

Title: C/C++ Fundamentals

Author: Jiří Rybička, Viera Michaličková, Juan Carlos Rodríguez-del-Pino, José Daniel
González-Domínguez, Zenón José Hernández-Figueroa, Małgorzata Przybyła-Kasperek

Citation style: Rybička Jiří, Michaličková Viera, Rodríguez-del-Pino Juan Carlos,
González-Domínguez José Daniel, Hernández-Figueroa Zenón José, Przybyła-Kasperek
Małgorzata. (2021). C/C++ Fundamentals. Nitra : Constantine the Philosopher University
in Nitra

C/C++ Fundamentals

Published on

November 2021

Authors

Jiří Rybička | Mendel University in Brno, Czech Republic

Viera Michaličková | Constantine the Philosopher University in Nitra, Slovakia

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Reviewers

Anna Stolińska | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1779-8

Table of Contents

1 Main Function, Header Files, Standard Library, Simple Input/Output 6

1.1 First program, main function ... 7

1.2 Standard library, simple input/output ... 10

1.3 Introduction (programs) ... 12

2 Variables, Constants.. 13

2.1 Variables .. 14

2.2 Constants .. 16

2.3 Variables (programs).. 17

3 Data Types, Type Conversion ... 18

3.1 Data types.. 19

3.2 Data type conversion .. 23

3.3 Data types (programs) ... 24

4 Assignment and Operators ... 26

4.1 Expression, statement, assignment .. 27

4.2 Assignment and operators (programs) .. 33

5 Formatted Input/Output .. 35

5.1 Formatted input/output .. 36

5.2 Formated input/output (programs) ... 45

6 Logical Operators .. 48

6.1 Logical data type and logical operators ... 49

6.2 Logical operators (programs) .. 51

7 Conditional Statements ... 54

7.1 Conditional statement "if" .. 55

7.2 Command if (programs) .. 60

7.3 Conditional expression ... 62

7.4 Conditional expression (programs) .. 65

7.5 Switch to more branches ... 67

7.6 Switch command (programs) .. 70

8 Loops .. 71

8.1 The while statement ... 72

8.2 The while loop (programs) ... 78

8.3 The do loop (programs) ... 80

8.4 Counted loop for ... 81

8.5 The for loop (programs) ... 85

8.6 Affecting the passage through the loop ... 86

8.7 Loop damage (programs) .. 89

9 User-Defined Functions ... 91

9.1 User-defined functions ... 92

9.2 Functions (programs) ... 100

9.3 Recursion ... 104

9.4 Recursion (programs) .. 106

10 Arrays.. 109

10.1 Array... 110

Structured data types ... 110

10.2 Arrays (programs) .. 117

11 Multidimensional Arrays ... 119

11.1 Array of arrays .. 120

11.2 Multidimensional arrays (programs) .. 123

12 Strings... 125

12.1 Strings.. 126

12.2 String (programs) ... 130

13 Struct Data Type .. 131

13.1 Structured data type struct .. 132

13.2 Struct (programs) ... 135

14 Union Data Type... 137

14.1 Union data type ... 138

14.2 Union (programs).. 141

15 Pointers I .. 142

15.1 Pointers ... 143

15.2 Pointers (programs) ... 155

15.3 Pointers and arrays – array implementation .. 157

15.4 Pointers and arrays (programs) .. 158

15.5 Pointer arithmetic ... 159

15.6 Pointers arithmetic (programs) ... 162

16 Pointers II ... 163

16.1 Pointers to subroutines .. 164

16.2 Pointers to subroutines (programs).. 168

16.3 Struct as a member of dynamic structure .. 169

16.4 Pointers and structs (programs) ... 174

16.5 Pointers to functions as a parameter ... 174

16.6 The use of qsort, bsearch (programs) .. 177

17 Memory Management ... 178

17.1 Memory management .. 179

17.2 Storage classes .. 183

17.3 Const and volatile qualifiers .. 184

Main Function, Header Files, Standard
Library, Simple Input/Output

Chapter 1

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

7

1.1 First program, main function

🕮 1.1.1

When you want to write your program in C you have to write the so-called "main"
function.

Functions in C/C++ are pieces of code that have their own name (indentificator)
and body. The main function represents the whole program, so it must be always
written in source code.

The general form of function is:

data_type function_name (parameters) { body }

So the main function may have the following form:

int main() {

 // here are statements of function body

 return 0; // so called return value of function

}

The main function returns an integer value, thus the data type of function main is
int.

📝 1.1.2

The main function represents _____ of C/C++-program. Its declaration consists of
_____ type, identifier "main", parameters and body. The body of the main function
contains a statement for _____.

• clear screen
• alternative part
• int
• whole program
• string
• integer returned value
• clear input buffer

📝 1.1.3

The body of the main function is enclosed by parenthesis.

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

8

• False
• True

📝 1.1.4

Parameters of the main function are enclosed by:

• parenthesis.
• curly brackets.
• spaces.

🕮 1.1.5

A header file is a file with extension .h which contains declarations and definitions
to be shared between several source files. There are two types of header files: the
files that the programmer writes and the files that come with your compiler.

The use of a header file is necessary for almost every program. One of the most
useful header files which come with the compiler (or operating system) is a file with
the declaration of input/output operations.

Your request to use a header file name.h in your program by including it with the C
preprocessing directive #include. The syntax of #include has the following two
forms:

#include <name>

This variant is for the system (compiler) files, and

#include "name.h"

for files written by the programmer.

Inserting a custom file can also include the file access path, while the header files
are located in system directories whose paths are not specified (they are set
automatically when the compiler is installed). Therefore, files from these paths are
always written without an extension and without a path.

Detailed information about preprocessing directives comes later in this course.

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

9

📝 1.1.6

The header file is

• a file with function declaration and/or some definition in C/C++ language.
• a file with a part of function body or main function body.
• a file containing the first line of C/C++ source code.
• a file containing any part of the source code.

📝 1.1.7

Header files have two types: system and programmer made.

• True
• False

📝 1.1.8

The header file named aaa.h to come with the compiler or operating system is used
to write:

• #include <|aaa>
• #using <|aaa>
• #include "aaa"
• #include <|./aaa.h>

📝 1.1.9

The header file named aaa.h in the active directory written by the programmer is
used to write

• #include "aaa.h"
• #define "aaa"
• #use "aaa.h"
• #include <|./aaa.h>

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

10

1.2 Standard library, simple input/output

🕮 1.2.1

Almost every program needs to input some values and output results. So we have
to use appropriate commands for it.

The input and output operations depend always on the operating system
environment. Every system and every situation is solved differently. But the
programmer – the author of the program – has no information about it. The source
code of the program must work on many systems and programmers have to write
the same commands.

So the input and output operations are encapsulated into functions which bodies
are implemented according to the operating system you actually use and their
headers are always the same.

Every programming language has some commands for input and output operations
but every programming language has a different approach for it.

We will discuss two approaches because of two different versions of C language:
pure C and C++ versions.

🕮 1.2.2

In the C++ programming language, the C++ Standard Library is a collection of
classes and functions, which are written in the core language and part of the C++
ISO Standard itself. The C++ Standard Library provides support for some language
features and functions for everyday tasks such as finding the square root of a
number or simple input/output.

There are differences between C and C++ standard libraries. We prefer the C++
approach, so we show C++ simple input/output and the appropriate part of the
standard library for this.

We need some input values and write output in almost every program. In the very
simple form, we have the statement for input: cin (it stands for "console input"), and
a statement for output: cout (i.e. "console output").

When we need the mentioned commands we have to include a standard library for
this in the following form:

#include <iostream>

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

11

📝 1.2.3

For input/output operations in C++ we use the header file in the following form:

• #include <|iostream>
• #include <|stdio>
• #include "inputoutput"
• #input "iostream"

🕮 1.2.4

As mentioned earlier, cin and cout are available for input and output. The cin and
cout are so-called streams. Their use is supplemented by a special operator "<<"
and ">>". Multiple items can be read or written with one cin stream and one cout
stream. Small hint: Operator ">>" points from cin to the variable, operator "<<" points
from variable or expression to cout.

For example input to two variables:

cin >> Var1 >> Var2;

Output can be realized as a sequence of expressions in which values are first
computed and then shifted to the output stream:

cout << "The value is " << Var1 + Var2*5 << "." << endl;

Note that cin, cout and endl (stands for "end of the line") are objects in namespace
std. When we use them directly, we have to open this namespace via command:

using namespace std;

If we did not specify this command, it would be necessary to write a space name
for each element contained in it:

std::cout << "The value is " << Var1 + Var2*5 << "." <<

std::endl;

Standard error output

Just as we can write to the standard output (stream cout), we can write to the
standard error output, in the same way, using the stream cerr. Everything else
remains the same as cout. We will always use the standard error output if we want
to convey some non-standard situation or auxiliary information to the user. We
never mix these auxiliary messages with data so we don't write them to standard
output! For example:

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

12

double a, b;

cin >> a >> b; // input two non-zero numbers

if (a*b == 0) cerr << "invalid data!" << endl; // error!

 else // valid data, output to stdout

 cout << "Contents of rectangle is " << a*b << endl;

📝 1.2.5

We want to read two values of A and B. These values represent the sides of the
rectangle. We should write to output the contents and perimeter of this rectangle.
Fill in appropriate parts into following code:

#include <iostream>

using namespace std;

int main(){

 float A, B;

 return 0;

}

• cout >> "Contents ">> A*B >> ", perimeter " >> (A+B)*2 >>".">>endl;
• cin <|<| A <|<| B
• cin >> A >> cin >> B
• cin >> A >> B;
• cout >> "Contents " cout >> A*B <|<| cout >> ", perimeter " cout >> (A+B)*2

cout >> "." <|<| endl;
• cout << "Contents "<< A*B << ", perimeter " << (A+B)*2 <<"."<<endl;

1.3 Introduction (programs)

⌨ 1.3.1 Main function, header files

Write down source code with system header file iostream and with the main
function which shows "Hello!" (use std::out) and returns exit code 0.

⌨ 1.3.2 Simple input and output

Imagine an X is the outer diameter of the ball and a Y is its wall thickness. Both
values are in millimetres. Read the X and Y values from the input and write the total
ball volume and sum of the outer and inner surfaces. The output sentence will be:

Volume is mm3, surfaces are mm2.

Variables, Constants

Chapter 2

Variables, Constants | FITPED

14

2.1 Variables

🕮 2.1.1

A variable is a certain place in the computer memory which can hold some
values. It's a different approach than in mathematics.

What place does the memory variable occupy? This depends on its data type. Data
types will be discussed later in this course.

If a variable occupies some space, we can insert certain values into it.

Each memory space has its address. In order not to remember the numeric form of
the address, these addresses are named, so we call it a variable identifier. It
represents the numeric form of the address.

So each variable has its address (or name in form of an identifier) and its value.

📝 2.1.2

What is a variable in the programming language?

• A certain place in computer memory.
• A letter representing some real number.
• Number of program steps.

📝 2.1.3

The variable identifier in the programming language

• represents the address of the variable in memory.
• represents the value of the variable.
• represents number of possible values.

🕮 2.1.4

Each variable can hold some values. Because the variable occupies a certain space
in the computer's memory which is composed as a sequence of bits, each value is
machine-displayed as a sequence of zeros and ones.

Variables, Constants | FITPED

15

A sequence of ones and zeros can mean different values. The simplest
interpretation is as a non-negative integer in the binary system.

Suppose a variable occupies a space of two bytes. What values can be stored in
this space?

The minimum value is represented by all zeros and represents zero. The maximum
value is formed by the ones themselves. Two bytes are 16 binary ones, which is a
decimal number of 65,535. So a two-byte variable can hold a value between 0 and
65,535.

Generally, a variable on an n-bit space can hold a maximum value of 2n – 1.

📝 2.1.5

What is the maximum integer decimal value of a variable occupying 8 bits in
computer memory?

🕮 2.1.6

Each variable you planned to use has to be declared. This means we have to tell the
computer how the variable will be named and what data type it will be. According to
the data type, the compiler creates the appropriate space for this variable in
computer memory. The declaration must always precede the use of the variable.

The declaration in C/C++ language is written as follows scheme:

data_type variable_identifier;

For example (int is an identifier for the integer data type):

int Count;

Now we can use the variable Count which can hold some integer value.

If we need more variables of the same type, we can use the notation where we
specify a data type and a list of variables of this type divided by commas:

int suma, current_value, count;

After the declaration, the value of the variable is undefined. If we want the variable
to have its initial value along with the declaration, we can write it directly into the
declaration statement. In one declaration statement, we can combine variables
without and with an initial value. For example:

Variables, Constants | FITPED

16

int suma=0, current_value, count=1;

The variable current_value has an undefined value, but suma has value zero and
count has value 1.

📝 2.1.7

We want to declare two variables: Side and Radius. The data type is float. The
variable Radius should have an initial value of 10. Fill in the appropriate pieces of
code:

 _____ Side, _____ ;

• float
• Radius=10
• char
• Side=0
• 10=Radius
• radius=10
• int
• Radius

2.2 Constants

🕮 2.2.1

A constant represents memory space. It is similar to a variable. Compared to a
variable, however, it has a value that cannot be changed. We assign this value when
declaring a constant.

The constant declaration looks like a variable declaration but it is preceded by
keyword const and we always have to define its initial value:

const int WeekDays=7;

📝 2.2.2

We want to declare a constant that contains the number of minutes per day. Fill in
the appropriate pieces of code:

 _____ _____ _____ _____ ;

Variables, Constants | FITPED

17

• =1440
• var
• char
• int
• =24
• float
• =60
• MinPerDay
• const

2.3 Variables (programs)

⌨ 2.3.1 Variables 1

Declare one variable of type char with identifier Pass and initial value asterisk and
one variable of type double with identifier Num and initial value 2.7182.

⌨ 2.3.2 Variables 2

Declare a variable of type int with identifier Page and initial value 123 and a variable
of type char with identifier Delim and initial value tilde.

⌨ 2.3.3 Constants 1

Define constant named Digit with a value of the character with ordinal value 48, and
constant named Zone with integer value 48.

⌨ 2.3.4 Constants 2

Define constant named PI with value 3.14159, and constant named Sign with the
value of minus character.

Data Types, Type Conversion

Chapter 3

Data Types, Type Conversion | FITPED

19

3.1 Data types

🕮 3.1.1

The data type specifies the allowable values and allowed operations with these
values. The data type can be predefined or user-defined. Predefined data types are
basic building blocks for user-defined types.

In this lesson, we will deal with numeric data types and types for expressing
character information.

As mentioned above, a variable represents a place in computer memory. The data
type tells us how to interpret this memory location and how we can process it.
Thus, the variable is associated with the data type.

🕮 3.1.2

There are numeric data types for number processing. We will start with integer data
types. They are divided into two categories – unsigned (non-negative values only)
and signed (both negative and positive values). They are listed in the following
table:

📝 3.1.3

Match appropriate data type name and its value range.

signed short int _____

unsigned char _____

signed char _____

Data Types, Type Conversion | FITPED

20

unsigned short int _____

• 0 to 65,535
• –65,536 to 65,535
• –32,768 to 32,767
• 0 to 255
• –256 to 255
• –128 to 127

🕮 3.1.4

A pair of integers is used to store real numbers: mantissa (M) and exponent (E).
These data types are generally referred to as floating-point numbers.

The number value is calculated as M⋅2^E. The number of bits of mantissa indicates
the accuracy of the number, the number of bits of the exponent determines the size
of the number. Accuracy is given as the number of significant digits. The number
size is given in decimal order.

In C/C++ language there are three floating-point data types:

📝 3.1.5

We have three data types for real numbers in the C/C++ language:

• float, double, long double.
• single, double, extended.
• real, comp, decimal.
• numeric, float, extended.

📝 3.1.6

Match the appropriate values:

Data Types, Type Conversion | FITPED

21

double _____

long double _____

float _____

• accuracy to 12 significant digits
• accuracy to 10 significant digits
• accuracy to 8 significant digits
• accuracy to 15 significant digits
• accuracy to 6 significant digits
• accuracy to 18 significant digits

📝 3.1.7

Assume the following variable declarations:

double A, B = 0;

float C, D=1.2E-2;

How much total memory do these variables take?

🕮 3.1.8

The char data type mentioned earlier is primary used to store character values.
Characters are written into apostrophes, for example:

'a' '7' '('

Each character is stored in the computer memory as an integer. The base character
set (called ASCII – American Standard Code for Information Interchange) contains
128 characters with codes 0 through 127. The character code table determines
which number each character is stored in.

The character set is divided into two categories: printable (visible) characters
(letters, digits, punctuation marks) and control characters. The control character is
used to control the output devices, for example, go to a new line, ring bell or
backspace. The control character is written with a special sequence starting with a
backslash.

The control character can be written using its code in octal or hexadecimal, for
some characters there are special sequences, see the following table.

Data Types, Type Conversion | FITPED

22

📝 3.1.9

Match the appropriate values.

LF _____

CR _____

form feed _____

BEL _____

• written as '\7'
• written as '\10'
• written as '\xc'
• written as '\n'
• written as '\r'
• written as '\xf'

📝 3.1.10

Match the appropriate values:

A control character used for the start of new page _____

Control character for tab mark is _____

Control character for the new line _____

When you want to beep you send character _____

• HT

Data Types, Type Conversion | FITPED

23

• EOT
• BS
• LF
• BEL
• FF

🕮 3.1.11

The user can define his own data types, which can then be treated similarly to
predefined ones. This can be very advantageous if, e.g. we want to get rid of
dependence on a particular type and we want to generalize the notation so that we
can change the data type of the processed values by changing it in one place.

The typedef keyword is used to define a new type, followed by a type definition, and
a new type identifier, such as:

typedef unsigned int Value_type;

Then we can use this new type to declare variables:

Value_type Current, Sum = 0, Max, Min;

Then, in the algorithm for calculating the sum and extreme values from the input
sequence, we can process unsigned integers once, sometimes they can be decimal
numbers, just replace the Value_type definition.

3.2 Data type conversion

🕮 3.2.1

The value stored in a particular memory location can be understood in different
ways. So we sometimes need to tell the compiler that the value of a particular
variable is to be processed differently than the data type of that variable.

Sometimes, the compiler automatically executes this change itself. For example, if
you insert an int variable value into a long long variable, the compiler automatically
extends the int value to long long. This is called implicit data conversion.

We can also specify explicit type conversion. It is written in two possible ways:

type (expression)

or if the data type is written in more words:

Data Types, Type Conversion | FITPED

24

(type) expression

Examples:

char(48 + digit)

(long long) sum

If the resulting value does not fit in the converted type, this value is truncated. For
example:

int A=1000000000;

long long B;

B=9*A; // we multiply value A by a 9

The result is 410065408, but the right result can be 9000000000. To solve this
mistake we need to write:

int A=1000000000;

long long B;

B=9*(long long)A;

📝 3.2.2

We have defined a variable X of the type short int with a value of 300. What do we
get if we convert to an unsigned char?

• 44 (or character ',')
• 300 (or char 'ň')
• 255
• 344 (or two characters "ň,")

3.3 Data types (programs)

⌨ 3.3.1 Data types

Declare one integer variable without sign which takes 2 bytes of memory, named
MyVar. Then declare one real variable of 12 bytes, named MyBigVar.

c1_types1.cpp
#include <|iostream>

using namespace std;

int main(){

Data Types, Type Conversion | FITPED

25

 // declare the variables here:

//-----------------------------------

//===================================

// the test of proper declaration:

 cout <|<| sizeof(MyVar)<|<|" bytes."<|<|endl;

 cout <|<| sizeof(MyBigVar)<|<|" bytes."<|<|endl;

 return 0;

}

⌨ 3.3.2 Type conversion

Declare a variable named Letter of type char and 4-byte long integer variable named
Number which will assign to an ordinal number of variable Letter.

c1_types2.cpp
#include <|iostream>

using namespace std;

int main(){

 // declare the variable Letter here:

//-------------------------------

//===============================

 cin >> Letter;

 // declare and assign the variable Number here:

//-------------------------------

//===============================

 cout <|<| "The character " <|<| Letter <|<| " has an

ordinal number "

 <|<| Number <|<| "." <|<| endl;

 return 0;

}

Assignment and Operators

Chapter 4

Assignment and Operators | FITPED

27

4.1 Expression, statement, assignment

🕮 4.1.1

The expression prescribes some calculation. It is composed of operands and
operators.

The operand is a constant value or variable. The operator may be a sign for
arithmetic operation, logical operation or other manipulation with values of various
types. The operator may be a function too.

Many expressions are written like in math, but there are differences.

Expression examples (a – circle content, b – triangle perimeter, c – root of the
quadratic equation):

a) Radius * Radius * 3.14

b) sideA + sideB + sideC

c) (-b + sqrt(b * b - 4 * a * c)) / (2 * a)

Notes: Operators have their priorities (order of evaluation). Parentheses have the
highest priority, they are used only round unlike in math. Operator for multiplication
is written like "*" and unlike in math cannot be neglected. The sqrt function (square
root) is in the cmath library, and this library must be appended with the #include
<cmath> command. Each function has its parameters in parentheses, parentheses
must be written even if the function has no parameters. For exact value of the
number Pi, we can use the constant M_PI from cmath library. So the exact value of
circle contents we obtain as

Radius * Radius * M_PI

📝 4.1.2

Suppose we have the variable Radius with the radius of the sphere. We want to
calculate the volume of the sphere, V=4/3 πr3. Which expression will make the
correct calculation?

• Radius*4*Radius/3*Radius*3.14
• 4/3M_PI Radius^3
• 4*3.14/Radius*3*Radius*Radius
• 4Radius*Radius*Radius/3M_PI

Assignment and Operators | FITPED

28

🕮 4.1.3

An assignment is a special operator that works from right to left. On the right side,
it has an expression that is first calculated, and on the left side, it has a variable into
which the calculated expression value is inserted. The assignment operator has
various shapes. The simplest is "=", for example:

Volume = SideA * SideB * Height;

At the same time, the expression serves as a command that stores the calculated
expression value in the specified variable. Therefore, it is more of an assignment
statement, not an expression. The assignment statement is one of the simple
commands and is one of the most widely used program elements.

The assignment has various shapes. In short, we can write the fact that the value
on the right side is added (or multiplied, etc.) to the variable on the left side along
with the assignment. For example, we need to add a SideC value to the TotalLength
variable. We can write:

TotalLength = TotalLength + SideC;

or also abbreviated

TotalLength += SideC;

Similar to the + = operator, we can use *=, /=, -=, %= etc.

📝 4.1.4

We have the following code:

int V, a = 10, b = 5, c = 9;

V = (a += 2) * (b -=3) * (c /= 3);

cout << "Volume = "<< V << endl;

What result will we see on the screen?

• Volume = 72
• Volume = 18
• Volume = 450
• Volume = 150

Assignment and Operators | FITPED

29

🕮 4.1.5

Some operators are presented in the following table:

Operators in C++

Operators can be divided into several groups. For example, additive operators are +
and -, multiplicative are *, / and%, relational (used to compare values) are ==, ! =, >=
etc. The operators differ in their priorities. Operators in the same group have the

Assignment and Operators | FITPED

30

same priority and are evaluated from left to right in the expression. The higher the
operator's priority, the earlier it is calculated in the expression. You can change the
priority of calculation by enclosing a part of the expression in parentheses.

Examples:

int A = 10, B = 5, C = 4, result;

result = A + B * C; // result is 30

result = (A + B) * C; // result is 60

result = A + C / B; // result is 10

result = (A + C) / B; // result is 2

result = A * C / B; // result is 8

result = (A * C) / B; // result is 8 – the same as above

📝 4.1.6

We need to calculate the following formula: y=y⋅x / [i⋅(i−1)]

Which of the following statements calculates the value of this formula?

• y *= x/(i*(i-1))
• y += y*x/i/(i-1)
• y = y*x*1/i*(i-1)
• y *= y*x /(i*i-1)

📝 4.1.7

We need to recalculate the Celsius temperature to Fahrenheit. We know that F = 9C
/ 5 + 32, where C is Celsius temperature. Which of the following expressions
correctly computes the Fahrenheit temperature?

• F = 9*C/5+32;
• F = 9C/5+32;
• F = 9/5/C+32;
• F = 9C/(5+32);

🕮 4.1.8

In the previous sections, it was stated that the assignment is one of the operators.
Therefore, the assignment statement is also an expression. The value of this
expression is the value inserted into the variable on the left side of the assignment.

Assignment and Operators | FITPED

31

We can use this fact if we want to insert this value into another variable. For
example:

int CountA, CountB, CountC, StartingValue = 1;

CountA = CountB = CountC = StartingValue;

In this case, all three variables will have the same value that is equal to the contents
of the StartingValue variable.

The assignment operator is evaluated from right to left. This is different from many
other operators, for example, the addition is evaluated from left to right. So the first
operation is assigning StartingValue to the CountC variable. This value is then
inserted into the CountB variable (the same value as in CountC) and then is inserted
into the CountA variable.

The assignment operator can be used in any part of another expression. We will
achieve a double effect: assigning a value to a variable and at the same time using
that value in another part of the expression. Example: We want to calculate the
content and perimeter of a rectangle. The sides of the rectangle are in variables a
and b. We can assign the initial values in the first expression and then use these
values in the second expression:

int a, b, content, perimeter;

content = (a = 3) * (b = 4);

perimeter = (a + b) * 2;

This notation is not the best because assigning initial values is lost inside the first
expression and is slightly confusing but illustrates the function of the assignment
operator.

📝 4.1.9

The engine of a certain car has 4 cylinders. What is the volume of ten such cars?
The input values are the radius and height of one cylinder. Add the correct parts to
the code.

#include <iostream>

#include <cmath>

using namespace std;

int main(){

 float radius, height, volume;

 cin >> _____ >> height;

 cout << "Volume of given cylinder is " <<

 (_____) << endl;

Assignment and Operators | FITPED

32

 cout << "Volume of four such cylinders is " << (_____) <<

endl;

 cout << "Volume of cylinders of ten cars with the same

engine is "<<

 _____ << endl;

 return 0;

}

• volume = radius * radius * M_PI * height
• radius
• volume * 10
• volume * M_PI * radius
• height
• volume
• radius * radius * 10 * M_PI
• 4 * radius * radius * height
• volume *= 4
• radius *= M_PI * height

🕮 4.1.10

A very frequently used operation is to add or subtract one. The so-called
incremental operator serves to simplify the syntax of increasing or decreasing the
value of the variable.

This operator is written as a two + or two – and it has two possibilities of use: as a
post-increment (written after a variable) or as a pre-increment (written before a
variable).

The post-increment works by first using the current value of the variable in the
expression and then increasing it by one. Conversely, a pre-increment first
increases the value of the variable by one and then the new value is only used in the
expression. Examples:

int x = 10; y;

y = x++ * 5; // y is 50 and new value of x is 11

y = ++x * 5; // y is 60 and new value of x is 12

Thus, increasing the value of variable X by one can be done in four ways:

X = X + 1; // this is long :-(,

 // but clear :-) and commonly used in other

languages

X += 1; // the use of assignment operator

X++ // postincrement

Assignment and Operators | FITPED

33

++X // preincrement

📝 4.1.11

We have defined this part of the code:

int a = 6, b = 12, c = 4;

 cout << a++ + --b * c++ << endl;

What will appear on the screen?

• 50
• 80
• 72
• 95

4.2 Assignment and operators (programs)

⌨ 4.2.1 Simple assignment 1

Try to complete code to obtain product and difference of two values X and Y.

c1_assign1.cpp
#include <|iostream>

using namespace std;

int main(){

 int X=3, Y=1;

 // complete the code here:

 cout <|<| "Product of numbers X and Y is:

"<|<|product<|<|endl;

 cout <|<| "Difference between X and Y is:

"<|<|differ<|<|endl;

}

⌨ 4.2.2 Simple assignment 2

Try to complete code to obtain the sum of squares of values X and Y

Assignment and Operators | FITPED

34

input : none

output: 25

⌨ 4.2.3 Simple assignment 3

Calculate the discriminant of a quadratic equation.

c1_assign3.cpp
#include <|iostream>

using namespace std;

int main(){

 int A=1, B=3, C=2; // coefficients of quadratic equation

 // complete the code here:

 cout <|<| "The discriminant is: "<|<| D <|<|endl;

}

⌨ 4.2.4 Simple assignment 4

Calculate roots of quadratic equation with given coefficients A, B, C. Suppose two
real roots only.

⌨ 4.2.5 Simple assignment 5

Calculate three members of the Fibonacci sequence from the given two members.

c1_assign5.cpp
#include <|iostream>

using namespace std;

int main(){

 int M1=55, M2=89; // two members of Fibonacci sequence

 // complete the code here:

 cout <|<| "The members are: "<|<|M3<|<|", "<|<|M4<|<|",

"<|<|M5<|<|"."<|<|endl;

}

Formatted Input/Output

Chapter 5

Formatted Input/Output | FITPED

36

5.1 Formatted input/output

🕮 5.1.1

We suppose that the actual compiler is C++, so we have to link a library with
standard C input/output features. This library is named "cstdio". The link to the
header file is written as:

#include <cstdio>

For input, we may use the function scanf. This function has the first parameter
which defines the data type of input values and the next parameters are memory
addresses to store read values.

For output exists function printf. This function has the first parameter which
defines the shape of the output string and the next parameters define output values
(variables or expressions).

Both functions have some common types of format parameters. So we can define
how may input value be read and the same way we define how may be output value
written.

Some simple examples of format parameters:

%d -- decimal integer value

%f -- float value

%s -- string (array of chars)

%x -- hexadecimal integer value

%c -- one character

Some simple examples of read/write values:

scanf("%d", &count); /* one integer value is read to a

variable on address count. Note, that the address of the

variable is indicated by the & */

scanf("%f%s", &price, customer); /* one float value stored to

price and some characters stored to the variable named

customer. Customer is array of characters and this is direct

address, so we do not need the & */

printf("Total count is %d.", count); /* integer value from

variable count is written into given sentence */

printf("The customer %s have to pay $%f.", customer, price);

/* name of customer and price are written in given sentence */

Formatted Input/Output | FITPED

37

📝 5.1.2

The following program reads two integer values and stores them into two variables
MeasureA and MeasureB. Fill the appropriate parts into code:

#include _____

int main(){

 int MeasureA, _____ ;

 scanf(" _____ ", &_____ , &_____);

 _____ 0;

}

• <cstdio>
• MeasureA
• halt
• %d%d
• <|iostream>
• MeasureB
• %2d%2f
• return
• MeasureB

📝 5.1.3

We have the following piece of code:

int A=10, B=3, C=14;

printf("Values are %d.%d, more than %d times and %c is name of

first variable.", B, C, A, 65);

Which output exactly corresponds with the previous code?

• Values are 3.14, more than 10 times and A is the name of the first variable.
• Values are 10.3, more than 14 times and 65 is the name of the first variable.
• Values are 10 and 3, more than 14 times and A is the name of the first

variable.
• Values are 14, more than 30 times and 65 is the name of the first variable.

🕮 5.1.4

The specifiers mentioned in the previous text (d, f, c, s, etc.) can be supplemented
with four groups of sub-specifiers in the following order:

Formatted Input/Output | FITPED

38

%[flags][width][.precision][length]specifier

Some of these sub-specifiers are listed in the following tables:

Flags

Sub-specifier Description

– Left-justify within the given field width; Right justification is the default (see width
sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for positive
numbers. By default, only negative numbers are preceded with a - sign.

0 Left-pads the number with zeroes (0) instead of spaces when padding is specified
(see width sub-specifier).

Width

Sub-specifier Description

(number) The minimum number of characters to be printed. If the value to be
printed is shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

Precision

Sub-specifier Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum
number of digits to be written. If the value to be written is shorter than this number,
the result is padded with leading zeros. The value is not truncated even if the result
is longer. A precision of 0 means that no character is written for the value 0.
For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the
decimal point (by default, this is 6). For g and G specifiers: This is the maximum
number of significant digits to be printed. For s: this is the maximum number of
characters to be printed. By default, all characters are printed until the ending null
character is encountered. If the period is specified without an explicit value
for precision, 0 is assumed.

The length sub-specifier modifies the length of the data type. For example output
value of type int may be written as signed char, short int, long int, long long int:

Length

Sub-specifier Description

hh writes integer as signed char

Formatted Input/Output | FITPED

39

h writes integer as short int

l writes integer as long int

ll writes integer as long long int

L writes double as long double

Examples:

printf("%010d", 1977); // displays 000001977

printf("%+5.2f", 3.1); // displays +3.10

printf("%-10d%d", 1, 1); // displays 1 1

📝 5.1.5

We have three values stored in variables float A, int B, and unsigned char C. We
need the following shape of the output:

The return count of negative numbers is 00014.

Minimal number with sign was: -796.85000 and its category was:

Q.

Fill the following statement with appropriate format specifiers and sub-specifiers:

printf(

 , B, A, C);

• "The return count of negative numbers is %05d.\nMinimal number with sign
was: %+10.5f and its category was: %c."

• "The return count of negative numbers is %50x. Minimal number with sign
was: %-5.5d and its category was: %hh."

• "The return count of \nnegative \nnumbers is %d. Minimal \nnumber with
sign was: %10f and its category was: %HH."

• "The return count of negative numbers is \n%5d. Minimal number with sign
was: %3.5o and its category was: %C."

🕮 5.1.6

There is another approach to input and output values in the C++ language. We have
to first include a library with input/output operations called iostream:

Formatted Input/Output | FITPED

40

#include <iostream>

The operations for input and output are stored into namespace "std", so we have to
write "std::" as a prefix of the operation name. More info about namespaces will be
discussed later.

C++ input/output is solved as objects called streams. Input stream for standard
input is called cin and output stream for standard output is called cout.

For the simple input can be used statement in the following form:

std::cin >> variable;

The name "cin" stands for "console input". The value from the standard input file is
stored into variables according to the data type of this variable. When we use
multiple operators ">>", we can input multiple values. This is the simplest form for
common input.

Example:

std::cin >> first >> second;

For the simple output can be used following statement:

std::cout << expression;

where "expression" is a variable or combination of variables and operators. The
name "cout" stands for "console output". Note that operator "<<" have certain
priority and operators used in expression may have less priority. Then we have to
enclose this expression into parentheses. To output multiple values can be written
multiple operators "<<" and multiple expressions. Each expression is calculated first
and then is written to the output stream.

Example:

std::cout << "The result value is " << first * second <<

".\n";

Note the "\n" is the control character for the new line.

The cout has some internal items accessible with dot notation, for example:

• precision(n) – sets the number of decimal positions of float numbers to n
• width(n) – sets the size of the next output expression to n characters.
• fill(c) – sets the character-filled to output expression instead of spaces.

Example:

Formatted Input/Output | FITPED

41

float radius=2.752, volume;

volume = 4/3 * M_PI * radius * radius * radius;

std::cout.precision(4); std::cout.width(40);

std::cout.fill('/');

std::cout << volume<<endl;

The output value will be:

///////////////////////////////////65.48

Some of these formatting settings are usable via so-called manipulators (will be
discussed later).

📝 5.1.7

Choose appropriate options:

#include < _____ >

int main(){

 int lengthA, lengthB;

 cout _____ "Enter two side of the rectangle, please:\n";

 _____;

 _____ "The contents of this rectangle is " _____;

 return 0;

}

• cin >> lengthA >> lengthB
• iostream
• <<
• << lengthA * lengthB << ".\n"
• cout <<

🕮 5.1.8

So-called manipulators are used to adjusting the output shape of the values
displayed. Manipulators are written in the same way as output variables or
expressions in the cout command. The following table shows some useful
manipulators:

Formatted Input/Output | FITPED

42

Some examples:

cout << showpos << 56; // displays +56

cout << setw(5)<<left<<-56; // displays two spaces and -56

cout << fixed << setprecision(3) << 3.141592; // displays

3.142

cout << scientific << setprecision(2) << 142; // displays

1.42e+002

cout << setw(10) << left << setfill('/') << fixed

<<setprecision(3) << 3.115926; // displays 3.142/////

The settings you make in one output statement also apply to the following
commands until you undo the settings. The exception is the setw manipulator
which applies only to the following expression.

📝 5.1.9

We have to calculate the volume of the sphere. We want to display the radius and
volume below each other, aligning them to 10 positions on the right, as is shown on
the following schema:

Radius of sphere: 2.752 cm,

Volume of sphere: 65.478 cm3

Which code displays exactly this shape of output?

Formatted Input/Output | FITPED

43

• cout <|<| "Radius of sphere: " <|<| setw(10)
<|<|setprecision(3)<|<|fixed<|<|right<|<|radius <|<| " cm," <|<| endl; cout <|<|
"Volume of sphere: " <|<| setw(10)<|<|volume <|<| " cm3"<|<|endl;

• cout <|<| "Radius of sphere: " <|<| radius:setw(10):3 <|<|right <|<| " cm," <|<|
endl; cout <|<| "Volume of sphere: " <|<| volume:setw(10):3 <|<| " cm3"<|<|endl;

• cout <|<| "Radius of sphere: " <|<| nouppercase
<|<|setprecision(3)<|<|floated<|<| leftspaces <|<|radius <|<| " cm," <|<| endl;
cout <|<| "Volume of sphere: " <|<| leftspaces <|<|volume <|<| " cm3"<|<|endl;

• cout <|<| "Radius of sphere: " <|<| width(10) <|<|precision:3<|<|fixed<|<|right
<|<| radius <|<| " cm," <|<| endl; cout <|<| "Volume of sphere: " <|<| width(10)
<|<| volume <|<| " cm3"<|<|endl;

🕮 5.1.10

The cin command with the ">>" operator assumes a simple input that omits the so-
called white space characters (spaces, tabs, line breaks). This method is useful for
entering numbers, individual characters, and some strings. Often, however, we need
to work with input values somewhat differently, using other input stream tools.

To enter individual characters without skipping the white space we can use the get
method of input stream cin. Example:

char ch;

cin.get(ch);

To modify the behaviour of input operations we can set the input stream with setf
or unsetf. For example:

cin.unsetf(ios::skipws);

This flag sets/unsets skip of white space characters. Other flags for example are:

• boolalpha – reads (and writes) boolean values as a string true/false instead
of 1/0.

• showbase – write integral values preceded by their corresponding numeric
base prefix.

• showpoint – write floating-point values including always the decimal point.
• showpos – write non-negative numerical values preceded by a plus sign (+).

Notice that several manipulators have the same name as these flags (but as global
functions instead).

For reading strings (a character array, not a string type), the getline method is used
in addition to the basic form. The getline method has two or three parameters:

char S[20];

Formatted Input/Output | FITPED

44

cin.getline(S, 10); // reads max. 9 characters plus \0 or to

the end of line

We can read to the given delimiter:

cin.getline(S, 15, ':');

 // reads max. 15 characters or to the colon or to the end of

line

The last method is useful for reading strings from CSV files for example.

📝 5.1.11

Two characters are on the input. Find out what categories these characters include
(white characters, letters, digits, punctuation). Add the corresponding parts to the
following code.

char a, b;

if (_____) cout << "a is white character"<< endl;

 else if (a>='0' and a<='9') cout << "a is digit"<<endl;

 else if ((a>='A' and a<='Z') or (a>='a' and a<='z'))

 cout << "a is letter" << endl;

 else cout << "a is punctuation" << endl;

if (_____) cout << "b is white character"<< endl;

 else if (b>='0' and b<='9') cout << "b is digit"<<endl;

 else if ((b>='A' and b<='Z') or (b>='a' and b<='z'))

 cout << "b is letter" << endl;

 else cout << "b is punctuation" << endl;

• a==' ' or a=='tab'
• b<=' '
• a==' '
• cin >> (get)a; cin >> (get)b;
• a<=' '
• b==' ' or b=='tab'
• cin.get(a); cin.get(b);

Formatted Input/Output | FITPED

45

5.2 Formated input/output (programs)

⌨ 5.2.1 Formatted output 1

We have two numbers – tax-free amount and VAT given on the input. Calculate
amount with VAT and write: "Result is XXX.YY €." The number has to occupy the
position of 10 characters have to be on 2 decimal digits and formatted to the right
side.

⌨ 5.2.2 Formatted output 2

We have the name, surname and salary of the person given on the input. Write this
information on output so that personal name will occupy 15 characters (padded by
spaces), surname 25 characters and salary 7 characters without decimal places.
The salary will be aligned right.

⌨ 5.2.3 Formatted output 3

We have one word and one integer value given on the input. Task: display one row
on output where input word will be on the left side, occupy 20 positions, input
integer value will be in the right side, occupy 7 positions and between the word and
the number will be leaders dots, for example:

Glass....................35

⌨ 5.2.4 Formatted output 4

We have two integer numbers given on the input. Display these numbers and their
sum in hexadecimal code, for example:

Input numbers 10 and 15 in hex: A + F = 19

⌨ 5.2.5 Formatted output 5

We have two input integer numbers. Display them in the octal system and display
their product as well. The exact shape of output is:

Product of decimal numbers 10 and 8 in octal code: 12 * 10 =

120

Formatted Input/Output | FITPED

46

⌨ 5.2.6 Formatted output 6

We have given one real number, the requested number of positions and the
requested number of decimal places on the input. Display the input real number
with specified sizes and display underscores instead of spaces.

For example – input numbers are 7.78 10 4 and on output, we will see:

The number is: ____7.7800

⌨ 5.2.7 Formatted output 7

In some spreadsheets, it is possible to format values so that a sign is placed on the
left and a value on the right. There may be a fill between the sign and the number
(most often spaces, but also other characters). Create a similar format: there is a
real number at the input and the displayed width in characters. Display the number
so that the sign is on the left, the number is on the right, and the fill is done with
dots. For example, input number 2.45 on size 10 will be displayed as:

+.....2.45

⌨ 5.2.8 Formatted output 8

The output of the typical SQL command "select": strings are aligned to the left,
padded with spaces and wrapped with the character '|'. We have given two strings
on the input. Display them to a size of 10 characters. For example input strings Alex
and Barnie will be displayed following (remember to write an end of line):

|Alex |Barnie |

⌨ 5.2.9 Formatted output 9

The hexadecimal system is used to easily express binary values always storing
data on a computer in whole bytes or groups (for example, 4 bytes). Thus, the
values are displayed so that the number of digits is always the same and
corresponds to the desired byte width and is filled with zeros from the left. Assume
that the input is an integer value and the required number of bytes to display.
Display this value in hexadecimal with the appropriate width. For example, the input
is a pair of 26 4, the output will be:

0000001A

Formatted Input/Output | FITPED

47

⌨ 5.2.10 Formatted output 10

There are five integer values at the input. Write a histogram of their relative shares
in the total. Each 10% will be displayed as 5 stars. For example, for values 1 3 2 3 1
we obtain the following:

1: *****

3: ***************

2: **********

3: ***************

1: *****

form_output10.cpp
#include <|iostream>

#include <|iomanip>

using namespace std;

int main(){

 int num1, num2, num3, num4, num5;

 cin >> num1 >> num2 >> num3 >> num4 >> num5;

 // enter the appropriate code here:

 return 0;

}

Logical Operators

Chapter 6

Logical Operators | FITPED

49

6.1 Logical data type and logical operators

🕮 6.1.1

A bit is the minimum amount of information that we can imagine since it only
stores either value 1 or 0, which represents either YES or NO, activated or
deactivated, true or false, etc. This means two possible states each one opposite to
the other without the possibility of any shades. We are going to consider that the
two possible values of a bit are 0 and 1.

Several operations can be performed with bits either in conjunction with other bits
or themselves alone. These operations receive the name of boolean operations, a
word that comes from the name of one of the mathematicians who contributed the
more to this field: George Boole (1815–1864). There is a special data type named
bool. Values of the bool type are false and true. The value false is implemented as
zero in computer memory, the value true is implemented as one (or any non-zero
value). Boolean values are also called logical values and data type bool is also
called logical data type.

Basic operators with logical values are and, or, not, xor. The following table shows
the results of operations with these operators.

Input and output of logical values

For C language compatibility, both input and output logical values are represented
by numeric values. A value of false is zero, and a value true is 1. We can change this
behaviour by setting stream format flag boolalpha. Then we can read string "true"
or "false" as a logical value and write the logical value in form of strings "true" or
"false".

🕮 6.1.2

A logical expression is similar to an arithmetic expression. It is composed of
operands and operators. However, operators calculate the results in the form of a
logical value. For example the expression

(a or b) and not (c and d)

Logical Operators | FITPED

50

is a logical expression where a, b, c, d are operands (variables) and "or", "and", "not"
are logical operators.

Similar to the arithmetic expression, logical operators have their priorities. The
logical expression is evaluated according to these priorities. The change of priority
can be prescribed by brackets.

All comparisons can be a part of a logical expression. For example, x == y is true
when x and y are equal. Variables x and y may be any numbers, characters, strings
and so on. Example:

(x != 5) and (x > 0)

The expression value is true when x is positive but not equal to five.

📝 6.1.3

Suppose we have a declaration:

bool first=false, second=true;

What value will the following expression have:

not ((first xor second) and (first or second))

• False
• True

📝 6.1.4

The value of variable Salary is between 1000 and 3000 € inclusive. Which of the
following expressions will be true if Salary meets that condition?

• (Salary >= 1000) and (Salary <|= 3000)
• (Salary = 1000) or (Salary = 3000)
• (Salary <|= 1000) xor (Salary >= 3000)
• (Salary >= 1000 and <|= 3000)

📝 6.1.5

We need to find out whether the variable Number has an odd non-negative value.
Which of the following terms is true with the specified criterion?

Logical Operators | FITPED

51

• (Number >=0) and (Number % 2 == 1)
• Number positive and Number odd
• (Number !=0) or (Number % 2 != 0)
• Number between 0 and odd(100)

📝 6.1.6

We have the following code:

char one, two;

cin >> one >> two;

cout << (((one == 'a') or (one == 'e')) and ((two == 'x') or

(two == 's'))) << endl;

For which inputs will the output be 1?

• axis
• especially
• average
• ethernet
• session

6.2 Logical operators (programs)

⌨ 6.2.1 Logical expressions 1

Complete the program which reads a length of a square and writes value 1 if the
content of this square is between 10 and 100.

logic.cpp
#include <|iostream>

using namespace std;

int main(){

 int SquareSide, Content;

 cin >> SquareSide;

 Content = SquareSide * SquareSide;

 // here enter code for output logical information about

content of square.

 return 0;

Logical Operators | FITPED

52

}

⌨ 6.2.2 Logical expressions 2

Complete the program that reads two lengths and writes value 1 if these lengths
are identical.

⌨ 6.2.3 Logical expressions 3

Complete the program that reads personal height in centimetres and weight in
kilograms and writes value 1 if BMI of this person is under 25, zero instead. The
BMI is calculated as the weight divided by the square of the height in meters.

⌨ 6.2.4 Logical expressions 4

Complete the program that reads personal height in centimetres and weight in
kilograms and writes value 1 if BMI of this person is out of normal range (18.5, 25),
zero instead. The BMI is calculated as the weight divided by the square of the
height in meters.

logic4.cpp
#include <|iostream>

#include <|cmath>

using namespace std;

int main(){

 int height, mass;

 cin >> height >> mass;

 // here enter code for output logical information about

personal BMI.

 return 0;

}

⌨ 6.2.5 Logical expressions 5

A mortgage applicant wants to finance a € 100 000 property. He gets a loan when
he asks for a maximum of € 80 000 and earns more than € 1 500 a month. When he

Logical Operators | FITPED

53

is younger than 35, he gets € 90 000 and can only earn € 1 000 a month. The entry
is the required amount, monthly earnings and the applicant's age. Type 1 to get a
loan, zero instead.

Conditional Statements

Chapter 7

Conditional Statements | FITPED

55

7.1 Conditional statement "if"

🕮 7.1.1

Flow control

A simple C++ statement is each of the individual instructions of a program, like the
variable declarations and expressions seen in previous sections. They always end
with a semicolon (;), and are executed in the same order in which they appear in a
program.

But programs are not limited to a linear sequence of statements. During its process,
a program may repeat segments of code, or take decisions and bifurcate. For that
purpose, C/C++ provides flow control statements that serve to specify what has to
be done by our program, when, and under which circumstances.

Compound statement

Many of the flow control statements explained in this section require a generic
(sub)statement as part of its syntax. This statement may either be a simple C/C++
statement, such as a single instruction, terminated with a semicolon, or a
compound statement. A compound statement is a group of statements (each of
them terminated by its own semicolon), but all grouped together in a block,
enclosed in curly braces: {}:

{ statement1; statement2; statement3; }

The entire block is considered a single statement (composed of multiple
substatements). Whenever a generic statement is part of the syntax of a flow
control statement, this can either be a simple statement or a compound statement.

The compound statement may have its own local declaration which is valid only in
the range of this statement. This is useful for example to divide variables that are
useless in other parts of the program.

🕮 7.1.2

Condition

A condition is any boolean expression. We say that the condition is fulfilled if the
value of this expression is true. Otherwise, the condition is not met. The condition is
used as a part of some flow control statements.

Flow control – branching

Conditional Statements | FITPED

56

The branching is the division of the program flow into two (or more) variant parts.
Which part will be performed in a particular moment is most often driven by the
value of the condition.

The most often situation is to divide flow control into two branches. The "if"
statement can only execute a command if a condition is met or another statement
if a condition is not met. The syntax of this statement is:

if (condition) statement1; else statement2;

Note the condition is enclosed to parenthesis. Both statement1 and statement2 can
be simple statements or compound statement.

Words "if" and "else" are keywords. Keywords cannot be used in another way than
in their defined meaning. Therefore, they will be highlighted in bold to distinguish
them from other parts.

We can use an incomplete if statement that omits the part that starts with else. In
this case, nothing is done if the condition is not met.

📝 7.1.3

Select the command that displays variable Count only if it is even.

• if (Count % 2 == 0) cout <|<| Count <|<| endl;
• if {Count % 2 == 0} (cout <|<| Count <|<| endl;)
• if (cout % 2 != 1) Count <|<| cout <|<| endl;
• if (Count == 2) {cout <|<| Count <|<| endl};

📝 7.1.4

A student will receive a 1000 € yearly scholarship if his or her average is better than
1.2. Write a message about the scholarship of students. Fill in the corresponding
parts to the following code.

 _____ Average;

 _____ Average;

 if _____ cout << "This student receives €1000";

 else cout << "This student receives no scholarship.";

• int
• cout >>;
• cin >>
• (Average < 1.2)

Conditional Statements | FITPED

57

• (Average == 1.2)
• unsigned long
• float

📝 7.1.5

We have a variable Measure with a value of 5. Will the following statement write a
message "Insufficient value"?

if ((Measure > 0) and (Measure % 2 == 1) and (Measure <=10))

 cout << "Measure is OK";

else cout "Insufficient value";

• False
• True

📝 7.1.6

We have the following code:

int Sum = 0, Current;

cin >> Current;

if (Current % 5 == 0)

 Sum += Current;

 Current++;

cout << "Sum is: " << Sum << ", Current is: " << Current <<

endl;

The input value was 11. What appears on the screen when we launch this code?

• Sum is: 0, Current is: 10
• Sum is: 11, Current is: 10
• Sum is: 0, Current is: 12
• Sum is: 11, Current is: 11

🕮 7.1.7

Sometimes it is necessary to branch a program to more than two branches. To do
this we can use the if statement within a branch of another if statement.

Conditional Statements | FITPED

58

For example, we need to determine whether a numeric variable X is positive,
negative or zero. We can write:

if (X == 0) cout << "X is zero" << endl;

else // variable X is positive, or negative – we have to test

it:

 if (X < 0) cout << "X is negative" << endl;

 else cout << "X is positive" << endl;

In the same way, we can branch to even more branches. We can write additional if
statements.

In order to see in the source text which branch belongs to which command, we use
indentation as shown in the previous example.

📝 7.1.8

Select a command that detects a larger value from the two specified integer
variables Number1 and Number2.

• if (Number1 > Number2) cout <|<| "Number1 is greater than Number2" <|<|
endl; else if (Number1 <| Number2) cout <|<| "Number2 is greater than
Number1" <|<| endl;

• if (Number1 == Number2) else if (Number1 > Number2) cout <|<| "Number1
is greater than Number2" <|<| endl; else cout <|<| "Number2 is greater than
Number1" <|<| endl;

• if (Number1 <| Number2) cout <|<| "Number2 is greater than Number1" <|<|
endl; else if (Number1 != Number2) cout <|<| "Number1 is greater than
Number2" <|<| endl;

• if (Number1 == Number2) cout <|<| "Number1 is greater than Number2" <|<|
endl; else if (Number1 > Number2) cout <|<| "Number2 is greater than
Number1" <|<| endl;

📝 7.1.9

Assume a variable Distance which contains a distance of two stops on the railway.
We need to calculate fares when we know that up to 10 km is paid 1 €, from 10 to
20 km 2 €, from 20 to 40 km 3 € and from 40 to 100 km 5 €. For distances of over
100 km, 3 € per 100 km is charged.

• if (Distance <| 10) cout <|<| "Fare is 1 €"; else if (Distance <| 20) cout <|<| "Fare
is 2 €"; else if (Distance <| 40) cout <|<| "Fare is 3 €"; else if (Distance <| 100)
cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) * 3)
<|<| " €";

Conditional Statements | FITPED

59

• if (Distance > 0) cout <|<| "Fare is 1 €"; else if (Distance >= 10) cout <|<| "Fare
is 2 €"; else if (Distance >= 20) cout <|<| "Fare is 3 €"; else if (Distance >= 40)
cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) * 3)
<|<| " €";

• if (Distance <| 100) cout <|<| "Fare is 5 €"; else if (Distance <| 40) cout <|<|
"Fare is 3 €"; else if (Distance <| 20) cout <|<| "Fare is 2 €"; else if (Distance <|
10) cout <|<| "Fare is 1 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) *
3) <|<| " €";

• if (Distance <|= 10) cout <|<| "Fare is 1 €"; else if (Distance <|= 20) cout <|<|
"Fare is 2 €"; else if (Distance <|= 40) cout <|<| "Fare is 3 €"; else if (Distance
<|= 100) cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) +
1) * 3) <|<| " €";

📝 7.1.10

The worker worked X hours. Norma's 40 hours. The worker receives a basic salary
of €300 for meeting the standard. For a 20% overrun, he will receive a €50 bonus,
but salary is reduced by a €100 for normas non-compliance. Calculate the salary of
a worker who has worked for X hours. Fill in following code the appropriate pieces:

if (_____) cout << "Salary is _____";

 else if (_____) cout << "Salary is €300";

 else cout << "Salary is €350";

• X == 40
• €350
• X < 40*1.2
• €300
• €200
• X < 40

📝 7.1.11

The teacher works especially with very good students on one hand and with very
weak students on the other. The student is graded A to E. The teacher, therefore,
needs to know if the student is very good (A or B) or weak (he has an E). Fill in the
corresponding parts to the following code.

_____ Grade;

cin >> Grade;

if _____ cout << "Excellent student";

 else if _____ cout << "Weak student";

Conditional Statements | FITPED

60

• (Grade >= 'A')
• char
• (Grade != 'C' and Grade != 'D')
• (Grade == 'E')
• (Grade == 'A' or Grade == 'B')
• int
• float

7.2 Command if (programs)

⌨ 7.2.1 Conditional statement 1

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the amount you entered.

condstat.cpp
#include <|iostream>

using namespace std;

int main(){

 float Amount, Discount;

 cin >> Amount;

 // Enter appropriate code here:

 cout <|<| "Discount is " <|<| Discount <|<| endl;

 return 0;

}

⌨ 7.2.2 Conditional statement 2

The size of the mortgage loan is at most 80% of the property price and the
applicant must earn at least 1500 € per month. If the applicant is at most 35 years
old, he can get up to 90% of the property price and earn at least 1000 € a month.
Otherwise, he won't get any credit. On input are the cost of the property, earnings
and the applicant's age. Calculate the maximum amount of credit that this
applicant will receive.

Conditional Statements | FITPED

61

⌨ 7.2.3 Conditional statement 3

We have a math function: (y = sqrt{frac{x-1}{x^2-3}})

Task: Calculate the value of this function for given x on input. Display result value
with 4 decimal places. In case the function doesn't have a solution in the range of
real numbers, write the message "The function has no solution for given x."

⌨ 7.2.4 Conditional statement 4

We have three coefficients A, B, C of a quadratic equation (Ax^2+Bx+C=0).
Calculate the roots of this equation in real and complex ranges. For any type of
result write the following comments:

1. The solution has two real roots: xxxxx and yyyyy.
2. The solution has one double root: xxxxx.
3. The solution has complex roots xxxxx +/-i yyyyy.

All result numbers write with four decimal places.

⌨ 7.2.5 Conditional statement 5

To pass the credit, the student has three tests, 20 points for each. None of them
can have zero points. If all of them meet at least 80%, they will not only have the
credit, but also the exam for A. The input values are three numbers indicating the
number of points obtained by the student in each test. The outputs are sentences
corresponding to the evaluation in individual cases:

1. The student does not obtain credit.
2. The student obtains credit.
3. The student obtains credit and exam for A.

⌨ 7.2.6 Conditional statement 6

There are two names at the input. Write down which is the first in alphabetical
order.

Conditional Statements | FITPED

62

⌨ 7.2.7 Conditional statement 7

There are three numbers at the input. Write these numbers in ascending order.

⌨ 7.2.8 Conditional statement 8

If the driver is driving at a speed of 10 km / h higher than allowed, he gets a fine of
20 €. If he is driving at a speed of 20 km / h higher than allowed, he will receive a
fine of 50 €. Input has two numbers – allowed speed and actual speed. Write out
whether the driver will be punished and how. There will be a sentence at the output:
The driver will not be fined. / The driver will be fined ... €.

7.3 Conditional expression

🕮 7.3.1

If the result of the branching is only the calculation of an expression, it is possible
to use rather simple writing instead of the if statement.

For example, we need to calculate fares based on distance travelled. From 0 to 19
km is paid 1 €, over 20 km is paid 2 €. We can write the calculation with the if
statement:

if (Distance < 20) Fare = 1;

else Fare = 2;

We can write the same with a conditional expression:

Distance < 20 ? Fare = 1 : Fare = 2;

or even more briefly

Fare = Distance < 20 ? 1 : 2;

Operator "?" and ":" is often called ternary operator – it has three operands:
condition, first expression and second expression.

📝 7.3.2

We have two pieces of code:

Conditional Statements | FITPED

63

First:

if (SideA <= SideB) SideA *= 2;

else SideB *= 2;

Second:

SideA = SideA <= SideB ? SideA * 2 : SideB * 2;

Do both codes the same thing?

• False
• True

📝 7.3.3

We need to insert a square content or a square perimeter into the X variable,
according to whichever amount is greater. The square side is in the Side variable.
Select the correct code that does this.

• X = (Side * Side > 4 * Side) ? Side * Side : 4 * Side;
• X = Side * (Side > 4 ? Side : 4);
• X = (Side * Side <| 4 * Side) ? Side * Side : 4 * Side;
• X = (Side * 2 <| 4 * Side) ? 2 * Side : 4 * Side;

📝 7.3.4

We need an expression that returns the initial value of Count and adds one to the
Count value if the Current variable is negative. Fill in the blanks with the
corresponding code:

_____ ? _____ : _____ ;

• Count -=1
• -Current <| 0
• Count
• Count += 2
• (Current >= 0
• Count++
• Count = 1
• Current < 0

Conditional Statements | FITPED

64

📝 7.3.5

We have the following code:

if (Sum > 1000) { Count ++; Sum -= Current; }

else {Count --; Sum += Current;}

Which of the pieces of code does exactly the same action?

• Count = Sum > 1000 ? Count + 1 : Count - 1; Sum = Sum > 1000 ? Sum -
Current : Sum + Current;

• Sum = Sum > 1000 ? Sum - Current : Sum + Current; Count = Sum > 1000 ?
Count + 1 : Count - 1;

• Count = Sum <| 1000 ? Count ++ : Count --; Sum = Sum <| 1000 ? Sum -
Current : Sum + Current;

• Sum += Sum > 1000 ? -Current : Current; Count += Sum > 1000 ? 1 : -2;

📝 7.3.6

Rewrite the following code using the if statement:

Speed += Lap < 100 ? CurSpeed : ;

Lap += Lap < 100 ? 1 : 0;

• if (Lap <| 100) { Speed += CurSpeed; Lap++; }
• if (Lap > 100) Lap--; if (Lap <| 100) Speed = CurSpeed; else Speed = -

CurSpeed;
• if (Lap <| 100) Speed = Speed + CurSpeed; Lap = Lap + 1;
• if (Lap <| 100) else {Speed += CurSpeed; Lap--;}

📝 7.3.7

When calculating the arithmetic expression, we have to check whether the input
values allow the calculation to be performed. Calculate the value of the
expression log10 ((a2 −√b) / (a − b)). Input values are a and b.

Fill in the following code the appropriate pieces:

float a, b, result;

cin >> a >> b;

if _____ {

 result = _____ ;

 if _____ {

Conditional Statements | FITPED

65

 result = log10(result);

 cout << "The result is: "<<result<<endl;

 }

 else cout << "The expression cannot be evaluated."<<endl;}

else cout << "The expression cannot be evaluated."<<endl;

• (log10(result) != 0)
• log10((a*a - sqrt(b)) / (a - b))
• (b >;= 0) or (a == b)
• (a*a - sqrt(b)) / (a - b)
• ((a - b != 0) and (b >=0))
• (result > 0)

📝 7.3.8

Determine whether the entered numbers x and y satisfy the equation y=34 /(x+12).

float x, y, fraction;

string Message;

cin >> x >> y;

if (x + 12 != 0)

 Message = *** ? "Numbers are satisfying the equation. " :

 "Numbers aren't satisfying the equation.";

 else Message = "The fraction cannot be evaluated.";

cout << Message << endl;

Choose the right part of the code that needs to be replaced by three stars.

• (y == 34 / (x + 12))
• (y * x - 12) == 34
• (y == (34 / x + 12))
• (x + 12 != 34 / y)

7.4 Conditional expression (programs)

⌨ 7.4.1 Ternary operator 1

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the amount you entered.

Conditional Statements | FITPED

66

ternop.cpp
#include <|iostream>

using namespace std;

int main(){

 float Amount, Discount;

 cin >> Amount;

 // Enter appropriate code here:

 cout <|<| "Discount is " <|<| Discount <|<| endl;

 return 0;

}

⌨ 7.4.2 Ternary operator 2

The size of the mortgage loan is at most 80% of the property price and the
applicant must earn at least 1500 € per month. If the applicant is at most 35 years
old, he can get up to 90% of the property price and earn at least 1000 € a month.
Otherwise, he won't get any credit. On input are the cost of the property, earnings
and the applicant's age. Calculate the maximum amount of credit that this
applicant will receive. Use ternary operator instead of if statement.

⌨ 7.4.3 Ternary operator 3

We have a math function: (y = sqrt{frac{x-1}{x^2-3}})

Task: Calculate the value of this function for given x on input. Display result value
with 4 decimal places. In case the function doesn't have a solution in the range of
real numbers write value -100.0000. Use the ternary operator to calculate the
conditions.

⌨ 7.4.4 Ternary operator 4

There are three numbers at the input. Write these numbers in ascending order. Use
the ternary operator.

Conditional Statements | FITPED

67

⌨ 7.4.5 Ternary operator 5

If the driver is driving at a speed of 10 km/h higher than allowed, he gets a fine of
20 €. If he is driving at a speed of 20 km/h higher than allowed, he will receive a fine
of 50 €. Input has two numbers – allowed speed and actual speed. Write out
whether the driver will be punished and how. There will be a sentence at the output:
The driver will not be fined. / The driver will be fined ... €.

Use the ternary operator.

7.5 Switch to more branches

🕮 7.5.1

In some cases, branching into multiple branches can be written with the switch
command. This command tests the value of an integer or enumerated expression
and then decides which branch the program control moves to.

Syntax of switch command is:

switch (expression)

{

 case value1 : statement1; break;

 case value2 : statement2; break;

 etc.

 case valueN : statementN; break;

 default: statement;

}

The break statement always terminates the execution of the entire switch
statement. If we do not specify a break, the switch statement continues to execute
the next branch, even if it is a branch whose value does not match the evaluated
expression. The default branch is executed if neither value matches the
enumerated expression. The default branch may be omitted.

The break statement will also be discussed later.

📝 7.5.2

Suppose the following code:

char MyCharacter;

cin >> MyCharacter;

Conditional Statements | FITPED

68

switch (MyCharacter) {

 case 'a': cout << MyCharacter;

 case 'e': cout << MyCharacter;

 case 'i': cout << MyCharacter;

 case 'o': cout << MyCharacter;

 case 'u': cout << MyCharacter;

 case 'y': cout << MyCharacter;

 default: cout << "+any consonant."

}

The "e" character was entered. What will be displayed on the screen after this code
is executed?

• eeeee+any consonant.
• e+any consonant.
• eiouy
• eiouy+any consonant.

📝 7.5.3

We need to quantify integer powers to the fifth degree. Variable Base contains a
powered value, variable Power contains the required power of variable Base. We
use the switch command. Which listing resolves the specified task?

• switch (Power){ case 0: result = 1; break; case 1: result = Base; break; case 2:
result = Base*Base; break; case 3: result = Base*Base*Base; break; case 4:
result = Base*Base*Base*Base; break; case 5: result =
Base*Base*Base*Base*Base; break; default: result = 0; }

• result = Base; switch (Power){ default: result = 0; break; case 0: result = 1;
break; case 5: result *= Base; case 4: result *= Base; case 3: result *= Base;
case 2: result *= Base; case 1: ; }

• switch (Power){ case 0: result = 1; break; case 5: result *= Base; break; case
4: result *= Base; break; case 3: result *= Base; break; case 2: result *= Base;
break; case 1: ; default: result = 0; }

• result = Base; switch (Power){ case 0: result += 1; case 1: result += Base;
case 2: result += Base*Base; case 3: result += Base*Base*Base; case 4:
result += Base*Base*Base*Base; case 5: result +=
Base*Base*Base*Base*Base; default: result += 0; }

📝 7.5.4

We have two variables: Op1 and Op2. We want to process some arithmetical
operations depending on variable Choice which contains one character specified

Conditional Statements | FITPED

69

the operation: '+' for addition, '-' for subtraction, '*' for multiplication, or '/' for
division. Fill in the following code the appropriate pieces:

int Op1=24, Op2=8;

char Choice;

cin >> Choice;

switch _____ {

 case '+': cout << "Result is: "<< _____

 case '-': cout << "Result is: "<< Op1 - Op2 << endl; break;

 case '*': cout << "Result is: "<< Op1 * Op2 << endl; break;

 case _____

 default: cout << "Unresolved operation." << endl;

}

• Op1 ++ Op2 <|<| break;
• '/': cout <|<| "Result is: "<|<| Op1 / Op2 <|<| endl; break;
• '/': cout << "Result is: "<< (Op2 !=0 ? Op1 / Op2:0) << endl; break;
• (Choice)
• Choice
• Op1 + Op2 << endl; break;

📝 7.5.5

One character is entered from the input. You need to decide whether it's a vowel, a
consonant, or a different character (not a letter). Fill in appropriate pieces of code:

char Character;

cout << "Enter any character: ";

cin >> Character;

Character = toupper(Character); // converts letter to upper

case

if _____

 switch _____ {

 case 'A':

 case 'E':

 case 'I':

 case 'O':

 case 'U':

 case 'Y': cout << "The '"<<Character<<"' was a

vowel."<<endl; break;

 default: _____

 } else _____

• cout <|<| "The '"<|<|Character<|<|"' was a digit."<|<| endl;

Conditional Statements | FITPED

70

• (Character is 'A' to 'Z')
• ('A' to 'Z')
• ((Character >='A') and (Character <= 'Z'))
• (Character)
• cout << "The '"<<Character<<<"' wasn't a letter." << endl;
• ('A' <|= Character <|= 'Z')
• cout << "The '"<<Character<<"' was a consonant." << endl;

7.6 Switch command (programs)

⌨ 7.6.1 Switch application 1

Value-added tax is calculated according to the category to which the relevant goods
belong. The categories are marked 1 (5% tax), 2 (10% tax), 3 (15% tax), and any
other number represents a basic tax of 21%. On the standard input are two
numbers: the tax category and the tax-free price of the goods. Calculate the price of
goods with tax.

⌨ 7.6.2 Switch application 2

There is an integer value at the input and the required output after it: 0 is in decimal,
1 in octal, and 2 in hexadecimal. Write the entered number in the desired system.

Loops

Chapter 8

Loops | FITPED

72

8.1 The while statement

🕮 8.1.1

Program loops represent the basis of almost all programs. Most algorithms are
based on loop value processing. All loops can be divided into two groups:
conditional loops, counted loops. Conditional loops are further divided into loops
with a condition at the beginning, a condition at the end, and a condition in the
middle. So we have four types of loops. First, we deal with conditional loops.

What is a loop exactly?

A loop is a few commands to be executed repeatedly but not forever. We must
always determine when commands are to be again repeated and when the
repetition is to end. For conditional loops, the point at which the repetition ends is
determined by fulfilling a condition. For counted loops, the number of repetitions is
determined in advance.

So conditional loop has a condition, i.e. logical expression that controls the
repetition. A poorly determined condition may cause the loop to be performed
forever (looping) or not at all. Looping is a serious bug in program construction.

🕮 8.1.2

A conditional loop has the following common structure:

• start of the loop,
• loop body (commands to be repeated),
• end of the loop.

The loop control condition can be placed at the beginning of the loop body or at the
end. Loops with control conditions at the beginning or at the end are preferred. The
loop with a control condition at the beginning has the following syntax:

while (condition) command;

The keyword while determines the start of the loop. Note the condition is always
enclosed in parentheses. The loop body contains one statement only, but this
statement may be a compound statement that is composed of many other
statements enclosed by curly brackets. The end of this loop is composed of an end
of body command.

Example:

Loops | FITPED

73

while (Current > 0) {

 Count++;

 cin >> Current;

}

The most important thing is to build the condition correctly. There must be at least
one statement in the body of the loop that affects the condition value. In this
example, it is the cin command – inserts a value from the input into the Current
variable and then controls the loop pass.

If the loop has a condition at the beginning, it is necessary to prepare everything
before the loop so that the condition can be evaluated before the loop starts. So we
need to input the first value of Current before the loop:

cin >> Current;

while (Current > 0) {

 Count++;

 cin >> Current;

}

📝 8.1.3

Let's have the following loop:

int Count = 100;

while (Count > 50)

 cout << "Round No. " << Count-- << endl;

Is the loop condition built correctly to avoid an endless loop?

• True
• False

🕮 8.1.4

Often we need to process the numbers entered from the input. There are several
ways that a job is given:

1. We know which value is the last; this last value may be part of the data or it
may be a breakpoint (stop value) that we can't process with other values.

2. We know the count of input numbers.
3. We don't know their number nor do we know which value is the last.

Loops | FITPED

74

Each of these cases has a somewhat different loop design that is able to read and
process the entered numbers.

We start with the simplest situation, that is when we know the last number that is
not a part of the data and shouldn't be processed together with the data.

📝 8.1.5

There is a sequence of numbers on input, representing the prices of goods sold in
one day. The last number in the input sequence is zero. We have to find out the
total price of the goods sold. Fill in the correct parts to the following code:

int Price, Sum = 0;

cin >> Price;

while _____

 {

}

cout << "Total price is " << Sum << endl;

• Sum += Price;
• (Price != 0)
• cin >> Price;
• (Price == 0)
• Price++
• (Sum != 0)

🕮 8.1.6

The conditional do-while loop has a condition at the end. This means that the loop
body will always run at least once. The syntax is as follows:

do statement

while (condition);

The loop starts with the keyword do. If we need more than one statement in the
loop body, we use a compound statement. The condition is enclosed by
parenthesis and its value true forces to repeat the loop body. Example:

The user has to enter an integer value between zero and 20. If he enters the wrong
number, he will be repeatedly prompted to enter the correct value.

Loops | FITPED

75

int Value;

do {

 cout << "Please, insert any number between 0 and 20: ";

 cin >> Value;

} while ((Value <0) or (Value > 20));

When this loop is over, we are sure that the Value variable has the correct value.

🕮 8.1.7

Now we can return to the numeric input options. We will now deal with the case that
we know the last value that is part of the data and should be processed with the
data. For this case, a conditional loop of the do-while type is best suited.

Example: Suppose a sequence of real values is prepared at the input and the last
value is 42. We have to determine how many values are on the input.

float Value; // variable for input value

int TotalCount = 0; // variable for total count of input

values

do {

 cin >> Value; // we read one value

 TotalCount++; // counter of values is increased

} while (Value != 42); // when input value is not 42, we

continue in the loop

Note that the end condition expresses the situation where the loop body is to be
repeated again.

We can use this algorithm also if the end value does not belong to the data, but its
processing does not affect the result. For example, the input contains integer
values, last value is zero. We have to find out the sum of the numbers. In this case,
the addition of the numbers with the ending zero does not affect the result.

📝 8.1.8

Let's assume that prepared input values represent the number of students in each
exam during the current term. We know that there were exceptionally many
students in the last exam – 48. We have to find out how many exam tests were
done this term in total. Fill in the appropriate pieces of code:

int Exam, Total = 0;

// Exam - number of students in one exam;

Loops | FITPED

76

// Total - Total exam tests

do {

} while _____

cout << "Total exam tests executed: " << Total << endl;

• (Exam != 48);
• cin <|<| Exam;
• (Exam == 48);
• Total ++;
• (Total != 48);
• cin >> Exam;
• Total += Exam;

📝 8.1.9

Input values represent daily revenue from product sales in euros. The last number
is zero and this is a sentinel only. Find out what was the biggest revenue in the
input data. Fill in appropriate pieces of code:

float Revenue, MaxRevenue;

while _____ {

 cin >> Revenue;

}

cout << "The biggest revenue was " << MaxRevenue << " €." <<

endl;

• if (Revenue > MaxRevenue) MaxRevenue = Revenue;
• cin >> Revenue; MaxRevenue = Revenue;
• MaxRevenue = 99999; cin >> Revenue;
• if (Revenue > MaxRevenue) Revenue = MaxRevenue;
• (Revenue != 0)
• (MaxRevenue > 0)

🕮 8.1.10

Another case of input data processing is when we do not know the end value nor
the number of input data. So we process the data as long as there is something in
the input.

Loops | FITPED

77

The moment when there is nothing on the input, we find out by testing the reading
operation. When reading, the input stream "cin" is set to true if reading succeeds
and values are inserted into the appropriate variables, and false otherwise.
However, the unsuccessful reading may be another reason than the end of the data,
for example, a misspelt numeric value containing illegal characters.

Example: Determine how many real numbers are on input.

int Count = 0;

float Current;

while (cin >> Current) Count++;

📝 8.1.11

The input contains a sequence of real numbers representing the company's
monthly profits. Find out the total profit of the company and write down the
smallest positive profit for the given period. Add the appropriate parts to the
following program.

#include <iostream>

using namespace std;

int main(){

 float Profit, TotalProfit_____ _____;

 while (_____) {

 TotalProfit += Profit;

 if (Profit>0 and Profit>MinProfit) _____;

 }

 cout << "Total profit is " << TotalProfit << endl;

 cout << "The smallest positive profit is "<<

MinProfit<<endl;

 return 0;

}

• MinProfit = Profit
• MinProfit = 10000
• = 0,
• =-100
• Profit = MinProfit
• MinProfit = 1e50
• Profit != 0
• ,
• cin >> Profit

Loops | FITPED

78

8.2 The while loop (programs)

⌨ 8.2.1 While loop basics

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the sequence of amounts you entered. The input sequence
ends with a value of 999, which is not data.

⌨ 8.2.2 While loop 2

A sequence of integer numbers is on input. Calculate the sum of non-negative
numbers from the input sequence.

⌨ 8.2.3 While loop 3

Calculate the average of the real numbers that are on input. You know that the last
number is zero.

⌨ 8.2.4 While loop 4

The average daily temperature is calculated from three measurements (at 7, at 14,
at 21 o'clock). The temperature at 21 o'clock is counted twice. The entry is made up
of a series of triplets of daytime temperatures, instead of the last triple, there is
only one number -100. Calculate and display the average temperature over a given
period, which is the average of daily averages. Determine the situation when only -
100 is on input.

⌨ 8.2.5 While loop 5

Every month, the funds deposited in the real estate fund account for a certain
monthly percentage which depends on current conditions and may be different
each month. We can also deposit a monthly additional amount to the fund. The task
is to calculate the resulting amount on your account. The first input value is the
initial state of the account, followed by a sequence of pairs of numbers. Each first
number indicates the monthly additional deposit and the second number is the
percentage of appreciation in the given month. After reading all input values, write
down the resulting account status of the given fund. The result value display with
two decimal places.

Loops | FITPED

79

⌨ 8.2.6 While loop 6

The input is a sequence of numbers representing potato yields per year from one
hectare of land (100 kg/ha). Write the serial number of the year in which the highest
yield was reached.

⌨ 8.2.7 While loop 7

The input is a continuous text ending with a dot. Find out how many digits it
contains and the percentage of spaces for this text.

while7.cpp
#include <|iostream>

using namespace std;

int main(){

 // Enter appropriate code here:

 cout.precision(2);

 cout <|<| "Number of digits: "<|<|digits<|<|", spaces: "

<|<|fixed<|<|float(spaces)/float(allchar)*100<|<|"%"<|<|endl;

 return 0;

}

⌨ 8.2.8 While loop 8

The input is a sequence of numbers representing potato yields per year from one
hectare of land (100 kg/ha). Write the serial number of the year in which the highest
increase of yield was reached.

⌨ 8.2.9 While loop 9

There is one integer number on input. Write this number on output in the binary
system including possible negative signs.

Loops | FITPED

80

⌨ 8.2.10 While loop 10

There is one integer number on the input. Determine if this number is a prime
number. Write sentence: "Number ... is a prime number." or "Number ... is not a
prime number.".

8.3 The do loop (programs)

⌨ 8.3.1 The do loop 1

Write the number of the positive real numbers that are on input. You know that the
last number is zero.

⌨ 8.3.2 The do loop 2

The input is a continuous text ending with a dot. Find out how many letters and
digits together it contains.

⌨ 8.3.3 The do loop 3

The sequence of ones and zeroes ended with "=" is on input. Convert this sequence
to a decimal value and write it as a result.

⌨ 8.3.4 The do loop 4

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the sequence of amounts entered on the input. The input
sequence ends with a value of 0 that is not data.

Loops | FITPED

81

8.4 Counted loop for

🕮 8.4.1

The for loop is intended for cases where we know the number of times a loop is
repetitive. It is a complement to a conditional loop that is performed by meeting a
condition.

The syntax of for loop is following:

for (initialization; condition; control) statement;

There are three expressions in brackets after keyword for that determine how the
loop body is executed. The loop execution is usually controlled by the value of a
numeric variable, which is called a loop control variable.

The first expression specifies the initial setting. Usually, the initial value of the
control variable is set here. This expression is always calculated only once before
the loop starts. We can also use there the declaration of a control variable that will
only function inside the loop body and will be automatically deleted when the loop
ends.

The second expression is always evaluated before each execution of the loop
body. It is a condition whose fulfilment allows the execution of the loop body. If this
condition isn't met, the loop is terminated.

The third expression is used to update the value of the control variable. It is
automatically executed at the end of the loop body. We can add or subtract one or
any other value (also float).

Simple example: We want to display numbers from 10 to 20:

for (int CV = 10; CV <= 20; CV++) cout << CV << endl;

We can omit the initialization expression if the initialization was performed earlier:

int CV = 10;

for (; CV <= 20; CV++) cout << CV << endl;

If we omit the second expression, the loop will be executed forever (infinite loop). In
that case, there is no point in mentioning the third expression.

The expression can contain more commands divided by commas. For example, we
can have two variables used in the loop body:

for (int a=1, b=3; a*b < 100; a+=3, b+=4)

 cout << a << ", " << b << endl;

Loops | FITPED

82

The loop body can contain only one command. If we need more commands, we use
a compound statement.

📝 8.4.2

We have the following code:

int Value, Sum = 0;

for (int C = 1; C < 5; C++)

 {cin >> Value; Sum += Value;}

cout << Sum << endl;

Numbers 1 3 5 7 9 11 13 15 were entered when running this program. What was the
output value?

• 16
• 21
• 7
• 5

🕮 8.4.3

Looking at the three expressions that need to be written in the for-loop bracket, it is
basically the same thing we would have to do with the while loop. So what is the
difference between using a for and while loop? If we want to write pure code, we
will use the for loop just if we know in advance how many times it will be repeated.
In all other cases, we use the while loop.

The for loop can be easily rewritten to a while loop. For example the following loop:

for (int i = 10; i <= 100; i+=3) {

 cin >> current;

 sum += current;

 cout << "We processed " << i << " values."<< endl;

}

can be rewritten to:

{int i = 10;

while (i <=100) {

 cin >> current;

 sum += current;

 cout << "We processed " << i << "values."<< endl;

Loops | FITPED

83

 i+=3;

}}

Therefore, the for loop may seem unnecessary. Its benefit is that in the case of a
known number of repetitions, we have all three essential elements of the loop
(initialization, repetition condition, modification of the control variable) in one place
in the parentheses.

Similarly, you can rewrite a while loop to a for loop. For example, to read a
sequence of numbers ending with -1 and summing up the values, we can write:

cin >> cur;

while (cur != -1) {

 sum += cur;

 cin >> cur;

}

And in case of for loop we write:

for (cin >> cur; cur != -1; cin >> cur) sum += cur;

We strongly warn against various dirty tricks, such as modifying the control variable
inside the for loop. For example:

for (char X = 'A'; X <= 'Z'; X ++) {

 cout << "We processed character: " << X << endl;

 if (X == 'P') X += 5;

}

Looking at the beginning of the loop, we see the repetition for all the characters of
the uppercase alphabet, but 5 characters are skipped inside the loop.

📝 8.4.4

We need to calculate the factorial of an input number N. The input number is non-
negative. Which code solves this task?

• int N, F = 1; cin >> N; for (int I = N; I > 1; I--) F *= I;
• int N, F = 0; cin >> N; for (int I = N; I >= 1; I--) F += I;
• int N, F = 1; cin >> N; for (int N = I; I <| N; N--) F *= N;
• int I = 1, F = 0; for (cin >> N; I > 1; I--) F *= I;

Loops | FITPED

84

📝 8.4.5

We have a function y = (3 − x) / (x2−2x + 1).

We need to list a table of functional values for x going from 1 to 2 with a step of
0.05. Fill in matching pieces to the following code.

float denom;

for (_____){

 denom = _____ ;

 cout << x << " " << _____ << endl;

}

• (denom != 0 ? (3 - x)/denom : "--")
• int x=1; x <|= 2; x++
• x^2 - 2x +1
• (denom == 0 ? 3 - x / denom : 0)
• x * x - 2 * x + 1
• float x = 1; x <= 2; x += 0.05

📝 8.4.6

Rewrite the following while loop to the equivalent for loop (choose the right
equivalent):

int result = 1, coef = 1; cin >> inp;

while (coef <= inp) {

 result *= coef;

 coef ++;

}

• int result = 1; cin >> inp; for (int coef = 1; coef <|= inp; coef ++) result *= coef;
• int coef = 1; cin >> inp; for (int result = 1; result <|= inp; result ++) result *=

coef;
• int result, coef; cin >> inp; for (coef = inp, result = 1; coef >= 1; coef --) result

*= coef;
• int result = 1, coef; cin >> inp; for (coef = 1; coef >= 1; coef ++) result *= coef;

Loops | FITPED

85

8.5 The for loop (programs)

⌨ 8.5.1 The for loop 1

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the sequence of amounts you entered. The input sequence
begins with an integer that represents the number of values entered.

⌨ 8.5.2 The for loop 2

A sequence of N integer numbers is on input. The N is the first value on input.
Calculate the sum of non-negative numbers from the input sequence.

⌨ 8.5.3 The for loop 3

Calculate the average of the real numbers that are on input. You know that the first
value on input is a number of input values.

⌨ 8.5.4 The for loop 4

There are two N and K values at the input. Calculate the value of the combination
number (N over K). Note that the combined number is calculated as N!/((N–K)! K!)

⌨ 8.5.5 The for loop 5

There is a non-negative integer on input. Display this value in a binary system at 32
digits.

⌨ 8.5.6 The for loop 6

An arithmetic sequence is specified at the input: the first member (integer value),
the difference (integer) and the required number of members. Write the members of
the sequence so that there are comma and one space between the members, and a
dot after the last member. Do not write a new line at the end.

Loops | FITPED

86

⌨ 8.5.7 The for loop 7

A geometric sequence is specified at the input: the first member (real value), the
quotient (real) and the required number of members. Write the members of the
sequence so that there are comma and one space between the members, and a dot
after the last member.

8.6 Affecting the passage through the loop

🕮 8.6.1

The break command allows you to end the loop. This means that anywhere within
the loop body, it is possible to jump behind the loop and avoid further repetitions.

The break statement has already been mentioned by the switch statement. Its
meaning was the same – to terminate the command and jump beyond its end.

The break command is one of the program jump commands. The principles of
good programming practice do not allow the jump command because it always
interferes with the clarity of the program.

Thus, the break statement should be always avoided. It is usually seen as a dirty
trick. It presents potential bugs and makes looping unclear. If we write a conditional
loop, it should be clear from its condition when the loop works and when exactly it
will stop repeating. Similarly, for the for loop, we should determine how many times
the loop body is repeated from the notation in parentheses. In both cases, the
existence of a break statement in the loop body completely disrupts this
information.

Example:

Suppose we are, to sum up, the sequence of the input values ending with zero.
However, it may happen that the sum exceeds 10,000, in which case we should stop
reading and addition. We can use "dirty trick" with the break command:

int Sum = 0, Value;

do {cin >> Value;

 if (Sum >= 10000) break;

 Sum += Value;

} while (Value != 0);

As you can see, the break command divides the body of the loop into two parts –
the part before and after it. The body part before the break statement can be
executed less than the part after it. This is very dangerous and annoying, for
example, when looking for errors, because with a longer body of the loop, it may not

Loops | FITPED

87

be obvious that some commands in the body of the loop were not executed due to
the jump beyond the end of the loop.

However, we can also write the correct loop condition and avoid the annoying break
statement:

int Sum = 0, Value;

do {Sum += Value;

 cin >> Value;

} while (Value != 0 and Sum <= 10000);

📝 8.6.2

We want to calculate the factorial of a given number N. We have allocated an int
variable for the result. However, it is possible that during the calculation it is found
that the result exceeds the capabilities of this variable. The first variant of the
program is based on the factorial calculation using the for loop. We add the
condition to terminate the calculation if the result variable is going to overflow (it is
over circa 400 million).

int N, result = 1;

cin >> N;

for (int i = 2; i<=N; i++) {

 if (result > 400000000) break;

 result *= i;

}

Rewrite the code without using the break command.

• int N, result = 1; cin >> N; for (int i = 2; i<|=N and result <| 400000000; i++)
result *= i;

• int N, result = 1; cin >> N; for (int i = 2; (i>N or result <| 400000000; i++) result
*= i;

• int N, i, result; cin >> N; for (i = result = 1; result <| 400000000; i++) result *= i;
• int N, i=2, result = 1; for (cin >> N; N<|=400000000; i++) result *= i;

🕮 8.6.3

The continue command causes the loop body to end and jump to a new loop.
Similar to the undesirable use of the break statement, the continue statement is
equally undesirable.

Example: We should sum the values of the input numbers ending with zero.
However, if there are 10 between the numbers, we should not include it in the sum.

Loops | FITPED

88

int Cur, Sum = 0;

cin >> Cur;

while (Cur != 0) {

 if (Cur == 10) {cin >> Cur; continue;} // jump to next loop

 Sum += Cur;

 cin >> Cur;

}

Similar to the break command, the loop body is divided into two parts by the
continue statement. The part before the continue statement is always executed,
while the part after the continue statement is executed only if the condition is not
met. This can cause unwanted effects because the loop body commands are not
executed the same number of times.

The continue statement can always be avoided by using a more understandable
structure, such as:

int Cur, Sum = 0;

cin >> Cur;

while (Cur != 0) {

 if (Cur != 10) Sum += Cur;

 cin >> Cur;

}

📝 8.6.4

We have the following code:

int Value, Func;

bool Test;

for (Value = 0; Value <= 100; Value ++){

 Test = Value % 10 == 0;

 if (Test) continue;

 Func = Value * Value - 2 * Value + 1;

 cout << Value << " " << Func << endl;

}

How many lines are displayed on the output?

• 90
• 101
• 100
• 91

Loops | FITPED

89

📝 8.6.5

We have the following code:

int Value, Func;

bool Test;

for (Value = 0; Value <= 100; Value ++){

 Test = Value % 10 == 0;

 if (Test) continue;

 Func = Value * Value - 2 * Value + 1;

 cout << Value << " " << Func << endl;

}

How can we rewrite this code to perform an identical action but not include the
continue?

• int Value, Func; for (Value = 0; Value <|= 100; Value ++){ if (Value % 10 != 0)
cout <|<| Value <|<| " " <|<| Value * Value - 2 * Value + 1 <|<| endl; }

• int Value, Func; bool Test; for (Value = 0; Value <|= 100; Value ++){ Test =
Value % 10 == 0; if (Test) { Func = Value * Value - 2 * Value + 1; cout <|<|
Value <|<| " " <|<| Func <|<| endl; } }

• int Value, Func; bool Test; for (Value = 0; Value <|= 100; Value ++){ Test =
Value % 10 == 0; if (!Test) Func = Value * Value - 2 * Value + 1; cout <|<| Value
<|<| " " <|<| Func <|<| endl; }

• int Value, Func; for (Value = 0; Value <|= 100; Value ++){ if (Value % 10 == 0) {
Func = Value * Value - 2 * Value + 1; cout <|<| Value <|<| " " <|<| Func <|<| endl;
} }

8.7 Loop damage (programs)

⌨ 8.7.1 Loop damage 1

Employee age data are input. It is necessary to calculate the average age of the
specified group. However, if an incorrect value appears in the data (a negative
number, a number greater than 200), only a warning message "Incorrect input data."
will be displayed to standard error output. Determine missing input data and display
a warning message "Missing input data." to standard error output.

Avoid the command break in the program solution.

Loops | FITPED

90

⌨ 8.7.2 Loop damage 2

Employee age data are input. It is necessary to calculate the average age of the
specified group. However, if an incorrect value appears in the data (a negative
number, a number greater than 200), this value can't be processed.

Consider the variant using the continue command but write down the target
solution without this command.

User-Defined Functions

Chapter 9

User-Defined Functions | FITPED

92

9.1 User-defined functions

🕮 9.1.1

Each program consists of smaller parts called subroutines. Subroutines are defined
as logically integrated parts of a program that have a clearly defined activity and
communicate with the environment in a known manner. For example, the
subroutine is a log function or the main function.

Subroutines can be logically divided into functions and procedures. A function is a
subroutine that returns a value and that is processed further. A procedure is a
subroutine that does not result in a single value, but the result is a processed
algorithm.

In C / C ++ language, procedures and functions are technically defined in the same
way, differing only in expressing the output value. It is often said that there are only
functions.

In addition to the procedures and functions that are already done and can only be
used, the programmer can create his own. The definition of own subroutine is as
follows:

<type> <identifier> (<parameters>) { <body> }

The type is any data type except array (see later). The identifier is the name of the
function. Parameters are given in parentheses, these are the variables that the
function communicates with the environment. The curly brackets list the
commands that prescribe what a function/procedure does.

The function data type determines the type of value that the function calculates and
returns. It's called a return value. If we want to define a procedure, we will use a
special type of void.

There is a special return statement inside the function body. This command
terminates the function and defines the return value. A function that returns a value
must have that statement. A procedure that does not return a value does not
contain a return statement. A return statement is similar to a break statement that
forcibly terminates a cycle. The return statement forcibly terminates the execution
of function statements. For the sake of clarity and clarity of the function body, the
return statement should always be written as the last command in the function
body.

A small example: We will declare a function that returns a less value from its two
parameters:

int min(int a, b) {

 if (a < b) return a;

User-Defined Functions | FITPED

93

 else return b;

}

We see that the return value of the function is of the int type, the function is called
min and has two parameters of type int: a and b. In the function body, it is
determined which value of the two parameters is smaller, this value is then used as
the output value using the return statement.

If we want to use this feature, we'll call it in any expression, such as:

int first, second;

cin >> first >> second;

cout << "The smaller value is: " << min(first, second) << "."

<< endl;

📝 9.1.2

The function definition for calculating cylinder volume with radius R and height V.
Fill in the corresponding part to the following code:

_____ Volume _____

• float
• (float R, float V)
• Result = M_PI*R*R*V;
• {float R; float V}
• int
• {return R*R*M_PI * V;}

🕮 9.1.3

The subroutine parameters can be imagined as variables to be used in the
subprogram body for processing and calculation. These parameters are called
formal parameters. When the subroutine is called up, the specific values with which
the subroutine is to work are put in place. These parameters are called actual
parameters.

At the time of the subroutine call, the actual parameter values are copied to the
formal parameter locations. This process is called a value call. If we change the
value of a parameter within the subroutine body, the actual value does not change.

If the function does not have any parameters, we must write empty parentheses in
the definition and in the call too. However, the parameters express the subroutine

User-Defined Functions | FITPED

94

communication with the environment. So if we don't specify any parameters, it's
suspicious because it's not clear how the subroutine will communicate.

📝 9.1.4

We want to do a subroutine that lists a small multiplication table. Fill in the
appropriate pieces into the following code:

_____ Multi _____ {

 for (int x=1; x<=10; x++) {

 for (int y=1; y<=10; y++) cout << setw(6) << x*y;

 }

}

• float
• (int x, y)
• x=1; y=1;
• ()
• void
• cout << endl;
• int

🕮 9.1.5

We have an integer variable X. Then we define a function in which we have the
variable X again. Let's look at the following code of the whole program:

#include <iostream>

using namespace std;

int MyFunc(int a, int b) {

 int X;

 for (X=1; X<=b; X++) a *= b;

 return a;

}

int main() {

 int X=5;

 cout << MyFunc(2, 3) << endl;

 cout << "Variable X = " << X << endl;

 return 0;

}

User-Defined Functions | FITPED

95

What will appear on the output? The correct answer is:

54

Variable X = 5

The value of 54 is the multiplication of 2 * 3 * 3 * 3. The value of 5 is the original
value of the variable X that was declared in the main program. The variable X, which
is declared inside the MyFunc function, is called local because it applies only within
this function. Because it is named the same as the X variable that is declared in the
main program, it covers it and the X variable from the main program becomes
unavailable in MyFunc.

The term local variable is called a variable that is defined in a given function.
However, we can work with all the variables that are defined in the parent functions
unless they have the same names as the local variables. Then we call such
variables global.

📝 9.1.6

We have the following code:

int a = 1;

float RealFunc(int a) {

 return a * 0.01;

}

int main() {

 int a = 10;

 cout << RealFunc(a) << endl;

 return 0;

}

What will be displayed after executing this code?

• 0.1
• 0.01
• 1
• 10

🕮 9.1.7

Among all subroutines, the main function plays a special role. It represents the
main program, that is, what is run after compilation into machine code and what it

User-Defined Functions | FITPED

96

communicates with the operating system. Like all other subroutines, the main
function can communicate through parameters and return a value.

What are the actual parameters of the main function and what does it return?

After the program is compiled, an executable code is created. This can be started
by calling from the command line. Like other commands, a compiled program can
accept parameters from the command line, ie, strings written on the command line
after the executable file name.

For this reason, the main has two parameters in the following order: the first is an
integer and tells how many parameters have been specified from the command
line. The second is a pointer to the strings (to be discussed later) and allows you to
work with the values of each parameter from the command line. Example:

int main (int NumPar, char** ArrayPar) {

 cout << "This program was executed with "

 << NumPar << " parameters." << endl;

 return 0;

}

After compilation and execution from the command line, the program writes out
how many parameters were specified at the command line startup. We can work
with the values of individual parameters using a string array (to be discussed later).

The first parameter is always the name of the program itself, including any access
path. For example, we can ask from within the program what directory the program
was started from. It also follows that the number of parameters is always at least 1.

The return value of the main function returns to the operating system and can
process this value. The value is stored in an environment variable named "$?" (more
detailed information about environment variables depends on the operating system
used). It is normal that the output value 0 indicates to an operating system a
successful execution of the program, the nonzero value indicates various error
states (e.g., no file found, division by zero, etc.).

📝 9.1.8

We have to create a program that decides what it will do according to the number
of parameters from the command line. However, if no parameters are specified, it
outputs output code 4 as the result, otherwise, it will have output code 0. Fill in the
corresponding part to the following code:

_____ main _____ {

 if _____ {

 ProcessProgram(Params);

User-Defined Functions | FITPED

97

 return 0;

 } _____

}

• void
• (Number>1)
• ;
• (int Number, char** Params)
• (Params!=0)
• else Number=0;
• int
• ()
• (char Params, int Number)
• else return 4;

🕮 9.1.9

A subprogram can be defined in two places. This is called the forward definition.
First, the header is specified (data type, identifier, parameters and semicolon) and
then any time later, the subroutine body is added to the repeated header as-is on
the following scheme:

float Forwarded(float B, int X);

and at any later position

float Forwarded(float B, int X){

for (int i=1; i<=X; i++) B *= i;

return i;}

For example, we need this property to call subroutines: subroutine A calls the
subroutine B and the subroutine B, in turn, calls the subroutine A. This situation
cannot be realized without a forwarded definition.

The second situation where we use the forward definition is to insert a subroutine
into another subroutine. For example, we have a function to calculate the integral of
a real function F. We define this function inside a function for calculating the
integral, see example:

float Integral(float A, float B){ // function for calculate

the integral

 float result, X;

 float F(float X); // integrand; forward definition

 result = (F(A) + F(B)) / 2;

 for (X=A; X<=B; X+=0.01) result += F(X);

User-Defined Functions | FITPED

98

 result *= 0.01;

 return result;

}

float F(float X){ // definition of body of forwarded function

 return 2 * sin(X - M_PI * 0.33) + 1.271;

}

🕮 9.1.10

Parameters passing

When a subroutine is used, the program activity is transferred to that subroutine
and the parameters are passed. This parameter passing can take place in two ways
with different effects.

It has already been mentioned above that the actual parameter is copied to the
locations designated for formal parameters. This method of passing parameters is
called a value call.

Thus, the process of passing parameters by value means that at the time the
subroutine is called, the passed value of each parameter exists twice – once in the
actual parameter and once in the place of the formal parameter. The copy in the
formal parameter can then be changed in any way, but the actual parameter value
will not be affected. Therefore, calling by value is used for parameters that
represent input data for a given subroutine. The real parameter can also be not only
a variable but any expression of a given type that is calculated first and then copied
to a formal parameter.

The second way of passing parameters is by calling by reference. In this case, a
copy of the value of the actual parameter is not made, but the address of the
variable that is in the role of the actual parameter is passed. This means that a
formal parameter refers to the same memory location as the actual parameter –
that is, like only the variable is renamed. This implies that any manipulation of a
formal parameter value within a subroutine is also a manipulation of the actual
parameter value.

This mechanism is used if we want to insert the results into the actual parameters,
ie for the output values, by the subroutine.

Distinguishing whether it is a parameter called by reference or by value is done by
the & character, which is the operator to get an address (reference) in memory. So
by writing &vrbl, we say that we do not mean the value of the variable vrbl but its
address (reference).

To make matters worse, some data types are passed by reference automatically
because they are represented as pointers. For example, the array data type. The
pointers and arrays will be discussed later.

User-Defined Functions | FITPED

99

Examples:

The procedure reads the input numbers and passes the sum and the number of
reading data as a result:

void Read(float &Sum, int &Count){

 float Number;

 Sum=0; Count=0;

 while (cin>>Number){Count++; Sum += Number;}

}

Functions for moving a king on a chessboard: the position is given by the X and Y
coordinates (row and column of the chessboard, values in the range of 1 to 8), the
desired direction of movement (one of eight options). If this move can be made (the
new field is on the chessboard), the function returns true, otherwise false. The new
position will be in parameters X and Y:

bool King(int &X, int &Y, int Where){

 switch (Where) {

 case 1: // move to the right

 if (X<8) {X++; return true;} else return false;

 case 2: // move up

 if (Y<8) {Y++; return true;} else return false;

 case 3: // move to the left

 if (X>1) {X--; return true;} else return false;

 // ... all other possible directions analogously

 }

}

📝 9.1.11

We have the following program:

#include <iostream>

using namespace std;

void Multiply(int A, int &B){

 B = --A * B;

}

int main(){

 int X, Y;

 cin >> X >> Y;

 Multiply(X, Y);

 cout << "X = " << X << ", Y = ", Y << endl;

 return 0;

}

User-Defined Functions | FITPED

100

There are two numbers on input: 3 and 7. What will appear on output?

• X = 3, Y = 14
• X = 2, Y = 14
• X = 3, Y = 21
• X = 2, Y = 21

9.2 Functions (programs)

⌨ 9.2.1 Functions 1

Create a function that calculates the sin(x) value. Calculate the first 10 members of
the Taylor series. Compare the result with the function available in the cmath
library.

funct1.cpp
#include <|iostream>

#include <|cmath>

#include <|iomanip>

using namespace std;

// enter function "mysinus" here:

int main(){

 double a, f1, f2;

 cout <|<| " mysinus library sin difference"<|<|

endl;

 cout.precision(5);

 for (a=0; a<|=2*M_PI; a+=0.3){

 f1 = mysinus(a); f2 = sin(a);

 cout <|<| setw(9) <|<| right <|<| fixed

 <|<| f1 <|<| setw(11) <|<| f2 <|<| setw(14) <|<| f2-f1

<|<| endl;

 }

 return 0;

}

User-Defined Functions | FITPED

101

⌨ 9.2.2 Functions 2

Define a function to determine the prime numbers. Use this function to write first N
prime numbers value N is on input.

funct2.cpp
#include <|iostream>

#include <|cmath>

using namespace std;

// enter function "isprime" here:

int main(){

 int N, count=0, Number=0;

 cin >> N;

 while (count<|N){

 Number++;

 if (isprime(Number)) {

 cout <|<| Number <|<|" ";

 count++;

 }

 }

 cout <|<| endl;

 return 0;

}

⌨ 9.2.3 Functions 3

Write a subroutine that exchanges the values of two real variables in parameters.
Use this subroutine in a program that reads three values and lists them in
descending order.

funct3.cpp
#include <|iostream>

#include <|cmath>

using namespace std;

// enter function "myswap" here:

User-Defined Functions | FITPED

102

int main(){

 double A, B, C;

 cin >> A >> B >> C;

 if (A<|B) myswap(A, B);

 if (B<|C) myswap(B, C);

 if (A<|B) myswap(A, B);

 cout <|<| A <|<|", "<|<|B<|<|", "<|<|C<|<| endl;

 return 0;

}

⌨ 9.2.4 Functions 4

Write a function that calculates the factorial value of N. Use a non-recursive variant.
If the result exceeds the allowed value range, the calculation result will be zero.

funct4.cpp
#include <|iostream>

using namespace std;

// enter function "factorial" here:

int main(){

 int Number;

 long long int NFact;

 cin >> Number;

 NFact = factorial(Number);

 cout <|<| "Factorial of "<|<|Number<|<|" is ";

 if (NFact==0) cout <|<| "too big to calculate" <|<| endl;

 else cout <|<| NFact <|<| endl;

 return 0;

}

User-Defined Functions | FITPED

103

⌨ 9.2.5 Functions 5

Write a function to find out the number of digits of a given integer. Use this function
to determine the total number of digits of the entered sequence of integer values.

funct5.cpp
#include <|iostream>

using namespace std;

// enter function "NumDigits" here:

int main(){

 long long int Number;

 int Digits=0;

 while (cin >> Number)

 Digits += NumDigits(Number);

 cout <|<| Digits <|<| endl;

 return 0;

}

⌨ 9.2.6 Functions 6

Write a function that reads and verify that the entered personal identification
number is correct. Note that personal identification numbers have 10 digits and
have to be divisible by 11.

funct6.cpp
#include <|iostream>

using namespace std;

// enter function "CheckPIN" here:

int main(){

 if (CheckPIN()) cout <|<| "This personal id is correct."

<|<| endl;

User-Defined Functions | FITPED

104

 else cout <|<| "This personal id is incorrect." <|<|

endl;

 return 0;

}

9.3 Recursion

🕮 9.3.1

In some tasks, the resulting value is defined by a specific previous value. For
example, the value of the 10th member of the geometric series is defined as the
value of the 9th member multiplied by the quotient. If we have calculated a previous
member with some function, then we can use this function for the next member. So
we can write:

f(xi)=f(xi−1)

If we programmed the function f, we need to call the same function inside her body,
and this case is called recursion.

Recursion is a kind of loop. But each function call creates new variables that this
function contains, so there is a significant difference between recursion and loop. It
is possible to replace the loop with recursion, but sometimes we cannot replace
recursion with just a loop.

Evaluation of member of geometric sequence:

int StartMember = 2, Quotient = 3;

int Geom(int Member){

 if (Member>1) return Geom(Member - 1) * Quotient;

 else return StartMember;

}

Note that, just like a loop, you need to think here about ending a recursive call. So in
this example, we have to ask how many members we count. If it is the first member,
then we do not recursively call the function, but we assign an initial value only.

📝 9.3.2

We need to sum the numbers entered from the input. The numbers end with zero.
We define the task recursively:

Si=Si−1+ci; S0=0

User-Defined Functions | FITPED

105

According to the recursive assignment, we compose the program. Fill in the
appropriate pieces into code:

_____ {

 int Current;

 cin >> Current;

 if _____ return 0;

 else return _____;

}

• int Sum()
• (Sum != 0)
• X + Current
• int Sum(int X)
• Sum() + Current
• (Current == 0)

🕮 9.3.3

As mentioned, recursion is a kind of loop. However, the main difference to a loop
command is that each time a subroutine is called, its parameters and local
variables are stored. If we do not use this effect, the use of recursion instead of an
ordinary loop is a really stupid idea.

In every Beginner's Guide, we read that factorial calculation can be done by the
recursive call. Considering the common mathematical definition of factorial:

n!=n⋅(n−1)! and 1!=1

then it is natural to program the calculation using a simple recursive function:

int Fakt(int N){

 if (N>1) return N * Fakt(N-1);

 else return 1;

}

However, such a function is an expression of a totally erroneous approach with a
waste of memory resources. In such cases, the use of an ordinary loop is
incomparably more efficient.

However, if we use recursive calls to store local variables, we get very efficient
writing and execution of the given task. A good example is reversing the sequence
of input values. We have for example a sequence of integer values ended by –100
and we need to write this sequence in reverse order. The whole program with the
recursive procedure is:

User-Defined Functions | FITPED

106

#include <iostream>

using namespace std;

void Reverse(){

 int Inp; // local variable

 cin >> Inp;

 if (Inp != -100) {Reverse(); cout << Inp << endl;}

}

int main(){

 cout << "Enter numbers ended with -100: ";

 Reverse();

 return 0;

}

Appropriate recursive subroutines will be discussed later.

📝 9.3.4

We want to calculate the nth member of the Fibonacci sequence. The calculation
formula is:

Fi=Fi−1+Fi−2; F0=0; F1=1.

Will it be efficient to use recursion for this task?

• False
• True

9.4 Recursion (programs)

⌨ 9.4.1 Recursive subroutines 1

The input is a sequence of real values. Write this sequence in reverse order. Use a
recursive subroutine.

⌨ 9.4.2 Recursive subroutines 2

Write a function that calculates the factorial value of N. Use a recursive variant.
Determine if the result exceeds the allowed value range, otherwise, the calculation
result will be zero.

User-Defined Functions | FITPED

107

recfunct2.cpp
#include <|iostream>

using namespace std;

// enter function "factorial" here:

int main(){

 int Number;

 long long int NFact;

 cin >> Number;

 NFact = factorial(Number);

 cout <|<| "Factorial of "<|<|Number<|<|" is ";

 if (NFact==0) cout <|<| "too big to calculate" <|<| endl;

 else cout <|<| NFact <|<| endl;

 return 0;

}

⌨ 9.4.3 Recursive subroutines 3

Write a function that calculates the first N members of Fibonacci sequence. Use a
recursive variant. Value N is on input.

WARNING! This implementation is very inefficient and should not be used at all.
The example is included only as a recursion exercise. The calculation time for small
values of N increases to large values and for N exceeding 50, you do not have to
wait for the result.

recfunct3.cpp
#include <|iostream>

using namespace std;

// enter function "Fibon" here:

int main(){

 int Number;

 cin >> Number;

User-Defined Functions | FITPED

108

 for (int i=1; i<|=Number; i++)

 cout <|<| Fibon(i) <|<| " ";

 cout <|<| endl;

 return 0;

}

⌨ 9.4.4 Recursive subroutines 4

The input is a sequence of integer values. Write the sum of this sequence. Use a
recursive subroutine.

Arrays

Chapter 10

Arrays | FITPED

110

10.1 Array

🕮 10.1.1

Structured data types

The term structured data type refers to a data type that is composed of multiple
components, so it can store multiple values at a time. Structured type items can be
both simple and structured types, so structures of almost any complexity can be
created. The simplest and the best-known structured type is an array.

Why array?

We often need to process several (many) values of the same data type. To do this,
we need the appropriate number of variables. However, it would be very
inconvenient if we had to declare and process the entire set of variables separately.
Therefore, we can make one variable with multiple folders. Such a variable with
multiple folders of the same type is called an array. Individual components are
distinguished by serial numbers, which we call indexes.

The indexes always start with zero in the C/C++ language, so for example a ten-
component array has indexes of 0 to 9.

In previous algorithms, we were processing a series of values, yet we didn't need an
array. So when is the array necessary? This is in the case when we need to access a
series of data repeatedly. In all previous algorithms, we were gradually processing
the data and we no longer needed the processed values, so we have rewritten them
with new ones (for example, read from the input or calculated from various
sources). However, there are many algorithms that need to process the input data
multiple times, to reorder (sort) it or otherwise modify it. There everywhere is
necessary to use the array.

How array?

If we want to declare an array, we use the same method as when declaring a simple
variable, just add the required number of items to the square brackets. For example,
a five-element array of Payments composed of integer items will be declared:

int Payments[5];

We get an array whose components will have indexes 0 through 4.

Similar to simple variables, you can insert an initial value directly into an array when
declaring it. However, it is necessary to use a slightly different syntax here. Values
inserted into individual items must be written in a list enclosed in curly braces
separated by commas, for example:

Arrays | FITPED

111

int Payments[5] = {100, 80, 300, 250, 140};

📝 10.1.2

Choose from the following options to declare an array to store float numbers as
your business's monthly turnovers.

• float Flow[12];
• signed char Flow[12];
• int Flow[11];
• double Flow{1,2,3,4,5,6,7,8,9,10,11,12};

🕮 10.1.3

As we already know, if we want to work with a variable, we write its identifier. If we
want to work with individual array components, we write the index of the
component to the array identifier in square brackets. An index can also be entered
in the form of an expression that is first calculated and then used to access the
appropriate item. The index can only be integer values or values that can act as
integers.

Suppose declaration of Payments array:

int Payments[5];

Examples:

Payments[3] = 100;

int m = 0;

Payments[m+3] = Payments[m+2] - 5;

Very often, we need to process all the components of the array in the same way, for
which the for loop is great. For example, a list of all items together with their
indexes can be written:

for (int i=0; i<5; i++) cout << i << ": "<< Payments[i] <<

endl;

Note that the variable i passes through the indexes from zero to 4.

When declaring the array, we specify the number of folders, which is always 1
greater than the value of the last index. It is therefore very advantageous for array
manipulation to have a constant specifying the number of array items. We can then

Arrays | FITPED

112

refer to it everywhere, giving us the opportunity to change the size of the array in
one place:

const int NumOfPayments = 10;

int Payments[NumOfPayments];

for (int i=0; i<NumOfPayments; i++) cout << i << ": " <<

Payments[i]<<endl;

📝 10.1.4

We have the following code:

char Vowels[6] = {'a', 'e', 'i', 'o', 'u', 'y'};

cout << Vowels[3] << endl;

Does the character "i" appear on the screen (without quotes)?

• False
• True

📝 10.1.5

We have a daily close stock price array for the last working week. In the following
code, complete the parts so that the prices will be read from standard input and
then will be correctly displayed for each day.

#include <iostream>

using namespace std;

int main(){

 _____ ;

 int Day;

 _____ cin >> Stock[Day-1];

 cout << "Day No. " << Day+1 << ": The price is " <<

Stock[Day] << endl;

 return 0;

}

• for (Day=1; Day=5; Day++)
• float Stock[5];
• for (Day=1; Day<=5; Day++)
• int Stock[4];
• for (Day=0; Day<5; Day++)

Arrays | FITPED

113

• for (Day=0; Day<|=5; Day++)
• char Stock[Week];

🕮 10.1.6

It is very advantageous to use an array if we create its data type in advance. We can
then simplify some manipulations, such as declaring totally identical arrays at
different locations or passing such arrays as subroutine parameters.

As mentioned earlier, it is possible to define custom data types using the typedef
keyword. In the case of an array data type definition, it is necessary to add a
number of array items into the type definition, for example:

typedef float TEnterprises [10];

We get a data type that we can use to declare multiple identical arrays:

TEnterprises Salaries, Profits = {0, 0, 0, 0, 0, 0, 0, 0, 0,

0};

📝 10.1.7

Task: We have the input values that consist of pairs of data: enterprise number and
profit for goods sold. The company has ten enterprises, the enterprise numbers are
from 1 to 10. Write down the total profits of every enterprise from all input data.

The program is:

#include <iostream>

using namespace std;

int main(){

 // ... HERE IS MISSING CODE ...

 int Num; int Profit;

 while (cin>>Num>>Profit) Profits[Num-1]+=Profit;

 for (Num=0; Num<10; Num++)

 cout << Num+1 << ": " << Profits[Num] << endl;

 return 0;

}

Select the appropriate missing part of the code.

• typedef int TProfits[10]; TProfits Profits = {0,0,0,0,0,0,0,0,0,0};
• int Profits[11];
• typedef int Profits[10]; Profits TProfits = {0,0,0,0,0,0,0,0,0,0};

Arrays | FITPED

114

• int TProfits[10] = {0,0,0,0,0,0,0,0,0,0};

🕮 10.1.8

Indexes are used to access array items. Arrays can always be indexed from zero in
the C/C++ language. When declaring an array, the number of entries M is specified.
If you use an index outside of 0 to M – 1 to access the array entry, the compiler
does not check that the index does not belong to that array. Therefore, it is always
necessary to check whether the index is correct or not.

If we access an array item outside the specified range, we can read the contents of
the memory that is behind the allocated array. But we can also modify this memory,
which can lead to very tricky and unexpected errors, which only occur under certain
circumstances and are very difficult to find.

📝 10.1.9

We want to insert values read from standard input into the array. We don't know
how many values are on the input. Is the following code correct?

typedef float TValues[100];

TValues Values;

int Num=0;

while (cin>>Values[Num]) Num++;

• False
• True

🕮 10.1.10

The sizeof function is used to determine the size of a variable in the computer's
memory. If we want to determine the size of the array, we can use this function. If
we want to find out how many components an array has, we have to divide the
result by the size of one component. In this case, it is advantageous if user data
types are defined for both the array and its components.

For example:

typedef int Value;

typedef Value TValues[15];

Arrays | FITPED

115

Then we can write:

 cout << "Number of items is "<< sizeof(TValues) /

sizeof(Value) << endl;

📝 10.1.11

How many items does the Values array have when we know that sizeof (Values) =
64 and the array component is double data type? (We assume that there is no
alignment of values in the memory to larger units.)

• 8
• 16
• 10
• 64

🕮 10.1.12

The enumeration type (enum) is a subset of an integer type. Its values are named
identifiers, so each value can be very clearly understood in the program. For
example, while an integer 5 used in a condition or an expression does not give an
idea if we write Friday instead of 5, it is clear that it is the day of the week.

Definition of enum data type:

typedef enum {

 Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,

Sunday

} TWeek;

The values are automatically numbered from zero. However, we can assign an
arbitrary number to each value, so values don't have to go in the order in which they
are written. For example:

typedef enum {

 red = 0xFF0000,

 green = 0x00FF00,

 blue = 0x0000FF,

 white = 0xFFFFFF,

 black = 0x000000

} TRGBColors;

Arrays | FITPED

116

Enum type values cannot be read from standard input and identifiers are not
displayed on output. The integer representation of identifiers is displayed on output
only.

Because the enum type is a subset of an integer type, it can also be used for array
indexing. We have for example an array indexed by day of the week – the type
TWeek mentioned above:

int SaledPieces[6];

Suppose that this array is filled with numbers of saled pieces of cars and we need
to display the content of this array for workdays only:

for (TWeek W = Monday; W <= Friday; W = TWeek(int(W)+1))

 cout << SaledPieces[W] << ", ";

cout << endl;

📝 10.1.13

Suppose that the input is a sequence of pairs of values – the price of the car sold
and its colour. Output the sum of the car prices for each colour. Select the correct
part of the code in the following program.

 typedef enum {black, red, green, blue,

 yellow, magenta, cyan, white, silver} TColor;

 // select the appropriate part of code HERE

 TCars Sales;

 int Price, NumColor;

 for (int i=black; i<=silver; i++) Sales[i]=0;

 while (cin >> NumColor >> Price) {

 if (NumColor >= black and NumColor <=silver)

 Sales[NumColor]+=Price;

 }

 cout << "Overview of sold cars by color:" << endl;

 for (int i=black; i<=silver; i++)

 cout << setw(10) << left << ColorNames[i]

 << setw(10)<<right<<Sales[i] << endl;

• typedef int TCars[silver+1]; const string ColorNames[silver+1] = {"black",
"red", "green", "blue", "yellow", "magenta", "cyan", "white", "silver"};

• typedef int TCars[silver]; const string ColorNames[silver] = {"black", "red",
"green", "blue", "yellow", "magenta", "cyan", "white", "silver"};

Arrays | FITPED

117

• typedef int TCars[7]; const string ColorNames[7] = {"black", "red", "green",
"blue", "yellow", "magenta", "cyan", "white", "silver"};

• typedef int TCars[silver]; const string ColorNames[silver] = {'black', 'red',
'green', 'blue', 'yellow', 'magenta', 'cyan', 'white', 'silver'};

10.2 Arrays (programs)

⌨ 10.2.1 Arrays 1

The input is a sequence of integer values (maximum 100 values). Write this
sequence in reverse order. Use an array.

⌨ 10.2.2 Arrays 2

The input is a sequence of integer values, maximum 100 values. Write all values
which are higher than the average input values.

⌨ 10.2.3 Arrays 3

There are pairs of values at the input. The first number indicates the day of the
week (1 is Monday, etc.), the second number indicates the volume of production in
euro. Sum the production volume for each day of the week and output these totals.

⌨ 10.2.4 Arrays 4

There is a series of integer values at the input, the last value is zero. Determine the
frequencies of input numbers at intervals of 1..10, 11..20, etc., up to 91..100.

⌨ 10.2.5 Arrays 5

There is a series of integer values at the input. Determine the number of individual
decimal digits from which the input values are composed.

Arrays | FITPED

118

⌨ 10.2.6 Arrays 6

There is a sequence of integers on the computer input. The task is to encrypt this
input so that individual digits, spaces, positive and negative signs are replaced with
other characters that the user enters before a series of numbers. So the input starts
with 13 characters – the first ten are used to encrypt the digits 0..9, the other two
encrypt the plus and minus signs respectively, and the last character encrypts the
space. The output is composed of an encrypted sequence of input numbers.

Multidimensional Arrays

Chapter 11

Multidimensional Arrays | FITPED

120

11.1 Array of arrays

🕮 11.1.1

C/C++ knows only one-dimensional arrays. However, the array component can be
an array too, then you can get multidimensional arrays. The declaration is:

double Matrix[12][10];

This gives you a 12-item array where each item has ten float-type items. Note that
adding the next index will create an array of items that consist of the previous
array.

We can do it in another way that is more flexible and clearer. We will use type
definitions and constant definitions (the constants will be mentioned later):

const int NumCols = 10; // number of columns

const int NumRows = 12; // number of rows

typedef double TRow [NumCols];

 // type definition of the row of matrix as an array of

double

typedef TRow TMatrix [NumRows];

 // type definition of whole matrix as an array of rows

TMatrix Matrix; // declaration of matrix variable

In this shape, we can change the size of a matrix at any time by simply changing
constants, which is very flexible. The constants can be further used whenever we
refer to the dimensions of a matrix (reading elements, listing elements).

📝 11.1.2

Assume that the input contains 57 real values. Create a matrix of 3 rows of 19
values and enter the input numbers. Then write the matrix to standard output so
that the numbers are arranged in rows. Add the corresponding parts to the
following code:

const int Items = 19;

const int Rows = 3;

TMatrix Mat;

for (int I=0; I<Rows; I++)

for (int I=0; I<Rows; I++){

Multidimensional Arrays | FITPED

121

 for (int J=0; J<Items; J++) cout << Mat[I][J] << " ";

 cout << endl;

}

• for (int J=0; J<Items; J++) cin >> Mat[I][J];
• cout <|<| Mat[I+1][J+1] <|<| ": ";
• typedef double TRow[Rows]; typedef TRow TMatrix[Items];
• typedef double TRow[Items]; typedef TRow TMatrix[Rows];
• cout << "Row No.: " << I+1 << ": ";
• for (int J=0; J<|Rows; J++) cin >> Mat[I][J];

📝 11.1.3

We have two matrices of equal dimensions and they are filled with integers. The
TMyMatrix data type has been defined, and the matrix dimensions are given by the
NumRows and NumCols constants. Choose from the following code options that
sum these two matrices.

• TMyMatrix MA, MB; int B=0, A; while (B<|NumRows){A = 0; while
(A<|NumCols) {MA[B][A] += MB[B][A]; A++;} B++;}

• TMyMatrix MA, MB; int X, Y; for (X=0; X<|NumCols; X++) for (Y=0;
Y<|NumRows; Y++) MA[X][Y] += MB[X][Y];

• TMyMatrix MA, MB; int A=0, B=0; while (B<|NumRows) while (A<|NumCols)
MA[B][A] += MB[B][A];

• TMyMatrix MA, MB; for (int A=0; A<|NumRows; A++) for (int B=0;
B<|NumCols; B++) MA[B][A] += MB[B][A];

📝 11.1.4

In the following code, complete the correct parts to transpose the square matrix.

const int Order = 10; // order of the matrix

QMatrix Mat; double aux;

for (int x=0; x<Order; x++)

for (int y=0; y<Order; y++) cin >> Mat[x][y];

for (int i=0; i<Order; i++){

for (int I=0; I<Order; I++){ cout << "Row: " << I+1 << ": ";

for (int J=0; J<Order; J++) cout << Mat[I][J] << " ";

cout << endl;}

Multidimensional Arrays | FITPED

122

• for (int j=0; j<|=Order; j++)
• Mat[i][j]=Mat[j][i]; j++;}
• typedef double QMatrix[Order][Order];
• {aux = Mat[i][j]; Mat[i][j] = Mat[j][i]; Mat[j][i] = aux;}
• typedef double QMatrix[Order];
• for (int j=i+1; j<Order; j++)

📝 11.1.5

Task: There is a sequence of pairs of numbers on the input: the department number
(1 to 7) and the salary of a worker of that department. List average salaries for
individual departments.

From the following options, select the part of the code that belongs to the following
program:

#include <iostream>

using namespace std;

int main(){

 typedef int TDept[2];

 typedef TDept TFactory[7];

 TFactory OurFact;

 int Num, Salary;

 for (Num=0; Num<7; Num++){

 OurFact[Num][0]=OurFact[Num][1]=0;

 }

 while (cin>>Num>>Salary){

 OurFact[Num-1][0]++;

 OurFact[Num-1][1]+=Salary;

 }

 // SELECTED PART OF CODE BELONGS HERE

 return 0;

}

• for (Num=0; Num<|7; Num++) if (OurFact[Num][0]!=0) cout <|<| "Dept. No. "
<|<| Num+1 <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<|
endl; else cout <|<| "No workers. " <|<| endl;

• Num=0; while (Num<|7){ if (OurFact[Num][1]==0) cout <|<| "Dept. No. " <|<|
Num+1 <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<| endl;
else cout <|<| "No workers. " <|<| endl; }

• Num=0; while (Num<|7){Num++; if (OurFact[Num][1]==0) cout <|<| "Dept. No.
" <|<| Num <|<| ", avg. salary: " <|<| OurFact[Num-1][0]/OurFact[Num-1][1] <|<|
endl; else cout <|<| "No workers. " <|<| endl; }

Multidimensional Arrays | FITPED

123

• for (Num=1; Num<|=7; Num++) if (OurFact[Num][0]!=0) cout <|<| "Dept. No. "
<|<| Num <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<| endl;
else cout <|<| "No workers. " <|<| endl;

11.2 Multidimensional arrays (programs)

⌨ 11.2.1 Matrix 1

There is a number N (max 20) on the input, indicating the order of the square
matrix, followed by real numbers representing the row-entered matrix. Write the
entered matrix and follow the transposed matrix.

matrix1.cpp
#include <|iostream>

#include <|iomanip>

using namespace std;

// define data type TMatrix here:

void DisplayMat(TMatrix M, int Count){ // display matrix

 cout <|<| "-----------------------------------"<|<| endl;

 cout.precision(3);

 for (int i=0; i<|Count; i++){

 for (int j=0; j<|Count; j++)

 cout<|<| setw(9)<|<|fixed<|<|right<|<|M[i][j];

 cout<|<|endl;

 }

 cout <|<| endl;

}

int main(){

 // enter your code here:

 return 0;

}

Multidimensional Arrays | FITPED

124

⌨ 11.2.2 Matrix 2

There is a number N on the input, indicating the order of the square matrix, followed
by real numbers representing the row-entered matrix. Recalculate the matrix so that
it has a value of 1 on the main diagonal. (Hint: you have to divide each row by the
value on the main diagonal. In the case of the zero elements of the main diagonal,
the entire row will be zero.)

Strings

Chapter 12

Strings | FITPED

126

12.1 Strings

🕮 12.1.1

Typical programs contain two categories of data – numbers and character strings.
These elements then build other structures. Numeric data types have already been
discussed, now we look at character strings.

The character string is implemented in most languages as a kind of array whose
components are individual characters. The data type for characters has already
been specified – this is char (unsigned char).

Like numeric value arrays, we can construct an array of character values:

char Name[35];

This will give you an array of up to 35 characters, with each character you can
manipulate using the appropriate index.

However, a string is not exactly the same as a character array but is different in
several respects. Each character string must have its current length specified. If we
have a Name variable that can store up to 35 characters, we would work with
unoccupied folders when saving a specific name less than 35 positions. Therefore,
the end of the string is indicated by a special zero character '\0'. Strings of this type
are called null-terminated '\0'. Therefore, when determining the length of a string,
we always have to assume that there is one extra character.

In order not to determine exactly how many items the character array has, we can
make a declaration when the number of items is determined by the value entered:

char Address[] = "Rodeo Drive, Holywood";

The length of this string will then be given by the number of characters plus the
terminating character null.

📝 12.1.2

Assume a Description variable with the following definition:

char Description[] = "This is sum of values.";

The number of components of this variable will be 23. True or false?

• True
• False

Strings | FITPED

127

📝 12.1.3

We have a string variable to store the ISBN. What value will this variable have after
performing the following code?

char ISBN[14] = "9887074283225";

ISBN[1] = '7'; ISBN[3] = '8'; ISBN[11] = '1';

• 9788074283215
• 9877874283221
• 7887074283125
• 1887074288275

📝 12.1.4

We have a string variable to store the ISBN. What will be displayed after processing
the following code?

char ISBN[18] = "978-80-7428-321-5";

ISBN[3] = '\0'; ISBN[6] = '/'; ISBN[11] = '/'; ISBN[15]='/';

• 978
• 978\80/7428/321/5
• 978\80\7428\321\5
• 978\080\07428\0321\05

🕮 12.1.5

To work with a character array, there are operations stored in the standard string.h
library. If we want to use this library in the C++ language, it is available under the
name cstring, so we can write

#include <cstring>

Functions:

• strlen(s) – integer function for determination of the length of string s (i.e. the
number of characters without end null character);

• strcpy(dest, source) – function copies string source into string dest;
• strcat(dest, source) – function appends string source to the end of string

dest;

Strings | FITPED

128

• strchr(str, ch) – this function searches character ch in string str and returns a
pointer to the first position of character ch. If the character is not found, this
function returns NULL;

• strstr(str, substr) – this function searches substring substr in string str. The
result is similar to strchr function;

• strcmp(s1, s2) – integer function compares strings s1 and s2. The result of
this function is a negative number if s1<s2, result 0 is returned if s1==s2 and
a positive number otherwise.

📝 12.1.6

Assume that in the standard input is a name and surname (on each line separately).
Put them in one string variable, write down the total number of characters and write
only the last name from the variable. Add the appropriate parts to the following
code.

char Name[35], Surname[40], FullName[75]="";

cin >> Name >> Surname;

strcpy(FullName, Name);

cout << "The length is "<< _____ << endl;

cout << "The surname is: "<< _____ << endl;

• strlen(FullName)
• length(FullName)
• strcat(FullName, " "); strcat(FullName, Surname);
• strcat(FullName, Surname); strcat(FullName, " ");
• strcpy(FullName, strstr(Name, ' ')+1)
• Surname
• sizeof(FullName)

🕮 12.1.7

An array of characters still has an array behaviour, so we can't simply do a number
of useful operations. For example, we have the following code:

char Name[20];

Name = "Smith"; // an error will be reported here

We get an error because the Name variable is of type char[20] and we try to assign
a value of type const char[6] on the right side of the assignment.

Strings | FITPED

129

Therefore, the C++ language has an std library that implements the string data type.
So code:

std::string Name;

Name = "Smith";

implements variable Name which can be processed both as an array of characters
and as a whole string. If we use the using namespace std construction, which we
normally do for standard input and output, we don't have to write std :: string, but
just a string.

🕮 12.1.8

The string data type available in C ++ is created somewhat differently, it is
implemented as an object. The objects will be discussed later, at this point we will
show the operations that can be performed with the string type.

Because the string data type is an object, the operations are stored "inside" it and
are available through the variable name and period. Thus, the syntax is completely
different from the operations that were shown at the character array.

Suppose the following declaration:

string SomeChars;

We can then use these operations:

• SomeChars = "any string" – assigning of any constant value into string
variable;

• SomeChars.length() – the length of string
• Concatenation with a "+" operator, for example: SomeChars = "Paul" + " " +

"Smith";
• SomeChars.clear() – deleting all characters from string variable
• SomeChars.find("Sm") – find a position of string "Sm" in variable

SomeChars. If the substring is not found, the result of this function is a
number greater than the maximum number of characters (i.e. value greater
than length()).

• SomeChars.substr(3, 5) – a substring from index 3 and of length 5. In our
case, this will return substring "l Smi".

Strings | FITPED

130

12.2 String (programs)

⌨ 12.2.1 Strings 1

There is a sequence of strings at the input (one string per line). Write the longest
string from the input sequence.

⌨ 12.2.2 Strings 2

There is a sequence of strings at the input (one string per line). Find a string with
the largest relative proportion of punctuation and white characters.

⌨ 12.2.3 Strings 3

There is a sequence of strings at the input (one string per line). Remove from all
strings all non-alphabet characters.

⌨ 12.2.4 Strings 4

There is a sequence of strings at the input (one string per line). Write a string that is
first alphabetically and a string that is last alphabetically.

⌨ 12.2.5 Strings 5

There is a sequence of strings at the input (one string per line). Find out which
strings are palindromes (i.e. both left and right read are the same).

Struct Data Type

Chapter 13

Struct Data Type | FITPED

132

13.1 Structured data type struct

🕮 13.1.1

Data type struct is a collection of items. Each item may be of a different type. This
structure wrapped its items and may be as one variable.

The common shape of structure definition is:

struct {

 type item1;

 type item2;

 ...

} identifier;

For example:

struct {

 string FullName;

 int Salary;

 float Weight;

} MyPerson;

To manipulate with items we use the dot convention:

MyPerson.FullName = "James Bond";

MyPerson.Salary = 1000000;

MyPerson.Weight = 75;

It is very useful that two structures of the same type can be assigned to each other,
unlike arrays. Therefore, it is useful to create a data type of the appropriate
structure first and then declare variables of this type:

typedef struct {

 string FullName;

 int Salary;

 float Weight;

} TPerson;

TPerson MyPerson, Brother, MyTeacher, MyWife; // four

variables

MyPerson.FullName = "Jean Gabin"; MyPerson.Salary = 60000;

MyPerson.Weight = 90; // insert some values to items

Brother = MyPerson; // Brother got the same values as MyPerson

Brother.FullName = "Paul Gabin";

Struct Data Type | FITPED

133

📝 13.1.2

We have the following code:

struct {int IdMat; float Length;

 string Description;} StoreItem;

StoreItem GreenCanvas;

Is declaration of variable GreenCanvas correct?

• False
• True

🕮 13.1.3

The basic motivation for using a structure is to concentrate several different items
into one variable. If we build an array from such records, we can move entire
records instead of individual items as needed, for example, when we need to swap
items in sorting or searching.

To create an array with records we use a known process. We need for example an
array of engines:

typedef struct {string Series; int Weight; int Distance;}

TEngine;

const int MaxNumOfEngines = 75;

typedef TEngine WholeDepot[MaxNumOfEngines];

Example of engine array usage: Suppose the array is filled with values and the total
number of engines is in the ActualNumOfEngines variable. Put the engine with the
smallest weight into the Shunting variable:

TEngine Shunting; int ActualNumOfEngines = 58;

int MinW=0; // index of the lightest locomotive

for (int i=1; i<ActualNumOfEngines; i++)

 if (WholeDepot[i].Weight<WholeDepot[MinW].Weight) MinW = i;

Shunting = WholeDepot[MinW];

📝 13.1.4

Define a person's record array (name, height in centimetres, weight in
kilogrammes). Fill this array with data read from the input and display the name of
the person with the smallest BMI (Body Mass Index = weight in

Struct Data Type | FITPED

134

kilogrammes/square of height in metres). Add the corresponding section to the
following code:

float BMI(TPerson P){

 float h = float (P.Height);

 return P.Weight / ((h/100)*(h/100));

}

const int MaxNumOfPerson = 100;

typedef TPerson TDepartment [MaxNumOfPerson];

TDepartment OurDept;

int ActNum=0, MinBMI = 0;

while (cin _____) {

 if (_____) MinBMI = ActNum;

 ActNum++;

}

cout << "Min. BMI has " << OurDept[MinBMI].Name << endl;

• BMI(OurDept[ActNum]) < BMI(OurDept[MinBMI])
• typedef struct {int Name; string Height; float Weight;} TPerson;
• >> OurDept[ActNum].Name >> OurDept[ActNum].Height >>

OurDept[ActNum].Weight
• typedef struct {string Name; int Height; int Weight;} TPerson;
• BMI(Height, Weight) <| BMI(MinBMI.Height, MinBMI.Weight)
• >> OurDept[ActNum]

🕮 13.1.5

Structure items can have one more meaning – they can be used to determine what
space to store. It is advisable that the sequence of items forms integral bytes. The
number of bits on which the item is to be stored is written after the colon for each
item. For example, have the following definitions:

 typedef enum {woman, man} TSex;

 typedef enum {nonsmoker, smoker} TSmoker;

 typedef enum {student, teacher} TRole;

 typedef enum {driver, nodriver} TDriving;

Now we will create a structure that will contain some data, but will store it in
minimal space:

 typedef struct {

 TSex Sex:1;

 TSmoker Smokes: 1;

Struct Data Type | FITPED

135

 TRole Role: 1;

 TDriving Driver: 1;

 int NumChild: 4;

 } TPerson;

This structure takes up only 8 bits in memory, ie one byte, and 5 information is
stored on it. So we can easily work with the individual bits of the respective byte, for
example:

 TPerson MyWife; // one byte of memory

 MyWife.Sex=woman;

 MyWife.Smokes=smoker;

 MyWife.Role=teacher;

 MyWife.Driver=driver;

 MyWife.NumChild=2;

📝 13.1.6

We have the following structure:

typedef struct {

 bool readonly: 1;

 bool system: 1;

 bool hidden: 1;

 bool archive: 1;

 bool directory: 1;

 bool shared: 1;

} TFileAttrib;

TFileAttrib MyFile;

Will the size of the MyFile variable be greater than one byte?

• False
• True

13.2 Struct (programs)

⌨ 13.2.1 Structs 1

There are data of three persons on input: name, age and salary. List these people in
ascending order by age.

Struct Data Type | FITPED

136

⌨ 13.2.2 Structs 2

There are a number of data pairs at the input: the title of the goods and the number
of pieces in the warehouse. List the names of the goods that have the amount of
pieces above average in the warehouse.

⌨ 13.2.3 Structs 3

It is necessary to store product information: category (1..13), new/used (bool),
number of pieces (0..50), how much is reserved (0..25). Create a record that stores
this information in minimal space. Display amount of memory for this record. There
are data on several items at the input. List these goods in reverse order. Check the
correct values entered. An incorrect category will be inserted as 0, an incorrect
logical value as false, an incorrect number of pieces as 0, and an incorrect reserved
value as the number of pieces; if it exceeds 25, then as half the number of pieces.

⌨ 13.2.4 Structs 4

There are a number of Cartesian coordinates of points in the plane at the input
(max. 100). Write these points sorted by distance from the origin of the
coordinates.

⌨ 13.2.5 Structs 5

There is a series of integer values at the input. Determine which value occurred
most times at the input.

Union Data Type

Chapter 14

Union Data Type | FITPED

138

14.1 Union data type

🕮 14.1.1

The union data type is very similar to the structure (struct data type), the difference
is in the way the items are stored in memory. For the struct type, items are placed
one after the other in the order they were written in the type definition. For union, all
items are located starting with the same memory address, that is, they share the
same memory space. What good is this way for? We assume that we always need
only one option for real data. The rest of the items, therefore, does not take up
unnecessary memory. A type definition is like the struct definition, but the keyword
struct is replaced by keyword union:

typedef union {

 int intnumber;

 double realnumber;

 char txt[7];

} TNumbers;

For example, we need to store locomotive parameters. For each type of locomotive,
however, we need something different – for the steam locomotive the heating
surface of the boiler, for the diesel locomotive the number of engine cylinders and
for the electric locomotive the voltage in the power system. For example, if we have
an array of such records, each array entry may contain a record of another
locomotive type, but unused items will not occupy any additional space. Let us
define such structure:

typedef enum {steam, diesel, electric} TTypeLok;

typedef union {

 float Boiler;

 int Cylinders;

 int Voltage;

} TLokParam;

typedef struct {

 string Label;

 float Weight;

 TTypeLok Traction;

 TLokParam LocoPar;

} TLocomotive;

const int MaxNumLoco = 150;

typedef TLocomotive TDepot[MaxNumLoco];

Union Data Type | FITPED

139

Note that we have placed locomotive-bound traction parameters in a structure
where there are other components common to all types, as well as a component
that lists the locomotive type. This item is called the distinguishing item because it
can be used to tell which of the union items is valid. Typically, the distinguishing
component is defined as an enumeration or an integer.

📝 14.1.2

We have the following union structure:

typedef union {

 int anynumber;

 char bytes[4];

} TTwo;

TTwo MyVariable;

Next, we have an integer stored in memory so that the most significant byte is the
first. We use a defined structure to display the values of individual bytes that make
up an integer in memory:

cin >> MyVariable.anynumber;

for (int i=0; i<4; i++) cout << (int)MyVariable.bytes[i]<<" ";

After entering a certain number was displayed:

0 0 1 0

What number has been entered?

• 256
• 100
• 1024
• 1

📝 14.1.3

We have a structure TDepot that we defined above:

typedef enum {steam, diesel, electric} TTypeLok;

typedef union {

 float Boiler;

 int Cylinders;

Union Data Type | FITPED

140

 string PowerType;

} TLokParam;

typedef struct {

 string Label;

 float Weight;

 TTypeLok Traction;

 TLokParam LocoPar;

} TLocomotive;

const int MaxNumLoco = 150;

typedef TLocomotive TDepot[MaxNumLoco];

and a variable Manchester of this type:

TDepot Manchester;

Next, assume that the variable Manchester is filled with data about 88 locomotives.
The task is to display all steam locomotives with a weight above 80 tons and all
diesel locomotives with a number of cylinders less than 16. Select the appropriate
parts in the following code:

const int NumLoco = 88;

cout << "Steam locomotives with weight above 80 tons:"<<endl;

for (int L=0; L<NumLoco; L++)

 if (_____)

 cout << _____ <<endl;

cout << "Selected diesel locomotives: "<<endl;

for (int L=0; L<NumLoco; L++)

 if (_____)

 cout << _____ << endl;

• Manchester[L].TTypeLok==steam and Manchester[L].Weight>80
• Manchester[L].Traction==diesel and Manchester[L].Cylinders<|16
• Manchester[L].Label <|<|", num of cylinders is " <|<| Manchester[L].Cylinders
• Manchester[L].TLocomotive.Label <|<|", weight is " <|<|

Manchester[L].TLocomotive.Weight
• Manchester[L].Traction==diesel and Manchester[L].LocoPar.Cylinders<16
• Manchester[L].Traction==steam and Manchester[L].Weight > 80
• Manchester[L].Label << ", num of cylinders is " <<

Manchester[L].LocoPar.Cylinders
• Manchester[L].Label << ", weight is " << Manchester[L].Weight

Union Data Type | FITPED

141

14.2 Union (programs)

⌨ 14.2.1 Union 1

There is a number of types double on the input. Display them in the binary system
as stored in the computer-s memory. Show the most significant bits on the left.

⌨ 14.2.2 Union 2

Create an array whose components can be integers or real numbers or strings of 7
characters. The input is a sequence of pairs - type value (0 = integer, 1 = real
number, 2 = string) and followed by the value of the type. The last pair has only the
first value of –1. Fill these values into the array and list first all integer values, then
all real values and then all string values.

Pointers I

Chapter 15

Pointers I | FITPED

143

15.1 Pointers

🕮 15.1.1

The pointer represents the address in the computer's memory. It is used for many
purposes and to manage pointers is one of the basic skills in writing programs.

The pointer definition is very simple – the asterisk character is given before the
variable name.

Pointer declaration example:

int *ptrint;

We can also define a new pointer type. Note that the asterisk is written after the
data type, for example

typedef float* tdataptr;

Pointers allow you to work with addresses in memory, which in some cases is very
important for optimizing memory usage and optimizing data access.

🕮 15.1.2

The pointer (address) of the variable itself is not useful but is important to use this
address to access the variable located at that address. If P is a variable of type
pointer, then *P allows you to work with a variable whose address is in P.

How to get a variable address?

The address of the variable in memory is automatically assigned by the compiler
when declaring the variable. We do not normally need this address because we
work directly with the variable through its identifier. The variable is created at the
time of declaration and expires with the end of the block in which it is declared. The
address of such a variable can be obtained by the unary operator & written before
the variable identifier. The operator & will be discussed later, see the Reference.
This is the first way to get an address. For example:

float MyData; // the address of MyData was given by the

compiler

float *AddrData; // pointer to float data type

AddrData = &MyData; // address of MyData is stored to pointer

AddrData

*AddrData = 4.5; // store data to variable of address of

MyData;

Pointers I | FITPED

144

cout << MyData << endl; // will be displayed 4.5

The second way to get an address is quite different. In the previous case, we
worked with the address assigned by the compiler at the usual variable declaration.
We can use this variable throughout the block in which it is declared. However, if we
no longer need it, we cannot release it from our memory. The second option is a
system where memory is allocated only when the variable is needed and can be
released at any time. These are dynamic memory allocation and dynamic
variables. For dynamic variables, completely different memory space is used than
for non-dynamic variables. Typically, this block has a much larger size than the
memory block for the declared variables. So it is natural that we try to place the
data in dynamic variables. The dynamic variable address assignment is made by
the new operator:

float *AddrData; // declaration of dynamic variable

AddrData = new float; // memory allocation and assignment of

new address

*AddrData = 18.78; // the use of dynamic variable

When allocating memory, we can also assign an initial value:

AddrData = new float(18.78);

We can allocate memory for the array. At the time of allocation, we can specify the
required number of field items:

typedef int TMyData; // data type of array items

TMyData *ActValues; // pointer to array item

ActValues = new TMyData[52]; // allocation of array with 52

items

We can assign an address constant. We have only one constant for pointers of all
types. This constant is NULL and represents an empty pointer (pointer which points
nowhere). We'll use this pointer wherever we want to provide an empty address that
we can test.

AddrData = NULL;

📝 15.1.3

Task: Input is a sequence of decimal numbers. The first input value is the count of
numbers entered. Write the numbers to the output in reverse order.

Choose from the parts offered here that belong to the following code:

 int Num;

Pointers I | FITPED

145

 cin >> Num;

// choose one answer HERE:

 for (int i=0; i<Num; i++) cin >> Values[i];

 for (int i=Num-1; i>=0; i--) cout << Values[i] << endl;

• float *Values; Values = new float[Num];
• float Values; Values = new float[Num];
• float *Values[Num];
• float Values = float [Num];

🕮 15.1.4

The delete operator is used to free memory and remove the dynamic variable.

delete AddrData;

delete [] ActValues;

To remove the array from memory, you have to write brackets after keyword delete.

The value of the pointer is undefined after deallocating of memory. This it is
strongly recommended to assign freed pointer with constant NULL. We can then
simply detect that this pointer is no longer valid.

Deallocating memory is a very important operation. When the memory is released,
we can allocate the same space in the next step of the program.

Because the process of allocating and freeing memory is random, it is possible that
the free blocks are still shrinking in memory. If we do not release a variable but lose
a pointer to it, the block will become inaccessible but will remain in memory and
cannot be released. This situation is called a memory leak.

Typical error:

int *p;

p = new int;

// ... using p ...

p = new int; // old address is replaced by new one!

The old address is no longer accessible and the first allocated block remains in
memory.

Pointers I | FITPED

146

📝 15.1.5

Task: Input is a sequence of decimal numbers. The first input value is the number
of numbers entered. Write the numbers to the output in reverse order.

Choose from the parts offered here that belong to the following code:

 int Num;

 cin >> Num;

// choose one answer HERE:

 for (int i=0; i<Num; i++) {AnyData[i] = new float; cin >>

*AnyData[i];}

 for (int i=Num-1; i>=0; i--) cout << *AnyData[i] << endl;

 delete [] AnyData;

• float *AnyData[Num];
• float AnyData[Num];
• float *AnyData = new float;
• float AnyData = new [Num]

🕮 15.1.6

Later we will discuss the relationship between an array and a dynamic variable, now
we will look at structures where we don't need to know in advance how many
elements we will need, but we can make them as large as the data we are currently
processing. The basic structure is a linear unidirectional dynamic list.

A list element is a dynamic variable containing two items - the data and a pointer to
another such variable:

struct Node {

 float Data;

 Node *Next;

};

To store data in such a structure, we create an element in memory and assign the
appropriate values to the individual components:

typedef Node* Nodeptr; // data type for the pointer to Node

Nodeptr Node;

Node = new Nodeptr;

cin >> (*Node).Data; // data from input is put into structure

(*Node).Next = NULL; // the next element does not exist

Pointers I | FITPED

147

To access the structure components, we need both an asterisk for dereferencing
the pointer and a dot for selecting the component. However, the asterisk does not
have the necessary precedence to properly serve as a dereference, so we need to
connect it to the pointer name with a round bracket (*First).Data. This syntax can
be simplified with the special operator "->" and we can then write Prvni->Data.

Suppose we have one element with data stored after the previous commands. Now
we want to save a second element and append it to the first. There are two ways to
do this - join the new element before the existing one, or after it.

We will create a new element. For this operation, we need a second pointer because
we must not lose the address to the first element.

Nodeptr Pom;

Pom = new Nodeptr;

cin >> (*Pom).Data; // we put the new data into the created

structure

(*Pom).Next = First; // existing element is connected to the

new one

Frist = Pom; // the list has two elements: the new one is the

first and the latter is the second

If we repeat these steps, we get successively new elements at the beginning of the
list and the stored data is placed in reverse order.

For the second method, that is, appending a new element after an existing one, we
can write:

(*First).Next = Pom;

Suppose we already have several elements in the list and we want to add a new
element to the end:

Pom = First;

while ((*Pom).Next!=NULL) Pom=(*Pom).Next; // finding the end

(*Pom).Next= new Nodeptr; // creating a new element and

connecting to the last one

Pom = (*Pom).Next; // Pom points to the new elementPom nyní

ukazuje na nový prvek

cin >> (*Pom).Data; // new data from input to new element

(*Pom).Next = NULL; // this is the end of the list

To avoid having to scroll through the entire list looking for the last element when
inserting each new element, it is very useful to store the address of the last element
in a special Last. Then the lookup and the while loop are eliminated and the
creation of the new element, including the binding to the current end, is written:

Pointers I | FITPED

148

(*Last).Next = new Nodeptr;

Last = (*Last).Next; // a new last element of the list

If we add new elements to the top, the list acts as a stack. If we add new elements
to the end, the list works as a queue.

📝 15.1.7

The input is a sequence of decimal numbers. Write them in reverse order. Use a
dynamic list in the form of a stack. Select one of the options to insert it into the
following code:

 typedef struct Node {

 float Data;

 Node *Next;

 } Node;

 typedef Node* Nodeptr;

 Nodeptr Top=NULL, Help;

 float curdata;

 while (cin>>curdata){

 // ------> select appropriate code HERE:

 }

 Help=Top;

 while (Help!=NULL){

 cout << (*Help).Data << endl;

 Help=(*Help).Next;

 }

• Help = new Node; Help->Data=curdata; Help->Next=Top; Top=Help;
• Top = Help; Help = new Node; (*Help)->Data=curdata; (*Help)->Next=Top;
• while (Help->Next!=NULL) Help = Help->Next; Help = new Node; Help->Data =

curdata; Help->Next = NULL;
• Top->Next = new Node; Help = Top->Next; Help->Data = curdata; Help->Next

= NULL;

📝 15.1.8

Input data consists of a sequence of real numbers. List those that are above
average. Choose the appropriate part of the following code:

typedef struct Node {

 float Data;

Pointers I | FITPED

149

 Node *Next;

 } Node;

 typedef Node* Nodeptr;

 Nodeptr Top=NULL, Tail=NULL, Aux;

 float curdata, Sum=0;

 int Count=0;

 while (cin>>curdata){

 Sum+=curdata; Count++;

// -------> select appropriate code HERE:

 Tail->Data=curdata;

 Tail->Next=NULL;

 }

 curdata = Sum / Count;

 Aux=Top;

 while (Aux!=NULL){

 if (Aux->Data > curdata) cout << Aux->Data << endl;

 Aux=Aux->Next;

 }

• if (Tail==NULL) { Top = new Node; Tail = Top; } else { Tail->Next = new Node;
Tail = Tail->Next; }

• if (Tail==NULL) { Tail = new Node; Tail = Top; } else { Tail = new Node; Tail =
Tail->Next; }

• if (Tail==NULL) { Top = new Node; Top = Tail; } else { Top->Next = new Node;
Tail = Top->Next; }

• if (Tail!=NULL) { Tail = new Node; Tail = Tail->Next; } else { Top = new Node;
Tail = Top; }

🕮 15.1.9

The pointers we used were associated with the dynamic variable data type. So, if
you needed to allocate memory, the compiler knew exactly how much memory to
allocate and how it would work with dynamic variables.

A special data type is void, it is an empty type. When we make a pointer to void, the
compiler does not know what variable it will be but knows that it is a pointer. We
call this pointer a general pointer.

For example, we can create a linear list whose data component can be anything –
we make it as a general pointer. We can then use such a list for any data or we can
store something else on each node.

Pointers I | FITPED

150

If we are working with a dynamic variable that is referenced by a general pointer, we
must typecast the data with the appropriate data type, giving the compiler the
necessary information to perform the operation.

We use for example general linear list:

typedef struct Node {

 void *Data;

 Node *Next;

} Node;

typedef Node* NodePtr;

NodePtr Top;

If we want to add a value to such a list, we will create a dynamic variable of any
type, and then insert that pointer as data:

float *CurData = new float;

cin >> *CurData; // dynamic variable with inserted number as a

data

Top = new Node;

Top->Data = CurData; // store pointer to node

Note that each pointer can be converted to void* but not vice versa. The reverse
conversion requires typecasting. So if we get the original value from the list later,
we have to write:

CurData = (float*)Top->Data;

📝 15.1.10

Input data consists of a sequence of real numbers. List those that are above
average. Use the linear list with general pointers to data. Choose the appropriate
part of the following code:

 typedef struct Node {

 void *Data;

 Node *Next;

 } Node;

 typedef Node* Nodeptr;

 Nodeptr Top=NULL, Tail=NULL, Aux;

 float *curdata, Sum=0, Average;

 int Count=0; curdata = new float;

 while (cin>>*curdata){

 Sum+=*curdata; Count++;

 if (Top==NULL) {

Pointers I | FITPED

151

 Top = new Node;

 Tail = Top;

 } else {

 Tail->Next = new Node;

 Tail = Tail->Next;

 }

 Tail->Data=curdata;

 Tail->Next=NULL;

 curdata = new float;

 }

 Average = Sum / Count;

 Aux=Top;

 while (Aux!=NULL){

// enter appropriate code HERE:

 if (*curdata > Average) cout << *curdata << endl;

 Aux=Aux->Next;

 }

• curdata = (float*)Aux->Data;
• curdata = Aux->Data;
• curdata = (float)Aux->Data;
• curdata = float*(Aux->Data);

🕮 15.1.11

In the previous section, we discussed a linear list as an example of a dynamic
structure. The second commonly used structure is a tree. A simple case of a tree is
a binary tree, where each node has no more than two successors.

The basic element of the binary tree is a node containing data and two pointers to
successors:

struct Node {

 int data;

 Node *toleft;

 Node *toright;

};

A binary tree is typically used to store data in an ordered form. It is often called a
binary search tree. In such a tree, the data on the left has values smaller and the
data on the right has values greater than the value of the node.

Pointers I | FITPED

152

The basic operations are inserting a new node into the tree, searching for a node
with the entered data and systematically listing the tree contents.

A binary tree is a typical recursive structure. Order rules apply in each of the three
nodes father – left son – right son. Therefore, when implementing operations, we
encounter recursive notation.

Suppose we want to store a sequence of integer values from standard input in a
tree structure. The previously defined Node data type can serve as the node of this
tree. We declare:

Node *Root;

int InpNum;

Firstly we create an empty tree:

Root = NULL;

To read the input data and save it to the tree, do the following:

while (cin>>InpNum)

 TInsert(Root, InpNum);

The TInsert operation is a recursive procedure defined as follows:

void TInsert(Node* &father, int v){

 if (father==NULL) {

 father=new Uzel;

 father->data=v;

 father->toleft=NULL;

 father->toright=NULL;

 } else {if (father->data>v) TInsert(father->toleft, v);

 else TInsert(father->toright, v);}

}

Now we can do a search in the tree of values. Suppose we want to search the value
C:

if (IsInTree(Root, C)) cout << "The value was found." << endl;

 else cout << "The value was not found." << endl;

The function IsInTree is defined as:

bool IsInTree(Node *father, int what) {

 Node *Aux;

 Aux = father;

 while ((Aux != NULL) and (Aux->data != what)){

Pointers I | FITPED

153

 if (what < Aux->data) Aux = Aux->toleft;

 else Aux = Aux->toright;

 }

 return Aux!=NULL;

}

You can print the entire tree to standard output using the following recursive
procedure:

void InOrder(Node* father){

 if (father != NULL) {

 InOrder(father->toleft);

 cout << father->data << " ";

 InOrder(father->toright);

 }

}

If the data in the tree is ordered according to the given rules, this statement will get
a sequence that is sorted in ascending order. Thus, the binary search tree can be
used to sort values.

📝 15.1.12

We have an ordered binary tree with real numbers as data, "Left" and "Right" are
pointers to successors. The tree is full of data, the root node is pointed by pointer
Top. Select the appropriate piece of code for reading and searching of value F in
this tree.

• cin >> F; Cur = Top; while ((Cur != NULL) and (Cur->data != F)) { if (F <| Cur-
>data) Cur = Cur->Left; else Cur = Cur->Right; } cout <|<| (Cur == NULL ? "No." :
"Yes") <|<| endl;

• cin >> F; Cur = Top; while ((Cur == NULL) and (Cur->data == F)) { if (F <| Cur-
>data) Cur = Cur->Right; else Cur = Cur->Left; } cout <|<| (Cur == NULL ? "No." :
"Yes") <|<| endl;

• cin >> F; Cur = Top; while ((Cur->data != NULL) and (Cur != F)) if (F <| Cur-
>data) Cur = Cur->Right; else Cur = Cur->Left; cout <|<| (Cur == NULL ? "No." :
"Yes") <|<| endl;

• cin >> F; while ((Top != NULL) and (Top->data != F)) if (F >= Top) Top = Top-
>Right; else Top = Top->Left; cout <|<| (Top == NULL ? "No." : "Yes") <|<| endl;

Pointers I | FITPED

154

🕮 15.1.13

As previously mentioned, a reference is used to get the address of an object that is
already in memory. It does not matter whether it is a static variable declared by a
normal declaration or is a dynamic variable that was created by an allocation during
a program. The reference is written by the & operator before the variable identifier.
For example:

int Count;

int* IntPtr; // pointer to int

IntPtr = &Count; // the address of Count is stored to IntPtr

So we have two ways to access the value of variable Count:

Count = 10;

*IntPtr = 20;

Since the variable address Count is stored in the variable IntPtr, dereference gives
the same memory space as writing the Count identifier, which also represents the
memory address. After executing these commands, we can see the effect of
working with the address. By output,

cout << Count << endl;

we will see the value 20.

Further broad usage of references can be found when passing subroutine
parameters. The parameter passed by the reference can change the value within
the subroutine, but because the address of the actual parameter is passed (no value
only), the changed value is reflected in the actual parameter. Example:

We have two variables, x and y, and we need to swap their values. This is a typical
task as a part of sorting algorithms. So we construct the procedure Swap:

void Swap(float &x, float &y){

 float Aux = x;

 x = y;

 y = Aux;

}

If we realize that we are working with the addresses of the actual parameters, this
is the possibility of working in two ways with the variable above: by specifying its
identifier, or through the address obtained by the & operator.

Pointers I | FITPED

155

📝 15.1.14

We have to construct a procedure that sums values of two parameters into a third
parameter. The proposed shape of this procedure is:

void Sum(double Op1, double Op2, double Result){

 Result = Op1 + Op2;

}

We have the following code:

double A = 0, B = 7, C = 10;

Sum(A, B, C);

cout << C << endl;

The output contains: 10

True or false?

• True
• False

15.2 Pointers (programs)

⌨ 15.2.1 Pointers 1

The input is a series of 32 binary digits, which can be preceded by any number of
spaces. Display the float value that this binary sequence represents.

⌨ 15.2.2 Pointers 2

The input is a sequence of real numbers (max. 100). Write this sequence in reverse
order. Use dynamically allocated array.

⌨ 15.2.3 Pointers 3

The input is a sequence of integer numbers. Write this sequence in reverse order.
Use array with dynamically allocated items. Free all allocated items at the end.

Pointers I | FITPED

156

⌨ 15.2.4 Pointers 4

The input is a sequence of integer numbers. Write this sequence in reverse order.
Use dynamically allocated linear list.

⌨ 15.2.5 Pointers 5

The input is a sequence of integer numbers. Calculate the standard deviation of this
sequence; the formula is s = sqrt{1/N sum i=1

N (xi-avg)2}. Use dynamically allocated
linear list as a queue.

⌨ 15.2.6 Pointers 6

Inputs include worker performance records in the form of number pairs – worker
number (integer, interesting are only numbers 1..20) and working hours (real).
Create an overview of each worker's performance in the form of a list of worker
numbers and a list of their working hours. List only workers with non-zero working
hours. Use an array of dynamically allocated linear lists.

⌨ 15.2.7 Pointers 7

Input can contain values (max. 100) of three different types: integers, real numbers
and strings. The first value is a character that specifies the type of the following
values (i = integer, r = real, s = string). It is followed by appropriate values. Write a
program that lists the values you entered in reverse order. Use an array with void*
items.

⌨ 15.2.8 Pointers 8

Inputs are the dimensions of circles and rectangles. The circle information starts
with c and continues with the radius (real number), the rectangle information begins
with r and continues with the two sides. List the circles and the specified number of
rectangles. Use the list with data of void* type.

Pointers I | FITPED

157

⌨ 15.2.9 Pointers 9

The input is a sequence of integer numbers. Write this sequence in descending
order. Use a binary tree to sort.

15.3 Pointers and arrays – array implementation

🕮 15.3.1

The array is actually implemented as a dynamic variable. The difference is that it
does not allocate with new, but when declaring the array, needed space is allocated
in memory. Therefore, a variable whose value at the time of the declaration
determines the required number of items can be used to delimit the array size.

The array identifier can be understood as a pointer to the beginning (first
component) of the array in memory.

In some situations, an array behaves like a pointer – for example, if you use an
array identifier without an index, or if you pass an array as a subroutine parameter:

int MyNumbers[20]; // an array declared

cout <<"My magic number: "<<MyNumbers<< endl;

On output, we will see for example 0x7fffc2c4c550, i.e. address of an array in
memory.

The same effect as the mentioned array declaration has the following construction:

int *MyNumbers;

MyNumbers = new int [20];

A small difference is the possibility to allocate and deallocate with new and delete
in a random time.

Remember the Swap procedure with slightly changed parameters:

void Swap(int A[6], int x, int y){

// procedure works with array A which is passed as a pointer

 int aux = A[x];

 A[x] = A[y];

 A[y] = aux;

}

int VV[6] = {1, 2, 3, 4, 5, 6}; Swap(VV, 1, 3);

for (int i=0; i<6; i++) cout << VV[i] << " ";

Pointers I | FITPED

158

On output, we will see 1 4 3 2 5 6

Conversely, if you want to prevent array component values from being changed
within a subroutine, you specify this parameter with const modifier, for example:

double Sum(const double X[30]){ // array X will not be changed

 double Result = 0;

 for (int i=0; i<30; i++) Result+=X[i];

 return Result;

}

📝 15.3.2

We have the following function:

bool Mirror(double Values[10]){

 if (Values[3] > 7.5 and Values[5] <= 17){

 Values[4]+=Values[3];

 return true;

 } else return false;

}

double MyArray[10]; for (int i=0; i<10; i++) cin >>

MyArray[i];

if (Mirror(MyArray)) cout << "Done.\n";

On output we see "Done." Was the MyArray changed?

• True
• False

15.4 Pointers and arrays (programs)

⌨ 15.4.1 Array allocation 1

The first value on the input is a quantity N and then integer numbers of this
quantity. Calculate the standard deviation of this sequence; the formula is

s = sqrt{1/N sumi=1
N (xi-avg)2}.

Use dynamically allocated array and after the calculation free used memory.

Pointers I | FITPED

159

⌨ 15.4.2 Array allocation 2

There are integer numbers on the input. The quantity of numbers doesn't exceed
50. Use a dynamic linear list as a stack and a static array for input values. Calculate
products of opposite items (ie first * last, second * penultimate etc.) and write
these products to the standard output. Compare the amount of memory needed for
the stack and the static array. If the stack takes up more space, write the string
"stack!" at the end of the data.

15.5 Pointer arithmetic

🕮 15.5.1

As we have already mentioned, the array identifier is essentially a pointer to where
the array lies. Thus, array indexing is the same as finding the corresponding
component address. However, this address can also be determined by direct
manipulation of the array address, ie the value of the pointer.

Arithmetic operations with pointers

Suppose we have pointers p1 and p2 of any type (for example int *p1, *p2;) and
integer x.

Pointers I | FITPED

160

📝 15.5.2

We have an array and a pointer:

single Temperatures[5] = {0.5, 1.6, 5.5, 10.2, 21.2};

single *temp, result;

Now we assign:

temp = &Temperatures[1];

result = *temp - *(temp+1) + *(temp+3);

cout << result << endl;

What we will see on screen?

• 17.3
• 17.3
• 9.1

Pointers I | FITPED

161

• 28.3

📝 15.5.3

We have an array:

int Open[200];

This array is filled with some values and we need to write it to output:

int *i, k; i = &Open[0];

for (k=0; k<200; k++) {

 if (k % 10 == 0) cout << endl;

 // ***************

}

Select the appropriate option in a starred location.

• cout <|<| *(i + k) <|<| " ";
• cout <|<| *i + k <|<| " ";
• cout <|<| *i[k] <|<| " ";
• cout <|<| *[i + k] <|<| " ";

📝 15.5.4

We have the following declarations:

struct Node{

 int Id;

 int Num;

 double Descr;

};

Node *Arr, *Current;

and we process the following statements:

Arr = new Node[10];

Current = Arr + 1;

cout << Arr << " " << Current << endl;

What will be the difference between the values of written addresses?

• 16

Pointers I | FITPED

162

• 1
• 4
• 8

15.6 Pointers arithmetic (programs)

⌨ 15.6.1 Pointer arithmetic 1

The input contains a sequence of integer values. List these values in ascending
order. Use adaptive bubble sorting. Use pointer arithmetic to access neighbouring
values in the array.

⌨ 15.6.2 Pointer arithmetic 2

The input is a sequence of integer values. Write this sequence in reverse order. Use
an array with access via pointer arithmetic.

⌨ 15.6.3 Pointer arithmetic 3

The input is a sequence of integer values. Write all values which are higher than the
average input values. Use an array and access into elements via pointer arithmetic.

⌨ 15.6.4 Pointer arithmetic 4

There are pairs of values at the input. The first number indicates the day of the
week (1 is Monday, etc.), the second number indicates the volume of production in
euro. Sum the production volume for each day of the week and output these totals.
Use an array with pointer arithmetic to access it.

Pointers II

Chapter 16

Pointers II | FITPED

164

16.1 Pointers to subroutines

🕮 16.1.1

Pointers represent addresses in memory. At a certain address in memory, there
may be data, but also instructions – a sequence of instructions, or subroutines.

Consider the following function:

int First(){

 return 2;

}

When we want to call this function, we have to write for example

cout << First() << endl;

and obtain result 2.

And what is happen when we write

cout << First << endl;

This is the use of function identifier which represents the address of function First,
so we can obtain somewhat as 0x4007e4 (or 1 only – it depends on compiler
interpretation of address).

Address of function can be stored into pointer variable which can be declared
similar to subroutine header as:

int (*funPtr)();

Note that syntax construction

int *funPtr();

has a quite different meaning – this is a forwarded declaration for a function
named funPtr that takes no parameters and returns a pointer to an integer.

So back to the previous construction: we have now a variable funPtr which can be
assigned:

funPtr = First;

The return data type and all parameters of the declared pointer and assigned
function must match.

Pointers II | FITPED

165

We can call stored function in two ways – explicit dereference, or implicit
dereference:

(*funPtr)(); // explicit dereference

funPtr(); // implicit dereference

As you can see, the implicit dereference method looks just like a normal function
call -- which is what you’d expect, since normal function names are pointers to
functions anyway. However, some older compilers do not support the implicit
dereference method, but all modern compilers should.

📝 16.1.2

We need to declare a pointer to a boolean function that takes two integer
parameters.

Now we declare two functions of the appropriate type:

bool Descending(int a, int b){

 return a > b;}

bool Ascending(int a, int b){

 return a < b;}

And finally, we decide which function will be in process and will be assigned to a
pointer variable:

char C; cin >> C;

if (C=='A') _____

• funCompare = (*Ascending); else funCompare = (*Descending);
• funCompare = Ascending; else funCompare = Descending;
• int (*funCompare)(bool a, bool b);
• bool (*funCompare)();
• bool (*funCompare)(int a, int b);

🕮 16.1.3

The complex syntax of the pointer definition on a subroutine can be somewhat
simplified by the type definition. For example, let's define a type of relation function
for two real numbers that produce a logical value:

Pointers II | FITPED

166

typedef bool (*TRelation)(double, double);

After that, we can simply write:

TRelation AscDouble;

or we can simply write this type as a parameter of another subroutine, for example:

void InsertSort(TMyValues Values, int Size, TRelation HowSort)

...

Function for comparison of array items is passed as a parameter, so we can
determine how the sorting will be processed (ascending, descending, for decimal
part only etc.).

📝 16.1.4

We want to write a simple calculator. The user will enter one character (operator +, -
, *, /) and two numbers, the calculator will process the appropriate operation and
display a result.

float Add(float a, float b){return a + b;}

float Subtr(float a, float b){return a - b;}

float Multi(float a, float b){return a * b;}

float Divid(float a, float b){if (b!=0) return a / b; else

return 0;}

//*****************

char op;

float num1, num2;

cin >> op >> num1 >> num2;

switch (op){

 case '+': Calc = Add; break;

 case '-': Calc = Subtr; break;

 case '*': Calc = Multi; break;

 case '/': Calc = Divid; break;

}

cout << num1 << op << num2 << " = " << Calc(num1, num2)<<

endl;

Select the correct variant to the starred place.

• typedef float (*TAritOp)(float, float); TAritOp Calc;
• typedef float *TAritOp (float, float); TAritOp Calc;
• typedef (*TAritOp) float (float, float); TAritOp Calc;

Pointers II | FITPED

167

• typedef float (float, float) TAritOp; TAritOp Calc;

🕮 16.1.5

For example, if we use a linear list, its structure is exactly the same for any type of
data. Without dependence on the data item, a new element is inserted, the list goes
through, etc. Some operations, of course, need some knowledge of the data, for
example, deleting a list element needs to first find which data is to be deleted. If the
data is in the form of general pointers, we cannot do this until we know the actual
data type to which the general pointer points.

The subroutine, which is then used to process the data item, will always change
according to the actual data in the list. It is therefore advantageous to make such
subroutines in the form of a pointer to a subroutine in which the corresponding
specific function is always assigned.

Typically, we need a function that is able to compare two data items (greater than,
lower than, equal to), or a procedure that is capable of displaying data into an
output:

typedef bool (*TRelation)(void*, void*); // to compare data

typedef void (*TDisplay)(void*); // to display data

📝 16.1.6

We have a linear list with data items in the form of general indicators. We need to
list the contents of the list on standard output. We know that at this point, the data
is an integer type.

Select the correct variant of code to starred place:

void DispInt(void* X){

 cout << (*(int*)X) << endl;

}

struct Node {

 void * data;

 Node * Next;

};

typedef *Node ItemPtr;

//***************************

ItemPtr Start, Aux; // list is already filled with data

HowToDisplay = DispInt;

Aux = Start;

while (Aux != Null){

Pointers II | FITPED

168

 HowToDisplay(Aux->data);

 Aux = Aux->Next;

}

• typedef void (*THow)(void*) THow HowToDisplay;
• typedef void (*HowToDisplay)(void*) HowToDisplay THow;
• typedef int (*THow)(void*) HowToDisplay THow;
• typedef void (THow)(void) THow DispInt;

16.2 Pointers to subroutines (programs)

⌨ 16.2.1 Subroutine pointers 1

The input contains a sequence of integer values. Write these values in ascending or
descending order. The sorting order is determined by the letter A or D entered as
the first input value.

⌨ 16.2.2 Subroutine pointers 2

The input contains a sequence of integer values. Depending on whether the last
value entered is even or odd, write every second or every third value of the input
series.

⌨ 16.2.3 Subroutine pointers 3

The input contains a sequence of integer values. Use binary tree with void* data
type to ascending sort and display these values.

⌨ 16.2.4 Subroutine pointers 4

The input contains a sequence of integer values. Use the dynamic linear list as a
stack with void* data type to display these values in reverse order. Write one space
between the output values, but if the total number of values is less than 10, type a
semicolon and space between the values. Create output shape variants as two
different procedures.

Pointers II | FITPED

169

⌨ 16.2.5 Subroutine pointers 5

The input contains a sequence of characters ended by a dot. Display cypher of this
sequence so that uppercase letters will be replaced by corresponding downcase
letters, downcase letters will be replaced by letters shifted by 4 in alphabet and
spaces will be replaced by a plus sign. Other characters will be displayed without
changes. For various modes of displaying create separate functions.

16.3 Struct as a member of dynamic structure

🕮 16.3.1

Struct is a user-defined data type that is essentially a collection of variables of
different types under a single name. For example, we have a structure with data
about a person:

struct TPerson {

 string Name;

 int Age;

}

We can declare a variable for personal data and this data type can serve as a basis
for the pointer definition:

TPerson Worker;

typedef TPerson *TPersPtr;

We will typically work with multiple people. These can be inserted into a linear
dynamic list or into an array. So we can create the following data types:

struct Node { // one member of linear dynamic list

 TPersPtr Person; // pointer to personal data

 Node *Next; // pointer to next member of linear list

}

Or:

typedef TPersPtr TPersons [35]; // array of pointers to

personal data

Pointers II | FITPED

170

📝 16.3.2

Input data are names and ages of persons. List people whose age is below the
group average. In the following program, select the piece of code that belongs to
the starred location.

We use the common list and put the definition of personal data as a data item.

#include <iostream>

using namespace std;

// *********************

bool IsRead(TPersPtr &P){

 P = new TPerson;

 return cin >> P->Name >> P->Age;

}

int main(){

 typedef struct Node { // common queue

 void *Data;

 Node *Next;

 } Node;

 typedef Node* Nodeptr;

 Nodeptr Top=NULL, Tail=NULL, Aux;

 int Sum=0, Count=0;

 float Average;

 TPersPtr Curdata;

 while (IsRead(Curdata)){

 Sum+=Curdata->Age; Count++;

 if (Top==NULL) {

 Top = new Node;

 Tail = Top;

 } else {

 Tail->Next = new Node;

 Tail = Tail->Next;

 }

 Tail->Data=Curdata;

 Tail->Next=NULL;

 }

 Average = Sum / Count;

 Aux=Top;

 while (Aux!=NULL){

 Curdata = (TPersPtr)Aux->Data;

 if (Curdata->Age < Average) cout << Curdata->Name <<

endl;

 Aux=Aux->Next;

Pointers II | FITPED

171

 }

 return 0;

}

• typedef struct { string Name; int Age; } TPerson; typedef TPerson *TPersPtr;
• TPerson struct { string Name; int Age; }; typedef TPersPtr *TPerson;
• typedef struct { string Name; int Age; } TPerson; typedef *TPerson TPersPtr;
• typedef struct { string Name; int Age; } TPersPtr; typedef TPerson *TPersPtr;

📝 16.3.3

The same task as in the previous example – it is necessary to determine from the
list of persons who have below-average age. This solution is done using an array of
people.

In the following program, select the piece of code that belongs to the starred
location.

#include <iostream>

using namespace std;

typedef struct {

 string Name;

 int Age;

} TPerson;

typedef TPerson *TPersPtr;

const int MaxPerson = 65;

typedef TPersPtr TPersArray[MaxPerson];

bool IsRead(TPersPtr &P){

 P = new TPerson;

 return cin >> P->Name >> P->Age;

}

int main(){

 int Sum=0, Count=0;

 float Average;

 TPersArray Persons;

 TPersPtr Curdata;

 for (int I=0; I<MaxPerson; I++) Persons[I]=NULL;

//***************************

 Average = Sum / Count;

 for (int I=0; I<Count; I++)

 if (Persons[I]->Age < Average)

 cout << Persons[I]->Name << endl;

 return 0;

Pointers II | FITPED

172

}

• while (IsRead(Curdata)){ Persons[Count]=Curdata; Sum+=Curdata->Age;
Count++; }

• while (IsRead(Curdata)){ Persons[I]=Curdata; Sum+=Curdata.Age; Count++; }
• while (IsRead(Curdata)){ Persons[Count]=*Curdata; Sum+=(*Curdata).Age;

Count++; }
• while (IsRead(&Curdata)){ Persons[Count]=&Curdata; Sum+=Curdata->Age;

Count++; }

🕮 16.3.4

As mentioned early the structures can be not only array items but also members of
dynamic structures such as linear lists or trees. A very frequent dynamic structure
is a linear list. Its element is a record containing some data and a pointer to the
next same record:

 typedef struct Node {

 float Data;

 Node *Next;

 } Node;

We can define the datatype of struct pointer:

 typedef Node* Nodeptr;

The basic list operations include adding an element (at the beginning, at the end, at
another location) and removing the element (from the beginning, from the end, from
another location).

Suppose we have a pointer to the existing start of the list and any auxiliary pointer:

Nodeptr Start, Aux;

Adding an element at the beginning can be processed by the following code:

Aux = new Node; // pointer Aux has address to a new empty

element

Aux->Data = 6.88; // value to Data item

Aux->Next = Start; // pointer to the next member points recent

starter element

Start = Aux;

// pointer to the beginning of the list points now to the new

element

Pointers II | FITPED

173

Removing an element from the beginning can be processed by the following code:

 Aux = Start; // pointer Aux points to the start of list

 Start = Start->Next; // new beginning of list is now on

second member

 delete Aux; // recent starter element was deleted

📝 16.3.5

The input is a sequence of integer values. Write this sequence in reverse order. Use
a dynamic linear list as a stack. Add the corresponding parts to the following code:

#include <iostream>

using namespace std;

int main(){

 typedef struct Node {

 long int Data;

 Node *Next;

 } Node;

 Nodeptr Top=NULL, Aux;

 long int curdata;

 while (cin>>curdata){

 Aux = new Node;

 Aux->Data=curdata;

 }

 Aux=Top;

 while (Aux!=NULL){

 cout << Aux->Data << endl;

 }

 return 0;

}

• Top->Next=Aux; Top=Aux;
• Top=Top->Next; delete Aux; Aux=Top;
• typedef Nodeptr * Node;
• Node* Nodeptr;
• Top=Aux->Next; delete Top; Aux=Top;
• Aux->Next=Top; Top=Aux;
• typedef Node* Nodeptr;

Pointers II | FITPED

174

16.4 Pointers and structs (programs)

⌨ 16.4.1 Pointers to struct 1

Inputs are the dimensions of circles and rectangles. The circle information starts
with c and continues with the radius (real number), the rectangle information begins
with r and continues with the two sides. List shapes in descending order of area.
Display input values and calculated areas. Use the binary tree with data of pointer
to a struct type.

16.5 Pointers to functions as a parameter

🕮 16.5.1

Some standard operations, such as search and sort, are treated as library
procedures. These subroutines are able to work with any array. However, it is
necessary to define a comparison function for the search or sorting itself, which
can handle the data.

The qsort() function is defined in C++ header cstdlib and sorts a given array in
ascending order using the Quicksort algorithm. The qsort() function uses a
comparison function to decide which element is smaller/greater than the other.

The header of the qsort() function looks like this:

void qsort (void* base, size_t num, size_t size, int

(*compare)(const void*,const void*));

The qsort() function sorts the given array pointed by the base in ascending order.
The array contains num elements, each of size bytes. The function pointed by
compare is used to compare two elements of the array. This function modifies the
content of the array itself in ascending order. However, if two or more elements are
equal, their order is undefined.

📝 16.5.2

Task: We have a sequence of the real numbers on input. Write this sequence to
standard output ascending sorted by absolute values. Use the standard qsort
function.

Fill in the following program the correct piece of code into starred place:

Pointers II | FITPED

175

#include <iostream>

#include <cstdlib>

using namespace std;

//**************************

int main() {

 const int MaxValues = 1000;

 typedef float TValArray[MaxValues];

 TValArray VA;

 int Count=0;

 while (cin>>VA[Count]) Count++;

 qsort(VA, Count, sizeof(float), MyComp);

 for (int I=0; I<Count; I++) cout << VA[I]<<", ";

 cout << endl;

 return 0;

}

• int MyComp (const void* a, const void* b){ if (*(float*)a<|*(float*)b) return -1;
if (*(float*)a>*(float*)b) return 1; return 0; }

• int MyComp (void* a, void* b){ if (*(float*)a<|*(float*)b) return -1; if
(*(float*)a>*(float*)b) return 1; return 0; }

• int MyComp (const void* a, const void* b){ if (*a<|*b) return -1; if (*a>*b)
return 1; return 0; }

• int MyComp (float a, float b){ if (a<|b) return -1; if (a>b) return 1; return 0; }

🕮 16.5.3

Effective retrieval of an element's presence in the data can only be realized with
prepared data. If the data is jumbled in a linear structure (array, list), the only
sequential search can be used. A binary search algorithm (BSearch) can be used in
ordered array data.

The bsearch() function in library cstdlib of C++ language performs a binary search
of an element in an array of elements and returns a pointer to the element if
found. The bsearch() function requires ascending ordered array.

The header of bsearch function looks like this:

void* bsearch (const void* key, const void* base, size_t num,

size_t size, int (*compare)(const void*,const void*));

The principle is similar to the qsort function. The first parameter is a key (searching
value), the base is a pointer to an array start (or simple array identifier), num is a
number of array elements and size is the size of one array element. The last
parameter is the function for the comparison of values (key and array element). In

Pointers II | FITPED

176

order to perform the search, the bsearch() function makes a series of calls to the
function pointed by comparing with key as the first argument and an element from
the array as the second argument. Therefore, the key data type may not be identical
to the data type of the array item. For example, we can only search for goods
records by product name or stock number.

📝 16.5.4

Task: We have an ordered array with float values. Find the index of values entered
from standard input. For the searching use the standard function bsearch.

Fill in the following code with the correct option into starred place.

#include <iostream>

#include <cstdlib>

using namespace std;

int MyComp (const void* a, const void* b){

 return *(float*)a - *(float*)b;

}

int main() {

 const int MaxValues = 1000;

 typedef float TValArray[MaxValues];

 TValArray VA;

 int Count;

 float Key, *Result;

 cin>>Count;

 for (int I=0; I<Count; I++) cin>>VA[I];

 qsort(VA, Count, sizeof(float), MyComp); // preparation of

data

 while (cin>>Key){

// ***************************

 }

 return 0;

}

• Result = (float*)bsearch(&Key, VA, Count, sizeof(float), MyComp); if
(Result!=NULL) cout <|<| "A number "<|<|*Result<|<|" was found on index " <|<|
Result - VA <|<| endl; else cout <|<|"Value "<|<| Key<|<|" was not
found."<|<|endl;

• Result = bsearch(&Key, VA, Count, sizeof(float), MyComp); if (Result!=NULL)
cout <|<| "A number "<|<|*Result<|<|" was found on index " <|<| VA[Result] <|<|
endl; else cout <|<|"Value "<|<| Key<|<|" was not found."<|<|endl;

Pointers II | FITPED

177

• Result = (float*)bsearch(&Key, VA, Count, sizeof(float), MyComp); if
(Result!=0) cout <|<| "A number "<|<|VA[Result]<|<|" was found on index " <|<|
Result <|<| endl; else cout <|<|"Value "<|<| Key<|<|" was not found."<|<|endl;

16.6 The use of qsort, bsearch (programs)

⌨ 16.6.1 qsort 1

The input contains a sequence of integer values (max. 100). Use the qsort function
to sort it and display ascending sequence.

⌨ 16.6.2 qsort 2

The input contains a sequence of characters ended by a dot (max. 300). Use the
qsort function to descending sort of these characters.

⌨ 16.6.3 bsearch 1

The input contains a sequence of integer values. Use the qsort function to sort it
and use the bsearch function to find numbers from 1 to 20 in the input sequence.
Display all found numbers.

⌨ 16.6.4 bsearch 2

The input contains a sequence of characters ended by a dot. Use the qsort function
to ascending sort of these characters and use the bsearch function to display
characters 'r' to 'z' found in the input sequence.

Memory Management

Chapter 17

Memory Management | FITPED

179

17.1 Memory management

🕮 17.1.1

The memory for program variables is divided into two parts: for dynamic variables
and for static variables. We have already discussed this fact in the data type
pointer.

Now let's look at the efficiency of working with these two parts of memory.

Working with static variables is done by the compiler. The variable is created in
memory at the time of declaration – the compiler assigns the corresponding
address and this address is accessible to the programmer via the variable
identifier. By simply writing this identifier, we immediately get to the value that is
stored in the variable.

The variable is automatically released when the block in which it was declared
ends. It never happens that a memory variable does not become loose, remains
partially in memory, or has a bad location.

This means that the variables used are as effective and secure as possible. So
what's the disadvantage? We can see two disadvantages: we cannot influence
(allocate or release) memory during the program, and this area of memory is small
for large data. Nowadays, however, this smaller size is usually quite sufficient for
most applications.

Why this part of memory is called stack: as mentioned, memory allocation is done
when declaring a variable. This declaration can be specified in a block (subroutine,
command). It follows from the principle of program operation that a subroutine (or
command) with a local variable starts working, thus occupying the appropriate
memory, but the previous block from which it was called cannot end earlier.
Therefore, the memory that was last occupied is always released first. This is the
principle of the stack. Thus, there is never a situation where incoherent sections are
created in this part of the memory.

🕮 17.1.2

A so-called heap is a memory area that is used to allocate dynamic variables via
pointers. The basic technique to allocate this memory is the new operator, and
deallocate with the delete operator.

In connection with what has been said about stack, modern C++ code tends to
use new quite rarely, and delete very rarely. From a memory standpoint, the
disadvantage is that new allocates memory of the heap while local objects allocate
memory off the stack. Heap allocation times are much slower than allocations off

Memory Management | FITPED

180

the stack. However, there are still times when it's appropriate to do so, and a solid
understanding of how these low-level facilities work can help with the
understanding of what normally happens "below the hood". There are even times
when new and delete are too high-level, and we need to drop back
to malloc and free from C language – but those situations are rare exceptions
indeed.

The basic idea of new and delete is simple: new creates an object of a given type
and gives a pointer to it, and delete destroys an object created by new, given a
pointer to it. The reason that new and delete existing in the language is that code
often does not know when it is compiled exactly which objects it will need to create
at runtime, or how many of them. Thus new and delete expressions allow for
"dynamic" allocation of objects.

For those of you familiar with the C programming language, new is a kind of "type-
aware" version of malloc: the type of the expression "new int" is "int*". Because new
is type-aware, it can also initialize the newly created objects, calling constructors if
appropriate. Another enhancement of new and delete compared
to malloc and free is that the C++ standard provides a standard way to change
how new and delete allocate memory; in C this is normally achieved using a non-
standard technique known as "interpositioning".

All dynamically allocated memory must be released before the pointer (except
smart pointers) pointing to it goes out of scope. So, if the memory is dynamically
allocated for a variable within a function, the memory should be released within the
function unless a pointer to it is returned or stored by that function.

The basic new and delete operators are intended to allocate only a single object at
a time; they are supplemented by new[] and delete[] for dynamically allocating
entire arrays. Uses of new[] and delete[] are even rarer than uses of basic new and
delete; usually, a std::vector is a more convenient way to manage a dynamically
allocated array.

Note that when you dynamically allocate an array of objects,
you must write delete[] when freeing it, not plain delete. Compilers cannot usually
give an error if you get this wrong; most likely your code will crash when you run it.

When a call to delete[] runs, it first retrieves the information stored
by new[] describing how many elements are present in the dynamically allocated
array and then calls the destructor for each element before deallocating the
memory. The actual address of the memory block that was allocated may differ
from the value returned by new[] to allow room to store the number of elements;
this is one reason why accidentally mixing the array form of new[] with the single-
element form of delete may lead to crashes.

The particularly astute reader might be wondering if it would be possible to
eliminate the need to remember which of new/new[] and delete/delete[] to use, and
make the compiler figure it out instead. The answer is that it would be perfectly

Memory Management | FITPED

181

possible, but doing so would add overhead to each single-object allocation (as
delete would need to be able to work out whether the allocation was for a single
object or an array), and a design principle behind C++ has been that you "don't pay
for what you don't use", so the trade-off made is that single object allocations
remain efficient, but users have to take care when using these low-level facilities.

📝 17.1.3

Task: Input data include the name of the goods and the number of pieces in stock.
List the goods that are below the average number of items in stock and a list of
goods that are no longer in stock (ie, have zero pieces).

The first variant is solved via a simple array, the second variant via a dynamic linear
list.

The record of one good:

struct TGoods {

 char Name[50];

 int Pieces;

};

Suppose we have 150 records on input and an array is declared with 160 elements.

Which of these variants take more memory and how many bytes it will be?

• An array: 9280 bytes; linear dynamic list 9900 bytes. The array is more
economical.

• An array: 9280, a linear dynamic list 8700. The list is more economical.
• Both of variants takes the same size of memory.

📝 17.1.4

Assume processing of the order of millions of real numbers (double data type). In
the first variant, we decide to use the array and dimension it to 2 million items. In
the second variant, we use a linear one-way dynamic list. How many items does the
memory consumption of the linear list exceed the memory consumption when
using the array?

(Suppose that one pointer takes 8 bytes; the double data type takes 8 bytes.)

• 1 million
• 1.5 million
• 2 millions

Memory Management | FITPED

182

• 0.5 million

🕮 17.1.5

A dynamic array is similar to an array, but with the difference that its size can be
dynamically modified at runtime.

The elements of an array occupy a contiguous block of memory, and once created,
its size cannot be changed. A dynamic array can, once the array is filled, allocate a
bigger chunk of memory, copy the contents from the original array to this new
space, and continue to fill the available slots.

In the backend, dynamic arrays allocate a predetermined amount of memory on
creation, which then grows by a certain factor when needed. These parameters,
initial size and growth factor are central in terms of performance. If the initial size
and growth factor are small, you’ll end up reallocating memory often, which isn’t
good; on the other hand, if they have a higher value, you’ll probably have a lot of
unused memory, and the resize operation could take longer. The tradeoff is obvious
here.

So we have to realize that the possibility of extending field size is usually
associated with considerable overhead, so it is necessary to consider when a
dynamic array is really needed and when it is quite effective to allocate a large
enough array without the possibility of its expansion.

📝 17.1.6

We need to process integer values. We create a dynamic array whose size
increments will have ten items. Because we don't know in advance how many items
we need, the basic size will also be 10 items. How many times will it be necessary
to reallocate memory and copied values if we read 4582 numbers from the input?

• 458
• 460
• 46
• 0

Memory Management | FITPED

183

17.2 Storage classes

🕮 17.2.1

A storage class defines the scope (visibility) and a lifetime of variables and/or
functions within a C++ program. These specifiers precede the type that they
modify. There are the following storage classes, which can be used in a C++
program:

• auto – this is the default storage class for local variables. The definition
without the auto keyword has the same effect.

• register – storage class define local variables that should be stored in a CPU
register instead of memory. This is useful for quick access to this variable.
Typically is used for example in a loop as a control variable or index. This
variable must have a maximum size correspond to the register size. This
variable cannot be referenced via & operator.

• static – the static storage class instructs the compiler to keep a local
variable in existence during the lifetime of the program instead of creating
and destroying it each time it comes into and goes out of scope. Therefore,
making local variables static allows them to maintain their values between
function calls. The static modifier may also be applied to global variables.
When this is done, it causes that variable's scope to be restricted to the file
in which it is declared. When static is used on a class data member, it causes
only one copy of that member to be shared by all objects of its class.

• extern – is used to giving a reference of a global variable that is visible to
ALL the program files. When you use 'extern' the variable cannot be
initialized as all it does is point the variable name at a storage location that
has been previously defined.

• When you have multiple files and you define a global variable or function,
which will be used in other files also, then extern will be used in another file
to give reference to the defined variable or function. Just for
understanding extern is used to declare a global variable or function in
another file.

• The extern modifier is most commonly used when there are two or more files
sharing the same global variables or functions

• mutable – applies only to class objects, which are discussed later. It allows a
member of an object to override the const member function. That is, a
mutable member can be modified by a const member function.

📝 17.2.2

We have the following code:

#include <iostream>

using namespace std;

Memory Management | FITPED

184

XXXXX int Index;

void ToSet(){

 Index = 20;

}

void ToModify(){

 for (YYYYY int I=Index; I>=Index /2; I--) cout << I << ", ";

 Index /=2;

}

int main() {

 ToSet();

 while (Index>0) ToModify();

 return 0;

}

Which storage classes fit to XXXXX and YYYYY places?

• XXXXX = static, YYYYY = register
• XXXXX = register, YYYYY = static
• XXXXX = register, YYYYY = extern
• XXXXX = extern, YYYYY = static

17.3 Const and volatile qualifiers

🕮 17.3.1

Qualifiers const and volatile are written before the datatype in variable declaration.

A qualifier const is used with a datatype declaration or definition to specify an
unchanging value. Examples:

const int five = 5;

const double pi = 3.141593;

The following operations are illegal and end with error:

five = 7;

pi += 1;

A qualifier volatile specifies a variable whose value may be changed by processes
outside the current program. One example of a volatile object might be a buffer
used to exchange data with an external device:

int CheckBuf() {

 volatile int io_buf;

Memory Management | FITPED

185

 int val;

 while (io_buf == 0) {}; // wait until io_buf is changed by

external process

 val = io_buf; io_buf = 0; // value processed, buffer

cleared

 return val;

}

If io_buf had not been declared volatile, the compiler would notice that nothing
happens inside the loop and thus eliminate the loop.

Qualifiers const and volatile can be used together to make sure the compiler knows
that the variable should not be changed (because it is input-only for example) and
that its value may be altered by processes other than the current program.

📝 17.3.2

We have the following code:

const float X = 1.5;

void SetFn(float &X){

 X = 4.5;

}

int main() {

 float X = 0;

 SetFn(X);

 cout << X << endl;

}

What we will see on output?

• 4.5
• 1.5
• An compilation error.
• 0

📝 17.3.3

We have the following code:

const float X = 1.5;

void SetFn(float &X){

Memory Management | FITPED

186

 X = 4.5;

}

int main() {

 float X = 0;

 SetFn(X);

 cout << X << endl;

}

What we have to change to obtain value 1.5 on output? (Hint: two changes.)

• To remove & in function parameter, to remove declaration float X = 0;
• To remove const, to remove declaration float X = 0;
• To remove & in function parameter, to remove const
• To remove const, to remove declaration float X = 0;

