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Abstract: The mechanical and tribological characteristics of the Ti-6Al-7Nb alloy were investigated
within a wide range of temperature and time parameters of thermal oxidation. The hardness, HIT, and
indentation modulus, EIT, of the alloy in question, with and without an anti-wear oxide layer, were
determined. The tribological properties of sliding couples were studied under technically dry friction
conditions, using a ball-on-disc tribometer. The test pieces were non-oxidized and oxidized Ti-6Al-
7Nb alloy discs, and Al2O3, ZrO2, and 100Cr6 balls were used as counter specimens. After thermal
oxidation, the surface of the titanium alloy was characterized by a significantly higher hardness, HIT

(8–10 GPa), compared to the surface not covered with oxide layers (3.6 GPa). The study showed that
the curvature of the loading segments increased with an increasing oxidation temperature, indicating
a strong positive dependence of hardness on the thermal oxidation temperature. The value of the
indentation modulus, EIT, was also found to increase with the increasing oxidation temperature. The
intensity of the tribological processes was strictly dependent on the oxidation parameters and the
couple’s material (Al2O3, ZrO2, 100Cr6). It has been shown that the thermal oxidation process makes
it possible to control, within a wide range, the friction-wear characteristics of the Ti-6Al-7Nb alloy.

Keywords: titanium alloys; Ti-6Al-7Nb; thermal oxidation; mechanical properties; wear; friction

1. Introduction

Friction, as a phenomenon of an irreversible energy dissipation process, is intrinsically
linked to an increase in entropy, which is a measure of disorder, leading initially to struc-
tural destruction in micro-areas of materials and subsequently to mechanical destruction [1].
Friction leads to wear and is, therefore, a process of destroying and removing material from
the surface of a solid body, resulting in various changes on the surface of a tribological
pair. The friction components’ mass, dimensions, shape, structure, and physical properties
change [2]. There are several types of wear, but it is often impossible to determine unam-
biguously what wear mechanism a material is undergoing during the friction process. This
is due to the fact that the individual wear mechanisms are interrelated and often occur
alternately or are activators of successive wear variations [3].

The problems of friction and wear are very important issues in the processes of phys-
ical, chemical, and mechanical interaction between the upper layers of moving machine
components. These phenomena are the most often-encountered industrial problems, lead-
ing to replacing components and assemblies in engineering [4]. Friction and wear processes
can cause damage to components subjected to friction, which has a negative impact on
their operation and can be one of the leading causes of significant financial losses. In
addition to the broader technical field, these problems also play an extremely important
role in biomedical applications. Wear caused by friction can lead to the loosening of joint
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endoprostheses, which, according to the literature, is one of the leading causes of revision
surgeries [5].

The main problem with the medical application of titanium and its alloys is their low
resistance to sliding wear. The consequences of this include frequent damage to the surface
layer of titanium materials and getting of often toxic products of friction into the human
body [6,7]. These products can accumulate in internal organs, such as the liver, spleen, or
abdominal cavity [8]. In addition, titanium (or other metal) surfaces in contact with each
other tend to undergo fretting, even under low loads. The simultaneous action of wear and
corrosion mechanisms (tribocorrosion) can lead to progressive material degradation [9].
Improvement in the properties of titanium and its alloys can be achieved in three ways.
The first way is to introduce alloying additives that modify the titanium alloys’ structural
characteristics and properties. Alloying additives, such as aluminum and vanadium, for
example, improve the mechanical properties of titanium alloys but often impair their
biocompatibility [10–12]. A second possibility is to modify the microstructure of titanium
alloys by heat treatment and plastic working [13–15]. However, the most effective way to
improve the performance of titanium and its alloys is to use surface-engineering methods.
Surface-modification methods can be divided into two main groups [16–18]:

• Physicochemical—involving a change in the chemical composition of the surface and
the modification of physical properties,

• Biochemical—based on the production of or attachment of organic compounds that
facilitate the binding of biologically active macromolecules to a surface.

One of the best methods to improve the poor tribological characteristics of titanium-
based materials is thermal oxidation in an air atmosphere. This technique makes it possible
to produce oxide scales with high hardness, which are also characterized by good adhesion
and high abrasion resistance [19–22]. By using the thermal oxidation method, improve-
ments in biocompatibility and corrosion resistance can also be achieved, which is extremely
important in terms of biomedical applications [23]. An essential advantage of layers of this
type is also the deposition of calcium phosphate layers on the surface of an implant [24].
The properties of the oxide films produced (microstructure, phase composition, mechani-
cal and tribological properties, biocompatibility, and corrosion resistance) can be broadly
controlled by changing the temperature and time parameters.

This paper presents the results of a study of the mechanical and friction-wear character-
istics of the Ti-6Al-7Nb alloy after thermal oxidation. The innovation in our experiment was
to determine the micromechanical properties of oxide films produced on the Ti-6Al-7Nb
alloy under increasing loading conditions (10 cycles). The tribological characteristics of
the Ti-6Al-7Nb alloy were determined for a broad range of temperature and time param-
eters of the oxidation process. Due to the fact that Ti-6Al-7Nb is a biomedical material,
tribological tests were performed in couples, with potential materials with which this
alloy can cooperate, in a biological environment (Al2O3, ZrO2). The tribological properties
were also determined for bearing steel (100Cr6). The optimal conditions of Ti-6Al-7Nb
alloy oxidation, ensuring high abrasion resistance in the examined friction couples, were
determined. The geometric structure of the wear traces was characterized using isometric
images obtained using the 3D technique.

2. Materials and Methods

A two-phase titanium alloy (α + β), designated as Ti-6Al-7Nb, was used in the study.
This material is characterized by high biotolerance, which is associated with high corrosion
resistance and very favorable mechanical properties. For these reasons, the Ti-6Al-7Nb
alloy is used in medical applications. The main alloying additions in the investigated
material are aluminum and niobium. Aluminum stabilizes the α phase, while niobium
is an element that stabilizes the β phase so that it is stable even at ambient temperatures.
The test material, in the form of 40-millimeter diameter rods, was manufactured by Böhler
Edelstahl. The chemical composition of the tested alloy is shown in Table 1.
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Table 1. Chemical composition of the Ti-6Al-7Nb alloy.

Components Content (wt %)

C Al Nb Ta Fe O H Ti

0.0426 6.01 6.93 0.1000 0.0390 0.1240 0.0056 Balance

The surface of the samples (φ = 40 mm, thickness = 5 mm) for mechanical and
tribological testing was prepared manually using grinding and polishing machines. The
polishing was performed with abrasive paper with a grit size of 300, 600, 800, and 1200.
After the grinding process, the samples were cleaned in an ultrasonic washer and then
oxidized in an electric furnace. The oxidation process was carried out for a wide range of
parameters (temperature: 600 ◦C, 650 ◦C, 700 ◦C, 750 ◦C, 800 ◦C; time: 24 h, 72 h). After
oxidation, the samples were cooled in the air. SEM images of the surface morphology
and a cross-section of the Ti-6Al-7Nb alloy after thermal oxidation were presented in our
previous paper [25].

Micromechanical tests of the Ti-6Al-7Nb alloy in its initial state and after oxide scale
formation on its surface were performed with a Micro Combi Tester–MCT3 (Anton Paar,
Corcelles-Cormondrèche, Switzerland). Tests were carried out, according to ISO 14577 [26]
and ASTM E2546 [27] standards. Measurements were carried out under increasing load
conditions (10 cycles). The load-unload curves were recorded continuously. A Berkovich
indenter with an angle of α = 65.3◦ ± 0.3◦ was used in the tests. The test parameters were
as follows: first load—50 mN; unload to—25%; max load—500 mN, time to max load—30 s,
time to unload—30 s. Hardness, HIT, and indentation modulus, EIT, were determined using
the Oliver and Pharr method [28]. The parameter HIT is a measure of the resistance to
permanent deformation or damage. The value of hardness, HIT, was determined from the
following dependence:

HIT =
Fmax

Ap
[Pa] (1)

where:

• HIT—indentation hardness;
• Fmax—maximum test force;
• Ap—projected contact area.

The indentation modulus, EIT, is calculated from the E* using an estimated sample
Poisson’s ratio (νs) using:

EIT = E∗·
(

1 − ν2
s

)
[Pa] (2)

where:

• EIT—indentation modulus;
• E*—plane strain modulus;
• νs—Poisson’s ratio.

Tribological tests were performed under constant measurement conditions with a
ball-on-disc tribological tester-TRN Tribometer (Anton Paar, Corcelles-Cormondrèche,
Switzerland)—see Figure 1.
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Figure 1. TRN tribometer: (a) general view, (b) detailed view of the tribological system.

The friction and wear processes were investigated on Ti-6Al-7Nb alloy discs with a
nominal rod diameter. Balls with a diameter of 6 mm, made of aluminum oxide (Al2O3),
zirconium oxide (ZrO2), and bearing steel (100Cr6), were used as counter-specimens.
The material couples of Ti-6Al-7Nb-Al2O3/ZrO2 were selected due to the biomedical
applications of the tribological pairs studied. The 100Cr6 bearing steel was a comparative
material to ceramic materials (Al2O3, ZrO2). The choice of bearing steel was determined
because it is often used as a counter-specimen material in tribological tests. The hardness
of the balls used in the tests is shown in Table 2. The wear rate of the Ti-6Al-7Nb alloy
disc, and the balls used as counter-specimens, were determined based on stereometric
measurements, according to the methodology presented in our previous paper [29]. Using
the data from the recorded coefficient of friction curves, their mean and maximum values
were determined. To ensure the reliability of the measurement data, all experiments were
performed four times with a load of 5 N and a sliding speed of 0.1 m/s. The friction distance
was 1000 m. The time of each test was approximately 2 h 46 min. In addition, the values of
the maximum Hertzian stresses of the studied tribological couples were calculated. Based
on the calculations, the maximum Hertzian stress for the Ti-6Al-7Nb/Al2O3 tribological
couple was 0.89 GPa, while for the Ti-6Al-7Nb/ZrO2 and Ti-6Al-7Nb/100Cr6 couples,
it was 0.76 GPa. The results obtained confirm that a loading model was found for the
performance of tribological tests (with contact stresses above 0.6 GPa).

Table 2. The hardness of the balls used in the tribological tests.

Hardness HV

Al2O3 ZrO2 100Cr6

1700 1350 830

Isometric 3D images of the wear traces formed on the Ti-6Al-7Nb alloy discs, due to
friction with Al2O3, ZrO2, and 100Cr6 balls, were obtained using a 3D Profilometer Form
Talysurf Series 2-50i (Taylor-Hobson, Leicester, England). Representative fragments of the
wear traces were scanned during the measurements, which were carried out using the
contact method.

3. Results and Discussion
3.1. Mechanical Behavior of the Ti-6Al-7Nb Alloy

Representative indentation load–depth curves that were obtained at different peak
loads are presented in Figure 2.
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Figure 2. Representative indentation load-depth curves for the Ti-6Al-7Nb alloy in the initial state (a)
and after oxidation at 600 ◦C (b), 650 ◦C (c), 700 ◦C (d), 750 ◦C (e), and 800 ◦C (f) over a period of 72 h.

From the analysis of the results, it was found that all segments of the load–unload
curves obtained at different peak loads overlapped well, which indicates the repeatability of
the mechanical tests. It was shown that the curvature of the load segments clearly increased
with increasing oxidation temperature, indicating a strong positive dependence of hardness
on the oxidation temperature (Figure 2). The study further determined the value of the
exponent n, which corresponds to the curvature of the load segments. The values obtained
were close to about 2, indicating that the load curves had a parabolic shape [30].

Figure 3 shows the results of the measurements of hardness, HIT, and indentation
modulus, EIT, of the Ti-6Al-7Nb alloy before and after 72 h of oxidation.
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the oxidation temperature and indenter load.

The study showed that the average hardness, HIT, of the non-oxidized Ti-6Al-7Nb alloy
was approx. 3.6 GPa. A similar hardness (of about 3.3 GPa) was obtained in our previous
study [31], using the nanoindentation technique. In turn, Kajzer et al. [32] obtained a
slightly higher HIT value for the Ti-6Al-7Nb alloy (about 4.2 GPa). After thermal oxidation,
the surface of the investigated alloy was characterized by a significantly higher hardness
(about 8–10 GPa). The increase in hardness was caused by the formation of hard oxide
layers (mostly rutile), and the strain evolved during the dissolution of oxygen beneath the
oxide layer on the substrate [33]. The rutile phase exhibits thermal stability, high hardness,
and a high Young’s modulus value [33,34]. The value of hardness, HIT, was also found
to increase with increasing oxidation temperature. At the same time, a slight tendency
for hardness to decrease with increasing load cycles (indenter load) was observed. This
phenomenon was particularly noticeable for oxide scales obtained at 600 ◦C, 650 ◦C, and
750 ◦C (Figure 3a). The tendency of the hardness of the Ti-6Al-7Nb alloy to decrease after
oxidation at 600 ◦C and 650 ◦C was due to the thinness of the oxide layers. On the other
hand, the deteriorating adhesion and high surface roughness could have been the cause of
the decrease in hardness of the scales produced at 750 ◦C [33].

Figure 3b shows a graph of the indentation modulus, EIT, versus oxidation temperature
and indenter load. The Ti-6Al-7Nb alloy in the as-received condition had an indentation
modulus, EIT, below 150 GPa. This study showed that the value of the EIT parameter
increased with increasing oxidation temperature. The highest values of the indentation
modulus, EIT, of about 180 GPa (indenter load 500 mN) were obtained after the oxidation
of the investigated alloy at 750 ◦C. A substantial decrease in the EIT parameter value with
the increasing number of loading cycles (indenter load) was observed.

Figure 4 shows a constant peak load of 500 mN for the Ti-6Al-7Nb alloy, in the
as-received condition and after isothermal oxidation. It was found that the load-depth in-
dentation curves did not overlap, which was reflected in the different mechanical properties
of the surface of the material under study after oxidation. The highest value of indentation
depth (about 2.5 µm) was obtained for the Ti-6Al-7Nb alloy in the non-oxidized state.
After thermal oxidation, a narrowing (by about 1 µm) of the indentation load-depth curves
was observed, which was closely related to the increase in hardness of the surface layers.
At the same time, it was shown that the indentation depth decreased as the oxidation
temperature increased. The lowest indentation depth value was obtained after oxidation at
a temperature of 750 ◦C for 72 h (about 1.7 µm).
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Figure 4. The constant peak-load of 500 mN for Ti-6Al-7Nb alloy, in the non-oxidized state and after
oxidation at: 600 ◦C, 650 ◦C, 700 ◦C, 750 ◦C, and 800 ◦C (72 h).

3.2. Friction-Wear Characteristics of the Ti-6Al-7Nb Alloy

Figure 5 shows the wear-rate graphs for the Ti-6Al-7Nb alloy in the as-received
condition (Figure 5a) and after oxidation (Figure 5b–d) at 600 ◦C, 650 ◦C, 700 ◦C, 750 ◦C,
and 800 ◦C (24 h and 72 h) after tribological testing in friction couples, with balls of Al2O3,
ZrO2 and 100Cr6.
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Figure 5. Wear rate for the Ti-6Al-7Nb alloy in the as-received condition (a) and after thermal
oxidation at 600 ◦C, 650 ◦C, 700 ◦C, 750 ◦C, and 800 ◦C for 24 h and 72 h, after tribological tests with
Al2O3 (b), ZrO2 (c) and 100Cr6 (d) balls.

The study showed that the intensity of tribological processes depended on the oxi-
dation parameters and the material couple used. The highest wear-rate value was found
for the Ti-6Al-7Nb alloy in the as-received condition for each friction couple analyzed
(Figure 5a). The results of the study thus confirm the literature reports on the poor tribolog-
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ical properties of titanium materials [4,9,19,35]. It was found that the highest wear occurred
during a sliding interaction of non-oxidized Ti-6Al-7Nb alloy with Al2O3 balls. The poorer
tribological properties of the material tested in a couple with Al2O3 balls could be due
to their higher hardness, compared to the ZrO2 and 100Cr6 balls [36]. It was shown that
during a sliding interaction with ZrO2 and 100Cr6 balls, the wear rate of the titanium alloy
was 25 to 35% lower. The differences in the wear intensity of the Ti-6Al-7Nb alloy disc,
after interaction with Al2O3 and ZrO2 balls, could be connected to the different grain sizes
of the two ceramic materials [37]. The wear products formed during friction with Al2O3,
ZrO2, and 100Cr6 balls also had a significant effect on the deterioration of the tribological
characteristics of the Ti-6Al-7Nb alloy in the as-received condition. These products caused
micro-cutting and transfer to the surfaces of the ceramic and metallic balls [38].

After thermal oxidation, it was shown that by varying the temperature–time parame-
ters, the friction-wear characteristics of the Ti-6Al-7Nb alloy could be adjusted over a wide
range. In addition to the oxidation parameters, the materials used as counter-specimens
(Al2O3, ZrO2, 100Cr6) also significantly influenced the intensity of tribological processes
in the alloy studied. The significant improvement in tribological characteristics after the
thermal oxidation of the Ti-6Al-7Nb alloy was mainly due to the presence of a thick layer
of TiO2 (rutile) with high hardness [39]. Qua et al. [38] found that the TiO2 oxide can act as
a solid lubricant under certain conditions.

The tribological properties of the Ti-6Al-7Nb alloy during a sliding interaction with
Al2O3 balls improved significantly after oxidation (Figure 5b). At the same time, it was
determined that the oxide scales formed at 600 ◦C and 800 ◦C provided slightly less protec-
tion against sliding wear during the tests with Al2O3 and ZrO2 balls. The tests showed that
the optimum wear characteristics of the Ti-6Al-7Nb alloy during sliding interaction with
Al2O3 balls could be obtained after oxidation at 650 ◦C and 700 ◦C (reduction of the wear
rate by up to 99%). Slightly lower effectiveness in tribological protection of the oxidized
Ti-6Al-7Nb alloy was found when tested with ZrO2 balls (Figure 5c). It was shown that the
oxide films obtained at 600 ◦C allowed a reduction of the wear rate of the titanium alloy disc
by only about 19% (due to the thinness of the oxide films). With increasing temperature and
extending oxidation time, a further increase in sliding wear resistance was observed. The
best tribological properties of the Ti-6Al-7Nb alloy in a friction couple with ZrO2 balls were
offered by oxide scales obtained at 700 ◦C and 750 ◦C (a reduction of the wear rate by up
to 88%). Completely different friction-wear characteristics were obtained when testing an
oxidised Ti-6Al-7Nb alloy with 100Cr6 balls. A friction couple with steel did not show any
presence of sliding wear on a disc oxidized within the temperature range of 600 ◦C–750 ◦C.
It was only during tests of the Ti-6Al-7Nb alloy subjected to oxidation at 800 ◦C that the
presence of sliding wear of low intensity was demonstrated (Figure 5d). This testifies to the
even better abrasion resistance of surface layers of this type when working in pairs with
metallic materials such as bearing steel. The best tribological test results of the oxidized
Ti-6Al-7Nb alloy in a couple with 100Cr6 balls may have resulted from the lower hardness
of the steel balls compared to the ceramic balls (Al2O3, ZrO2). Bader et al., in their earlier
work [40], found that the surface hardness of contact partners affects friction and wear.
On the other hand, Klaffke [41] showed that relative humidity has a significant influence
on friction and wear processes during tests with 100Cr6 bearing steel under dry friction
conditions. After oxidation at 800 ◦C, the tribological characteristics of the Ti-6Al-7Nb alloy
deteriorated in contact with all materials used as counter-specimens (Al2O3, ZrO2, 100Cr6).
The reason for this phenomenon was the deteriorating adhesion of oxide layers and the
higher contact stresses of the friction pairs, which favored an increase in the intensity of
wear [19,37].

3.3. Friction-Wear Characteristics of Al2O3, ZrO2, and 100Cr6 Balls

Figure 6 presents the wear-rate graphs for Al2O3, ZrO2, and 100Cr6 balls after tribo-
logical interaction with the non-oxidized and oxidized surfaces of the Ti-6Al-7Nb alloy.
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The tests showed significant differences in the wear intensity of ceramic and steel
balls, depending on the surface condition and oxidation parameters of the Ti-6Al-7Nb
alloy. It was found that the wear rate of Al2O3 and ZrO2 balls was most intense when
tested against a non-oxidized titanium alloy surface. The opposite trend occurred during
tests with 100Cr6 balls (the wear of the steel balls was least intense during tests with
non-oxidized Ti-6Al-7Nb alloy). It was shown that of all the types of counter-specimens,
it was the Al2O3 balls that wore out the most during tests with a non-oxidized disc. The
wear rate of the Al2O3 balls was more than five times higher than that of the ZrO2 and
100Cr6 balls (Figure 6a). The higher wear intensity of the Al2O3 balls could be related to
the so-called grain pull-out mechanism (cold welding between interacting surfaces) [42]. In
their earlier study, He et al. [37] found that the grain pull-out mechanism may be related to
higher contact stresses at local irregularities, leading to an increase in tangential stresses
and, thus, wear intensity.

The presence of oxide layers on the surface of the Ti-6Al-7Nb alloy after oxidation led
to an increase in surface hardness, which, however, did not translate into an increase in
the wear intensity of the ceramic balls (Al2O3, ZrO2) used as counter-specimens. On the
contrary, it was demonstrated that the oxidized surface of the alloy in question caused a
reduction in the wear rate of the Al2O3 and ZrO2 balls. An increase in wear intensity was
found only in the case of the 100Cr6 balls. It was found that ceramic balls (Al2O3, ZrO2)
in a friction couple with an oxidized Ti-6Al-7Nb disc exhibited better resistance to sliding
wear compared to the 100Cr6 bearing steel balls. Based on an analysis of Figure 6b, it was
found that the wear resistance of the Al2O3 balls increased with the increasing oxidation
temperature of the Ti-6Al-7Nb alloy. It was shown that the Al2O3 balls had the worst
tribological characteristics in pairs with titanium alloy oxidized at a temperature of 600 ◦C.
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The higher wear intensity of these balls for this test variant was a consequence of the low
hardness and thickness of the oxide films formed on the titanium alloy surface. This led to
the wearing-through of the oxide layers and, thus, to a change in friction conditions (further
frictional contact took place with the Ti-6Al-7Nb alloy substrate) [36]. In contrast, the lowest
wear rate value of the Al2O3 balls was obtained after oxidation at 750 ◦C and 800 ◦C. The
wear intensity of the ZrO2 balls was also the highest when tested with the Ti-6Al-7Nb alloy
surface oxidized at 600 ◦C. After oxidation at higher temperatures, a significant reduction
in the wear rate of the ZrO2 balls was observed (Figure 6c). The tribological characteristics
of 100Cr6 bearing steel balls were significantly different from those of the ceramic balls
(Al2O3, ZrO2). The lowest wear rate for the 100Cr6 balls was obtained in a friction pair,
with the Ti-6Al-7Nb alloy surface subjected to oxidation at 600 ◦C and 650 ◦C (opposite to
the ceramic balls). Tribological contact with oxide layers of higher hardness (after oxidation
at 700–800 ◦C) resulted in an increase in the wear intensity of 100Cr6 balls (Figure 6d).
One factor that contributed to an increase in the wear rate of the 100Cr6 balls was the
higher roughness of the oxide films after the oxidation of the Ti-6Al-7Nb alloy at higher
temperatures [33]. Furthermore, during the tribological tests with 100Cr6 balls, a transfer
of the ball material to the friction surface occurred that consequently accelerated their
wear [43].

3.4. Coefficient of Friction

Figure 7 presents the average and maximum values of the coefficient of friction of
the Ti-6Al-7Nb-Al2O3/ZrO2/100Cr6 tribological pairs, while Figure 8 shows the effect of
oxidation temperature on the average and maximum values of the coefficient of friction for
the friction couples concerned.
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In tribological tests of the non-oxidized Ti-6Al-7Nb alloy, in pairs with Al2O3 and
100Cr6 balls, the average coefficient of friction values was similar and amounted to 0.6. A
slightly lower value of the coefficient of friction was obtained for the titanium alloy/ZrO2
ball couples (about 0.5). Thus, it was shown that the coefficient of friction values was lower
by about 0.1 compared to similar tests performed on titanium Grade 2 [36]. During tests
with the oxidized surface of the Ti-6Al-7Nb alloy, an increase in the coefficient of friction
value and a slight tendency for it to increase with the increasing oxidation temperature
were observed (Figure 8). The reason for the increase in the coefficient of friction can be
attributed to the increase in hardness and surface roughness of the Ti-6Al-7Nb alloy after
oxidation [29,39]. However, the increased coefficient of friction values was not observed
to have an adverse effect on the wear characteristics of the Ti-6Al-7Nb alloy or the balls
used as counter-specimens (except for the 100Cr6 balls). During the tests of friction pairs
composed of the Ti-6Al-7Nb alloy, after oxidation at 600 ◦C, and Al2O3, ZrO2 and 100Cr6
balls, it was shown that the averaged coefficient of the friction values was about 0.6–0.7.
Raising the oxidation temperature to 800 ◦C resulted in an increase in the coefficient of
friction, up to approx. 0.8–0.9. The highest coefficient of friction was obtained during
tribological tests with the Al2O3 balls. In addition, after the oxidation of the titanium
alloy at 800 ◦C, a rapid increase in the maximum coefficient of friction value was found,
which could be related to the high surface roughness of the oxide layers [33]. It was also
determined that the average coefficient of friction reached its highest value (0.95) in the
Ti-6Al-7Nb (800 ◦C)-100Cr6 friction couple. The increase in the coefficient of friction, which
followed the formation of an oxide film on the Ti-6Al-7Nb disc, also resulted in greater heat
release in the contact zone.

3.5. Analysis of the 3D Isometric Images of Wear Traces on a Ti-6Al-7Nb Alloy Disc, after Tests
with Al2O3, ZrO2, and 100Cr6 Balls

Figure 9 compiles 3D isometric images showing the geometric structure of wear traces
on the surface of the Ti-6Al-7Nb alloy, after friction with ceramic (Al2O3, ZrO2) and steel
(100Cr6) balls.

Based on the analysis of the 3D isometric images, significant differences were found in
the geometric structure of the wear traces that formed on the surface of the Ti-6Al-7Nb alloy,
depending on the oxidation parameters and the types of balls (Al2O3, ZrO2, 100Cr6). The
wear traces formed on the Ti-6Al-7Nb alloy in the non-oxidized state were the deepest and
the widest (Figure 9a), while the widest friction path was observed after contact with the
Al2O3 balls. Intense and deep scratches were found on the friction path surface, indicating
an intensive cutting process. This phenomenon was caused by the impact of the hard Al2O3
balls on the relatively soft and flat surface of the non-oxidized Ti-6Al-7Nb alloy. Under
such friction conditions, the sliding wear process dominates [44]. After tribological tests
with the ZrO2 balls, the presence of milder scratches on the friction surface was observed.
At the same time, the depth of the wear traces was greater compared to the tests with
the Al2O3 balls. However, the wear traces formed after friction contact with 100Cr6 steel
balls were characterized by the greatest depth. Moreover, the occurrence of the so-called
corrugation wear was found on the Ti-6Al-7Nb alloy disc in the non-oxidized state, after
contact with ZrO2 and 100Cr6 balls. A particularly intense phenomenon of corrugation
wear was found after tests with the 100Cr6 steel balls (Figure 10). Corrugation wear was
characterized by the occurrence of irregularities on the friction surface, in the form of wave
ridges and depressions. Areas of variable depth and width were observed on the friction
surface and the friction path was, thus, characterized by a highly irregular geometry. This
phenomenon was described more extensively in our previous paper [29].
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Figure 9. The 3D isometric images of the wear traces formed on the Ti-6Al-7Nb alloy surface after
friction contact with Al2O3, ZrO2, and 100Cr6 balls ((a)—non-oxidized condition, (b)—600 ◦C/72 h,
(c)—650 ◦C/72 h, (d)—700 ◦C/72 h, (e)—750 ◦C/72 h, (f)—800 ◦C/72 h).
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100Cr6 bearing steel balls.

The results of the tribological analyses presented in Sections 3.2 and 3.3 showed that
the thermal oxidation process is an effective method for improving the friction-wear charac-
teristics of the Ti-6Al-7Nb alloy. The results obtained are corroborated by the observations
of the geometric structure of the wear traces, obtained using a 3D technique, which are
presented in Figure 9b–f. It was shown that the presence of oxide films on the surface of
the Ti-6Al-7Nb alloy led to a reduction in the depth and area of the wear traces. During
the tribological tests of a disc oxidized at 600 ◦C, in frictional contact with ceramic balls
(Al2O3, ZrO2), a slight reduction in the surface area of the wear traces was found, which
was closely related to the thinness of the oxide layers (Figure 9b). The smallest depth and
cross-sectional area were observed in the case of the wear traces that occurred on samples
oxidized at 650 ◦C and 700 ◦C after interaction with Al2O3 and ZrO2 balls (Figure 9c,d). On
the other hand, on Ti-6Al-7Nb alloy discs oxidized at 750 ◦C and 800 ◦C, an increase in the
width and depth of the wear traces was observed again, which is confirmed by the tests pre-
sented in Section 3.2 above. Completely different geometrical characteristics of wear traces
were obtained during the frictional contact of oxidized Ti-6Al-7Nb alloy with high-carbon
bearing steel, 100Cr6. No wear traces like those obtained in tests with Al2O3 and ZrO2 balls
were found on the friction surface. Based on profilometric measurements, the friction path
showed a gain in the material resulting from the oxidation of the friction working surface
(Figure 9b–e/100Cr6). It was only during the tests of 100Cr6 balls with the Ti-6Al-7Nb alloy
surface, oxidized at 800 ◦C, that classical wear traces appeared (Figure 9f/100Cr6).

4. Conclusions

In this study, the hardness, HIT, and the indentation modulus, EIT, of the Ti-6Al-7Nb
alloy were determined as a function of thermal oxidation temperature and indenter load.
The tribological characteristics of the Ti-6Al-7Nb alloy were determined for a broad range of
temperature and time parameters of the oxidation process. Tribological tests were carried
out in friction couples with ceramic (Al2O3, ZrO2) and metallic (bearing steel 100Cr6)
materials. The geometric structure of the wear traces was determined using 3D technology.

The mean value of hardness, HIT, for the Ti-6Al-7Nb alloy not subjected to oxidation
was approximately 3.6 GPa. The surface after oxidation showed a significantly higher
hardness (about 8–10 GPa). There was a slight tendency for surface hardness to decrease
with increasing load cycles. Furthermore, it was shown that the curvature of the load
segments increased with temperature, which testifies to a strongly positive dependence of
hardness on the temperatures of the thermal oxidation process. The value of the indentation
modulus, EIT, grew with the increasing oxidation temperature. The highest values of the
EIT parameter (about 180 GPa) were obtained on the Ti-6Al-7Nb alloy, after oxidation at
temperatures of 750 ◦C and 800 ◦C.

In tribological tests, a slight tendency for the coefficient of friction to increase with the
increasing oxidation temperature of the Ti-6Al-7Nb alloy was shown. The increase in the
coefficient of friction, which took place after the formation of an oxide film, also resulted in
greater heat release in the contact zone.
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The intensity of tribological processes strictly depended on the oxidation parameters
and the material couple (Al2O3, ZrO2, 100Cr6). The thermal oxidation process was shown
to control, within a wide range, the friction-wear characteristics of the Ti-6Al-7Nb alloy.
The best tribological properties of the investigated alloy, during frictional contact with
Al2O3 balls, were obtained after oxidation at 650 ◦C and 700 ◦C (wear reduction up to
99%). In a sliding interaction with ZrO2 balls, the best wear resistance of the Ti-6Al-7Nb
alloy was provided by oxide scales obtained at 700 ◦C and 750 ◦C (wear reduction up to
88%). Completely different friction-wear characteristics were obtained during a sliding
interaction of oxidized Ti-6Al-7Nb alloy with 100Cr6 bearing steel balls. In this case, no
sliding wear was observed for the Ti-6Al-7Nb alloy disc in the temperature-time range of
the oxidation process of 600–750 ◦C.

The tests showed significant differences in the wear intensity of ceramic and steel balls,
depending on the surface condition and oxidation parameters of the Ti-6Al-7Nb alloy. The
wear rate for the Al2O3 and ZrO2 balls was highest when tested with the Ti-6Al-7Nb alloy
in its non-oxidized state. However, the most intensive wear was found for the Al2O3 balls
(more than five times higher than ZrO2/100Cr6 balls). The beneficial effect of coating the
Ti-6Al-7Nb alloy surface with oxide films on the reduction of the wear rate of Al2O3 and
ZrO2 balls was demonstrated. In addition, it was found that ceramic balls, during a sliding
interaction with oxidized Ti-6Al-7Nb alloy, were characterized by much higher resistance
to sliding wear compared to the 100Cr6 bearing steel balls.

Based on the analysis of 3D isometric images, significant differences were found in
the geometry and cross-section area of the wear traces formed on the Ti-6Al-7Nb alloy
surface, depending on the oxidation parameters and the type of counter-specimens (Al2O3,
ZrO2, 100Cr6). It was shown that coating the surface of the Ti-6Al-7Nb alloy with oxide
films resulted in a significant reduction in the depth and area of the wear traces in tests
with ceramic balls. After tests with steel balls, the oxidized surface of the Ti-6Al-7Nb alloy
showed no traditional wear traces (except for the disc oxidized at 800 ◦C). The friction
working surface was found to undergo oxidation, resulting in a gain in material along the
friction path.
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titanium alloy nitrocarburized under glow discharge conditions. Acta Bioeng. Biomech. 2017, 19, 181–188. [PubMed]

http://doi.org/10.1016/j.triboint.2020.106529
http://doi.org/10.1016/j.triboint.2021.107147
http://doi.org/10.1007/s12540-011-1011-5
http://doi.org/10.3390/ma14185364
http://doi.org/10.1016/j.jmst.2021.02.061
http://doi.org/10.1016/j.matchar.2020.110629
http://doi.org/10.1016/j.jallcom.2020.154128
http://doi.org/10.1016/j.vacuum.2021.110554
http://doi.org/10.1016/j.matdes.2021.109756
http://doi.org/10.1016/j.jallcom.2020.154209
http://doi.org/10.1016/j.jallcom.2021.161445
http://doi.org/10.1016/j.matpr.2020.11.294
http://doi.org/10.1016/j.wear.2019.202929
http://doi.org/10.1016/j.matchar.2018.08.049
http://doi.org/10.1016/j.ceramint.2014.11.130
http://doi.org/10.1016/j.corsci.2017.01.009
http://doi.org/10.1016/j.apsusc.2015.08.181
http://doi.org/10.1016/j.surfcoat.2021.127717
http://doi.org/10.3390/coatings11050505
http://doi.org/10.1557/JMR.1992.1564
http://doi.org/10.1177/1350650118769116
http://doi.org/10.1080/02670836.2019.1612596
http://doi.org/10.1016/j.vacuum.2018.05.028
http://www.ncbi.nlm.nih.gov/pubmed/29507440


Materials 2022, 15, 3168 16 of 16

33. Wang, S.; Liao, Z.; Liu, Y.; Liu, W. Influence of thermal oxidation temperature on the microstructural and tribological behavior of
Ti6Al4V alloy. Surf. Coat. Technol. 2014, 240, 470–477. [CrossRef]

34. Chuang, L.-C.; Luo, C.-H.; Yang, S.-H. The structure and mechanical properties of thick rutile–TiO2 films using different coating
treatments. App. Surf. Sci. 2011, 258, 297–303. [CrossRef]

35. Xue, X.; Lu, L.; Wang, Z.; Li, Y.; Guan, Y. Improving tribological behavior of laser textured Ti-20Zr-10Nb-4Ta alloy with dimple
surface. Mater. Lett. 2021, 305, 130876. [CrossRef]

36. Aniołek, K.; Barylski, A.; Kupka, M. Friction and Wear of Oxide Scale Obtained on Pure Titanium after High-Temperature
Oxidation. Materials 2021, 14, 3764. [CrossRef]

37. He, Y.J.; Winnubst, A.J.A.; Burggraaf, A.J.; Venveij, H.; Van der Varst, P.G.T.; De With, G. Sliding Wear of ZrO2-Al2O3 Composite
Ceramics. J. Europ. Cer. Soc. 1997, 17, 1371–1380. [CrossRef]

38. Qua, J.; Blau, P.J.; Watkins, T.R.; Cavin, O.B.; Kulkarni, N.S. Friction and wear of titanium alloys sliding against metal, polymer,
and ceramic counterfaces. Wear 2005, 258, 1348–1356. [CrossRef]

39. Wang, S.; Liao, Z.; Liu, Y.; Liu, W. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of
Ti6Al4V alloy. Mater. Chem. Phys. 2015, 159, 139–151. [CrossRef]

40. Bader, N.; Pape, F.; Gatzen, H.H.; Poll, G. Examination of friction and wear of a 100Cr6 ball against a bearing ring in a
micro-pin-on-disk tester. WIT Trans. Eng. Sci. 2015, 91, 47–58.

41. Klaffke, D. Influence of test parameters on friction and wear results obtained in oscillating sliding tests with 100cr6 steel against
sic-based materials. Lubr. Sci. 2003, 10, 19–32. [CrossRef]

42. Kokaly, M.T.; Tran, D.K.; Kobayashi, A.S.; Dai, X.; Patel, K.; White, K.W. Modeling of grain pull-out forces in polycrystalline
alumina. Mater. Sci. Eng. A 2000, 285, 151–157. [CrossRef]

43. Polcar, T.; Parreira, N.M.G.; Cavaleiro, A. Tungsten oxide with different oxygen contents: Sliding properties. Vacuum 2007, 81,
1426–1429. [CrossRef]

44. Türedi, E.; Yilmaz, M.; Senol, V. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts.
Arch. Found. Eng. 2017, 17, 222–228. [CrossRef]

http://doi.org/10.1016/j.surfcoat.2014.01.004
http://doi.org/10.1016/j.apsusc.2011.08.055
http://doi.org/10.1016/j.matlet.2021.130876
http://doi.org/10.3390/ma14133764
http://doi.org/10.1016/S0955-2219(96)00239-7
http://doi.org/10.1016/j.wear.2004.09.062
http://doi.org/10.1016/j.matchemphys.2015.03.063
http://doi.org/10.1002/tt.3020100103
http://doi.org/10.1016/S0921-5093(00)00640-7
http://doi.org/10.1016/j.vacuum.2007.04.001
http://doi.org/10.1515/afe-2017-0119

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Mechanical Behavior of the Ti-6Al-7Nb Alloy 
	Friction-Wear Characteristics of the Ti-6Al-7Nb Alloy 
	Friction-Wear Characteristics of Al2O3, ZrO2, and 100Cr6 Balls 
	Coefficient of Friction 
	Analysis of the 3D Isometric Images of Wear Traces on a Ti-6Al-7Nb Alloy Disc, after Tests with Al2O3, ZrO2, and 100Cr6 Balls 

	Conclusions 
	References

