative transition rate Wnr due to the MPR
process is equal to 2.47 × 104 s−1 for glass based on InF3 [71], whereas the value of Wnr for
borate glass is approximately 103 times larger than that of the fluoride glass system [72].
The phonon energy of the host increases from IZSBGL-Pr to BBG-Pr. Thus, the excitation
energy is transferred more efficiently from the higher-lying 3P0 state to the 1D2 state, and,
consequently, reddish orange luminescence corresponding to 1D2 → 3H4 transition of Pr3+

in borate-based glass (BBG-Pr) is dominant, as mentioned above. This situation is observed
for glasses when the molar concentration of Pr3+ ions is relatively low and its value is
close to 0.1 mol%. It is generally accepted that the MPR process from the 3P0 state at lower
concentrations (usually below 0.5 mol%) favors reddish orange emission from the 1D2 state
to be more dominant [61]. For higher activator concentrations (above 0.5 mol%), the non-
radiative energy transfer processes between Pr3+ ions become efficient, and luminescence
associated to 1D2 → 3H4 transition is successfully quenched through cross-relaxation.
The following CR processes, 1D2: 3H4 → 1G4: (3F3,3F4) and 1D2: 3H4 → (3F3,3F4): 1G4,
are responsible for depopulation of the 1D2 state of Pr3+ [73]. In addition, these aspects
have been examined by us. In our case, lead-phosphate glass (PPG-Pr) was selected as an
intermediate medium, in which luminescence from both 3P0 and 1D2 states of Pr3+ ions
are well observed and the 1D2 → 3H4 transition is dominant at low activator concentration.
The results are presented in Figure 5b. It is well evidenced that the emission intensity of
1D2 → 3H4 transition is reduced, whereas the emission intensities of bands originating
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from the 3P0 state are enhanced with increasing Pr3+ concentration. These phenomena
are associated with Pr3+–Pr3+ interaction increasing and the presence of cross-relaxation
processes at higher activator concentration. A similar situation was observed for zinc-
telluro-fluoroborate glass examined as a function of Pr3+ ion concentration [66]. Our
experimental results evidently suggest that the contribution of the glass-host to the change
in the spectral factor IREDDISH-ORANGE/IBLUE and measured lifetime (Figure 3) seems to be
dominant when content of Pr3+ is relatively low (0.1 mol%). In this case, the multi-phonon
relaxation process makes an important contribution to the excited state relaxation of Pr3+

(Figure 5a). The situation was completely changed when concentration of rare earths was
relatively high (Figure 5b). Thus, the contribution of activator content was dominant. This
behavior is due to the presence of non-radiative energy transfer processes (such as cross-
relaxation), which contribute to quenching of luminescence corresponding to 1D2 → 3H4
transition of Pr3+.

Figure 6 presents near-infrared emission spectra of Pr3+ ions in inorganic glasses,
which were excited at 445 nm (3P0) and 590 nm (1D2), respectively. In order to compare
luminescence linewidth, defined as full width at half maximum (FWHM), the spectra
measured in the 1200–1650 nm range were also normalized.
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The near-infrared luminescence spectra show several bands which correspond to
1D2 → 3F3,3F4, 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3,3F4 transitions of Pr3+, respec-
tively. Their relative integrated emission intensities are changed drastically with glass-host
matrices. In particular, luminescence bands located in the so-called telecom window
(1200–1650 nm) have been examined in detail. In this spectral range, ultra-broadband
near-infrared emission of Pr3+ ions related to 1G4 → 3H5 (λp = 1330 nm) and 1D2 → 1G4
(λp = 1480 nm) transitions is observed for several inorganic glasses, which is extremely
useful for optical fiber amplifiers operating at E-, S-, C-, and L-band [74]. In some cases,
a near-infrared emission band centered at about 1600 nm is also visible. This emission
band is connected with the 3H4 → 3F3,3F4 transition of Pr3+ [75]. Interesting results are
observed for fluoride glass IZSBGL-Pr. In contrast to other studied glass systems, the
intensities of emission bands of Pr3+ ions in glass IZSBGL-Pr, covering a spectral range
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from 1200 nm to 1650 nm, depend also on the excitation wavelengths (445 nm/590 nm).
When glass IZSBGL-Pr was excited at 445 nm (3P2), the intensities of bands were extremely
low, and the near-infrared emission near 1335 nm due to the 1G4 → 3H5 transition was
dominant. The situation changed when the glass sample was excited at 590 nm (1D2). Thus,
the near-infrared emission in glass IZSBGL-Pr is the most intense, and the 1D2 → 1G4
transition centered at about 1450 nm is dominant.

Independently of excitation wavelengths, broadband near-infrared emission bands
(FWHM above 200 nm) are observed for BBG-Pr, GBG, and GBFG glasses. From the litera-
ture, it is well known that near-infrared luminescence properties of glasses containing Pr3+

ions depend strongly on the excitation wavelengths. The blue and orange excitation lines
are unusually helpful to examine conversion of blue light into near-infrared radiation and
its mechanism. These processes have been observed for some fluoride materials and other
low-phonon systems. The experimental results for glass-ceramic materials with CaF2:Pr3+

nanocrystals [76] indicated that a two-step near-infrared quantum cutting (NIR-QC) from
blue-excited 3P0 state takes place efficiently, with 1G4 acting as an intermediate state. Blue
light excitation leading to efficient population of 1G4 state also influences the relative
integrated intensities of emission bands, which correspond to near-infrared transitions
originating from both 1D2 and 1G4 states of Pr3+. A tunable amplification band depending
on the excitation wavelength used (474 nm/980 nm) has been also observed for Pr3+/Yb3+

co-doped systems, where it is possible to select 1D2 → 1G4 or 1G4 → 3H5 transition of Pr3+.
When the excitation wavelength was changed from 474 nm to 980 nm, the near-infrared
luminescence switched from the E–S bands near 1480 nm to the O–E bands centered at
1330 nm in Pr3+/Yb3+ co-doped tellurite tungstate glasses [77].

Finally, some spectroscopic parameters for Pr3+ ions were determined. One of the
most important radiative parameters is the peak stimulated emission cross-section σem,
which can be calculated using the expression:

σem =
λ4

p

8πcn2∆λ
AJ (3)

where λp is the peak emission wavelength, n—the refractive index, c—the velocity of light,
∆λ—the emission linewidth (FWHM), and AJ—the calculated radiative transition rate from
the J–O theory. The values of n and AJ are given in Table 3. It is generally accepted that a
relatively large value of σem is demanded for an efficient laser transition.

In the next step, the stimulated emission cross-section (σem), the measured emission
lifetime (τm), and the emission linewidth (FWHM) were applied to calculate the following
parameters: figure of merit FOM (σem × τm) and gain bandwidth (σem × FWHM product).
The results for the 1D2 → 1G4 transition of Pr3+ ions in the glass systems excited at 590 nm
are given in Table 6.

Table 6. Spectroscopic parameters for Pr3+ ions in the studied inorganic glass systems.

Glass Code
Spectroscopic Parameters

σem [10−20 cm2] σem × τm [10−26 cm2s] σem × FWHM [10−27 cm3]

IZSBGL-Pr 0.50 154 65
GBFG-Pr 0.98 108 206
GBG-Pr 0.97 107 201
PPG-Pr 1.28 77 165
BBG-Pr 0.37 6 81

The peak stimulated emission cross-section for PPG-Pr close to σem = 1.28 × 10−20 cm2 is
relatively large and comparable to the values 1.14× 10−20 cm2 [78] and 1.29 × 10−20 cm2 [79]
reported previously for similar phosphate-based glasses doped with Pr3+. The smaller
values of the stimulated emission cross-section (σem = 0.5 × 10−20 cm2) as well as the gain
bandwidth (σem × FWHM = 65 × 10−27 cm3) for fluoride glass IZSBGL-Pr are mainly



Materials 2022, 15, 767 11 of 14

due to the considerably lower spectral linewidth for 1D2 → 1G4 transition of Pr3+. On the
other hand, the figure of merit (FOM) for IZSBGL-Pr is the highest among the studied
glass systems.

The peak stimulated emission cross-section, the figure of merit (FOM), and the gain
bandwidth seem to be considerably smaller for glass BBG-Pr, due to its relatively large non-
radiative transition rate. For that reason, high-phonon borate-based glass BBG-Pr is useless
for near-infrared luminescence applications. The σem × FWHM product, as an important
parameter to achieve broadband and high gain amplification, is quite large for GBG and
GBFG glasses (above 200 × 10−27 cm3). Their calculated values are comparable to the one
(174.6 × 10−27 cm3) obtained for the 1D2 → 1G4 transition of Pr3+ ions in fluorotellurite
glass [80], demonstrating suitability for broadband near-infrared amplifiers.

4. Conclusions

In this work, comparative spectroscopic properties of selected inorganic glasses singly
doped with Pr3+ ions are reported. The experimental results were limited to borate-based
glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass mod-
ified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Spectroscopic
parameters for Pr3+ ions in glass samples were determined based on absorption/emission
spectra measurements and emission decay curve analysis. Emission spectra at visible
and near-infrared wavelengths were analyzed based on the energy level diagram of Pr3+.
The systematic studies revealed that profiles of emission bands and their relative inte-
grated intensity ratios depend significantly on glass-host matrices. Visible emission of
Pr3+ is modulated from red/orange for borate-based glass and lead-phosphate glass with
Ga2O3 via yellowish orange for gallo-germanate glass with BaO/BaF2 to nearly white
light for fluoride glass based on InF3. The band positions and spectral linewidths for
near-infrared luminescence at telecom range associated with the 1G4 → 3H5, 1D2 → 1G4,
and 3H4 → 3F3,3F4 transitions of Pr3+ are influenced by the kind of glass matrix and ex-
citation wavelengths. Based on several spectroscopic parameters of Pr3+ ions, it was
suggested that low-phonon fluoride glasses based on InF3 and gallo-germanate glasses
with BaO/BaF2 are promising materials for optical amplification. The results are compared
and discussed in relation to potential applications as multicolor visible light sources or
broadband near-infrared optical amplifiers.
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