/

\ 4

re-

You have downloaded a document from
RE-BUS
repository of the University of Silesia in Katowice

Title: C/C++ Fundamentals

Author: Jifi Rybicka, Viera Michali¢kovéa, Juan Carlos Rodriguez-del-Pino, Jos¢ Daniel
Gonzélez-Dominguez, Zenon José Herndndez-Figueroa, Matgorzata Przybyta-Kasperek

Citation style: Rybicka Jifi, Michali¢kova Viera, Rodriguez-del-Pino Juan Carlos,
Gonzalez-Dominguez José Daniel, Hernandez-Figueroa Zendn Jos¢€, Przybyta-Kasperek
Malgorzata. (2021). C/C++ Fundamentals. Nitra : Constantine the Philosopher University
in Nitra

Uznanie autorstwa - UzZyeie niekomereyjne - Bez ubworow zaleznyeh Polska - Licencia

@ @@@ ta zezmwala na rozpowszeclinianie, przedstawianie 1 wykonywanie ubwor jedynie w celach

mekomercyjiyel oraz pod warunkiem zachowania go w oryginalneg] postact
(e tworzetua ubworow zalezinyely).

== Uniwersytetu $laskiego i Szkolnictwa Wyzszego

‘? ‘ UNI SYTET SLASKI [N\ Biblioteka N Ministerstwo Nauki
W CcH

',

9|FITPED

C/C++ fundamentals

Jiti Rybicka
Viera Michali¢kova

Juan Carlos Rodriguez-del-Pino
José Daniel Gonzalez-Dominguez
Zendn José Hernandez-Figueroa
Matgorzata Przybyta-Kasperek

www.fitped.eu [2021

Work-Based Learning in Future
Co-funded by the . 5
Erasmus+ Programme - IT Professionals Education
of the European Union (Grant. no. 2018-1-SK01-KA203-046382)

C/C++ Fundamentals

Published on

November 2021

Authors

Jifi Rybicka | Mendel University in Brno, Czech Republic

Viera Michalickova | Constantine the Philosopher University in Nitra, Slovakia

Juan Carlos Rodriguez-del-Pino | University of Las Palmas de Gran Canaria, Spain
José Daniel Gonzalez-Dominguez | University of Las Palmas de Gran Canaria, Spain
Zenoén José Hernandez-Figueroa | University of Las Palmas de Gran Canaria, Spain

Matgorzata Przybyta-Kasperek | University of Silesia in Katowice, Poland

Reviewers
Anna Stolinska | Pedagogical University of Cracow, Poland
Peter Svec | Teacher.sk, Slovakia
Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics
Lubomir Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED
Work-Based Learning in Future IT Professionals Education
Project 2018-1-SK01-KA203-046382

Co-funded by the)
Erasmus+ Programme O
of the European Union ot

*

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

@080

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1779-8

Table of Contents

1 Main Function, Header Files, Standard Library, Simple Input/Output 6
1.1 First program, main fUNCLIONcoiiiiiiiiicececeeeeee e 7
1.2 Standard library, simple input/outputcooooiiioieeii e, 10
1.3 INtroduction (PrOGramIS)cc.cveuieuieieeeeeeeeteeeeeeeeee ettt ettt enenea 12

2 Variables, CONSTANTS.........coiiiiee et 13
2T VAADIES ...ttt 14
2.2 CONSTANTS ...ttt ettt s e et e st et at e et e e 16
2.3 Variables (ProgramS)..........cucueeueouieeeeeeeeete ettt ettt ettt 17

3 Data Types, TYPE CONVEISIONccccuiiieiiieeiiie et eeee et eee e e e saeeeeseeesnseeeenns 18
T D F- 1 = 1 0 L= TSRS 19
3.2 Data type CONVEISION.......occiiieciiieciiee ettt ettt et eeaae e e seveeeeae e e nseeennseeeenns 23
3.3 Data types (PrOgramS)c.ecueeeeieiieiiieieeeete ettt ettt s et ebe s ere s se s enis 24

4 Assignment and OPEratOrS.......cceicvieiiieiieceeee ettt et 26
4.1 Expression, statement, aSSignment..........cooviiieiiieiiiieeieeee e 27
4.2 Assignment and operators (Programs)c.cceeeerieueriereereeeeesreeeeeeeee e 33

5 Formatted INPUL/OULPULcc.oiieieeee e 35
5.1 Formatted input/OUTPUL......cc.ooiiiee e 36
5.2 Formated input/output (Programs)..........ccccceeuerieieieeeririeeeeeteeteeee e 45

6 LOGICAl OPEIAtOrSt ettt et et aae e eaeeeaaeas 48
6.1 Logical data type and logical operatorsccccoovieeiieiicciieceeeceee e 49
6.2 Logical operators (Programis)........cc.cceeeeuieuecieeeeieeeereeteieeee et 51

7 Conditional STatemMENTS......c.cooiiiiieieceeeee e 54
7.1 Conditional statement "if"ooii e 55
7.2 Command if (PrOGramIS)ccveieuiiuiiiiieeieteeteet ettt 60
7.3 Conditional @XPreSSION.......ccuviiiieeeie ettt e 62
7.4 Conditional expression (Programs)ccceeveeveeereeeereereeee et 65
7.5 SWItch to More branChesc.ooviiiiiiiee e 67
7.6 Switch command (ProgramiS).........cceveveuieueeuieieeeeee ettt 70

S o To] o 1T TSRS 71
8.1 The While StatemMeNt...........oooiiiiiiieeeee et 72
8.2 The while 100P (PrOgramiS)........cocueviieuiiiiciiieeeeeeeeete et 78
8.3 The do 100P (PrOgramMIS)c.ocuieuieiieeeeee ettt ettt 80

8.4 CoUNTEA IOOP TOF ...eeiieeeeeee e 81

8.5 The for I0Op (ProgramiS)c.cieveieieeiiieieieiierete ettt 85

8.6 Affecting the passage through the [00pccooiieiiieie 86
8.7 Loop damage (PrOgramS)ceveeeveeerrererieeereeeeseseeseseeseseesessesessesessessssesessesessesenns 89
9 User-Defined FUNCHIONScccooiiiiieieeee e 91
9.1 User-defined fUNCLIONScoiiiiieieeee e 92
9.2 FUNCHIONS (PrOGIaMIS)......cueeveveeieteeeeeeete ettt ettt e e ea e e ereeseeaenea 100
0.3 RECUISION. ...ttt ettt st ettt e st e bt e s bt e snaeenaneens 104
9.4 RECUISION (PrOGIAMIS)oueeueevieeeteeeeeete ettt ettt eeae e e e s ne e eseeseeseneas 106
L O £ =)V TSROSO 109
L O Y 1 - USSR 110
Structured data tyPeSooveieeeeeeee e 110
T0.2 Arrays (PrOGraMIS) . ..c.eoveereeueeieeteeteeteeteeee et et eeeeteete et eseeseeseeseeseeseeseeaeeseeseesean 117
TT MUltidimensional ArTAYScoueioiiieece ettt e 119
TT.T AITAY OF @ITAYS oottt ettt et aeeaeese s 120
11.2 Multidimensional arrays (Programs)cceceeeeeeesierieeeeeeseeeeere e 123
T2 SEIINGS. ettt et e e et e e et eeetaee e tbeeesbeeeenseeeasseeeesaeeesaeeennseeennnes 125
T2.T SHINGS oottt ettt e et e ettt e e st e e sabeeeestaeesssaeesnsaaeensseeennseeennnes 126
12.2 StrNG (PrOGramIS)ocveuiieeieiietieteiee ettt ettt ettt teere s s s e 130
T3 SHTUCT DAta TY P ittt et e et s e e e e e e enseeennns 131
13.71 Structured data type STrUCoouviiiiiee e 132
13.2 SErUCE (PrOGraMIS)oviiiiieieeieteetet ettt ettt ettt 135
TAUNION DA TYPC..ooiiiieiiiee ettt e e et e e st e e e e sbaeeeenssaeeeeensnnas 137
T4.TUNION data tyPe . ..ottt et e 138
T4.2 UNION (PrOGrAMIS).....ccuiiviieeieeietietieteeese et eteetet e eseeteese s s eaeeseese s seaseseeseesesensens 141
TO POINTEIS | .ttt et e et e e nanee e 142
TO.T POINTEIS ..ttt ettt ettt e e e e et e e e e 143
15.2 PoINters (ProgramiS)cc.cvcuiiuiiuiieeeeeeee ettt ettt 155
15.3 Pointers and arrays — array implementation...............ccccoeoveeiiieiiececceee 157
15.4 Pointers and arrays (Programs)cceeueeueeveiereereereereeeeeeere et e ere e s 158
15.5 POINter arithMetiC.........oouieiieiicececee e 159
15.6 Pointers arithmetic (Programs)...........cccoeeeeiiieiiieeceeeeeeeeee e 162
TO POINTEIS ..ottt e et e et e e et e e enneeeenns 163
16.7 Pointers t0 SUDrOULINES.........cc.ooiieiiieeee e 164
16.2 Pointers to subroutines (Programs)..........cccceeveeeeeecicieeeeeeceeeeeee e 168
16.3 Struct as a member of dynamic Structure..........cccceeveeievieciiecieceeeeeeee. 169

16.4 Pointers and Structs (Programs)ccoeeveeeieueeeeeeeeeeee e 174

16.5 Pointers to functions as a parametercccoeveeiieieeieciecieeeeeeeee e 174

16.6 The use of gsort, bsearch (Programs)cccceeveveieecieeeeeeieeieeeeeeeeene, 177
T7 Memory Man@gemENT.........ooiuiiiiieiiieiie ettt ettt ettt et 178
T17.1 Memory ManagemeEnT........cueiiiiiiiiee ettt et e e e e e 179
T7.2 STOrAQE ClASSES ...ttt ettt e e ne e e ere e 183

17.3 Const and volatile qUAlIfIersc..ooouveeie i, 184

Main Function, Header Files, Standard
Library, Simple Input/Output

Chapter 1

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

1.1 First program, main function

1.1.1

When you want to write your program in C you have to write the so-called "main”
function.

Functions in C/C++ are pieces of code that have their own name (indentificator)
and body. The main function represents the whole program, so it must be always
written in source code.

The general form of function is:

data_ type function name (parameters) { body }

So the main function may have the following form:

int main() {
// here are statements of function body
return 0; // so called return value of function

}

The main function returns an integer value, thus the data type of function main is
int.

B 1.1.2

The main function represents of C/C++-program. Its declaration consists of
type, identifier "main", parameters and body. The body of the main function
contains a statement for :

e clear screen
o alternative part

e int
o whole program
e string

o integer returned value
e clearinput buffer

B 113

The body of the main function is enclosed by parenthesis.

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

e False
e True

= 1.1.4

Parameters of the main function are enclosed by:

o parenthesis.
o curly brackets.
e Spaces.

1.1.5

A header file is a file with extension .h which contains declarations and definitions
to be shared between several source files. There are two types of header files: the
files that the programmer writes and the files that come with your compiler.

The use of a header file is necessary for almost every program. One of the most
useful header files which come with the compiler (or operating system) is a file with
the declaration of input/output operations.

Your request to use a header file name.h in your program by including it with the C
preprocessing directive #include. The syntax of #include has the following two
forms:

#include <name>

This variant is for the system (compiler) files, and

#include "name.h"

for files written by the programmer.

Inserting a custom file can also include the file access path, while the header files
are located in system directories whose paths are not specified (they are set
automatically when the compiler is installed). Therefore, files from these paths are

always written without an extension and without a path.

Detailed information about preprocessing directives comes later in this course.

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

Br 1.1.6

The header file is

a file with function declaration and/or some definition in C/C++ language.
a file with a part of function body or main function body.

a file containing the first line of C/C++ source code.

a file containing any part of the source code.

B11.1.7

Header files have two types: system and programmer made.

e True
e« False

B 1.1.8

The header file named aaa.h to come with the compiler or operating system is used
to write:

#include <|aaa>
#using <|aaa>
#include "aaa"
#include <|./aaa.h>

= 1.1.9

The header file named aaa.h in the active directory written by the programmer is
used to write

#include "aaa.h"
#define "aaa"
#use "aaa.h"
#include <|./aaa.h>

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

1.2 Standard library, simple input/output

1.2.1

Almost every program needs to input some values and output results. So we have
to use appropriate commands for it.

The input and output operations depend always on the operating system
environment. Every system and every situation is solved differently. But the
programmer — the author of the program - has no information about it. The source
code of the program must work on many systems and programmers have to write
the same commands.

So the input and output operations are encapsulated into functions which bodies
are implemented according to the operating system you actually use and their
headers are always the same.

Every programming language has some commands for input and output operations
but every programming language has a different approach for it.

We will discuss two approaches because of two different versions of C language:
pure C and C++ versions.

1.2.2

In the C++ programming language, the C++ Standard Library is a collection of
classes and functions, which are written in the core language and part of the C++
ISO Standard itself. The C++ Standard Library provides support for some language
features and functions for everyday tasks such as finding the square root of a
number or simple input/output.

There are differences between C and C++ standard libraries. We prefer the C++
approach, so we show C++ simple input/output and the appropriate part of the
standard library for this.

We need some input values and write output in almost every program. In the very
simple form, we have the statement for input: cin (it stands for "console input"), and
a statement for output: cout (i.e. "console output”).

When we need the mentioned commands we have to include a standard library for
this in the following form:

#include <iostream>

10

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

B 1.2.3

For input/output operations in C++ we use the header file in the following form:

e #include <|iostream>
o #include <|stdio>

e #include "inputoutput’
e #input "iostream”

1.2.4

As mentioned earlier, cin and cout are available for input and output. The cin and
cout are so-called streams. Their use is supplemented by a special operator "<<"
and ">>". Multiple items can be read or written with one cin stream and one cout
stream. Small hint: Operator ">>" points from cin to the variable, operator "<<" points
from variable or expression to cout.

For example input to two variables:

cin >> Varl >> Var2;

Output can be realized as a sequence of expressions in which values are first
computed and then shifted to the output stream:

cout << "The value is " << Varl + Var2*5 << "." << endl;

Note that cin, cout and endl (stands for "end of the line") are objects in namespace
std. When we use them directly, we have to open this namespace via command:

using namespace std;

If we did not specify this command, it would be necessary to write a space name
for each element contained in it:

std: :cout << "The wvalue is " << Varl + Var2*5 << "." <
std: :endl;

Standard error output

Just as we can write to the standard output (stream cout), we can write to the
standard error output, in the same way, using the stream cerr. Everything else
remains the same as cout. We will always use the standard error output if we want
to convey some non-standard situation or auxiliary information to the user. We
never mix these auxiliary messages with data so we don't write them to standard
output! For example:

11

Main Function, Header Files, Standard Library, Simple Input/Output | FITPED

double a, b;
cin >> a >> b; // input two non-zero numbers
if (a*b == 0) cerr << "invalid data!" << endl; // error!
else // valid data, output to stdout
cout << "Contents of rectangle is " << a*b << endl;

= 1.2.5

We want to read two values of A and B. These values represent the sides of the
rectangle. We should write to output the contents and perimeter of this rectangle.
Fill in appropriate parts into following code:

#include <iostream>
using namespace std;
int main () {

float A, B;

return O;

e cout >>"Contents ">> A*B >> ", perimeter " >> (A+B)*2 >>".">>end];

e cin<|<|A<|<|B

e cCin>>A>>cin>>B

e cin>>A>>B;

« cout >>"Contents " cout >> A*B <|<| cout >> ", perimeter " cout >> (A+B)*2
cout >>"" <|<| end|;

o cout << "Contents "<< A*B << ", perimeter " << (A+B)*2 <<"."<<end|;

1.3 Introduction (programs)

1.3.1 Main function, header files

Write down source code with system header file iostream and with the main
function which shows "Hello!" (use std::out) and returns exit code 0.

1.3.2 Simple input and output

Imagine an X is the outer diameter of the ball and a Y is its wall thickness. Both
values are in millimetres. Read the X and Y values from the input and write the total
ball volume and sum of the outer and inner surfaces. The output sentence will be:

Volume is mm3, surfaces are mm?2.

12

Variables, Constants

Chapter 2

Variables, Constants | FITPED

2.1 Variables

2.1.1

A variable is a certain place in the computer memory which can hold some
values. It's a different approach than in mathematics.

What place does the memory variable occupy? This depends on its data type. Data
types will be discussed later in this course.

If a variable occupies some space, we can insert certain values into it.
Each memory space has its address. In order not to remember the numeric form of
the address, these addresses are named, so we call it a variable identifier. It

represents the numeric form of the address.

So each variable has its address (or name in form of an identifier) and its value.

B 2.1.2

What is a variable in the programming language?
o A certain place in computer memory.

o Aletter representing some real number.
e Number of program steps.

&= 213

The variable identifier in the programming language
« represents the address of the variable in memory.

o represents the value of the variable.
o represents number of possible values.

2.1.4
Each variable can hold some values. Because the variable occupies a certain space

in the computer's memory which is composed as a sequence of bits, each value is
machine-displayed as a sequence of zeros and ones.

14

Variables, Constants | FITPED

A sequence of ones and zeros can mean different values. The simplest
interpretation is as a non-negative integer in the binary system.

Suppose a variable occupies a space of two bytes. What values can be stored in
this space?

The minimum value is represented by all zeros and represents zero. The maximum
value is formed by the ones themselves. Two bytes are 16 binary ones, which is a
decimal number of 65,535. So a two-byte variable can hold a value between 0 and
65,535.

Generally, a variable on an n-bit space can hold a maximum value of 2~ - 1.

B 2.1.5

What is the maximum integer decimal value of a variable occupying 8 bits in
computer memory?

2.1.6

Each variable you planned to use has to be declared. This means we have to tell the
computer how the variable will be named and what data type it will be. According to
the data type, the compiler creates the appropriate space for this variable in
computer memory. The declaration must always precede the use of the variable.
The declaration in C/C++ language is written as follows scheme:

data_ type variable identifier;

For example (int is an identifier for the integer data type):

int Count;

Now we can use the variable Count which can hold some integer value.

If we need more variables of the same type, we can use the notation where we
specify a data type and a list of variables of this type divided by commas:

int suma, current_value, count;

After the declaration, the value of the variable is undefined. If we want the variable
to have its initial value along with the declaration, we can write it directly into the
declaration statement. In one declaration statement, we can combine variables
without and with an initial value. For example:

15

Variables, Constants | FITPED

int suma=0, current value, count=l;

The variable current_value has an undefined value, but suma has value zero and
count has value 1.

= 2.1.7

We want to declare two variables: Side and Radius. The data type is float. The
variable Radius should have an initial value of 10. Fill in the appropriate pieces of
code:

Side, ;
o float
« Radius=10
e char
° Slde=0
« 10=Radius
e radius=10
° int
+ Radius

2.2 Constants

2.2.1

A constant represents memory space. It is similar to a variable. Compared to a
variable, however, it has a value that cannot be changed. We assign this value when
declaring a constant.

The constant declaration looks like a variable declaration but it is preceded by
keyword const and we always have to define its initial value:

const int WeekDays=7;

B 222

We want to declare a constant that contains the number of minutes per day. Fill in
the appropriate pieces of code:

16

Variables, Constants | FITPED

=1440

var

char

int

=24

float

=60
MinPerDay
const

2.3 Variables (programs)

2.3.1 Variables 1

Declare one variable of type char with identifier Pass and initial value asterisk and
one variable of type double with identifier Num and initial value 2.7182.

2.3.2 Variables 2

Declare a variable of type int with identifier Page and initial value 123 and a variable
of type char with identifier Delim and initial value tilde.

2.3.3 Constants 1

Define constant named Digit with a value of the character with ordinal value 48, and
constant named Zone with integer value 48.

2.3.4 Constants 2

Define constant named PI with value 3.14159, and constant named Sign with the
value of minus character.

17

Data Types, Type Conversion

Chapter 3

Data Types, Type Conversion | FITPED

3.1 Data types

3.1.1

The data type specifies the allowable values and allowed operations with these
values. The data type can be predefined or user-defined. Predefined data types are
basic building blocks for user-defined types.

In this lesson, we will deal with numeric data types and types for expressing
character information.

As mentioned above, a variable represents a place in computer memory. The data
type tells us how to interpret this memory location and how we can process it.
Thus, the variable is associated with the data type.

[3.1.2

There are numeric data types for number processing. We will start with integer data
types. They are divided into two categories — unsigned (non-negative values only)
and signed (both negative and positive values). They are listed in the following
table:

Numeric data types - integer values

Type identifier Short type identifier Memory size Values range

unsigned int unsigned 4B 0 to 4,294 967,295

unsigned long int unsigned long 4B as above

unsigned long long intunsigned long long 8B 0to 18,446,744,073,709,551 615
unsigned short int unsigned short 2B 0 to 65,535

unsigned char (none) 1B 0 to 255

signed int int 4B -2,147,483,648 to 2,147 483,647
signed long int lang 4B as above

signed short int short 2B -32,768 to 32,767

signed long long int long long 8B -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
signed char char 1B -128to0 127

Bt 3.1.3

Match appropriate data type name and its value range.

signed short int

unsigned char

signed char

19

Data Types, Type Conversion | FITPED

unsigned short int

e 01065535
e —65,536 10 65,535
e —32,76810 32,767

e 0to 255

e —25610 255

e —1281t0 127
3.1.4

A pair of integers is used to store real numbers: mantissa (M) and exponent (E).
These data types are generally referred to as floating-point numbers.

The number value is calculated as M-2*E. The number of bits of mantissa indicates
the accuracy of the number, the number of bits of the exponent determines the size
of the number. Accuracy is given as the number of significant digits. The number
size is given in decimal order.

In C/C++ language there are three floating-point data types:

Floating-point data types

Data type name Memory size [B] Accuracy Size

float 4 6 digits +/-10" "
double 8 15 digits +/-10”
long double 10 18 digits +/-10” -

Mote also that the leng double type is often stored at 16B to align memory to blocks of 4B.

BT 3.1.5

We have three data types for real numbers in the C/C++ language:
« float, double, long double.
« single, double, extended.

o real, comp, decimal.
« numeric, float, extended.

B 3.1.6

Match the appropriate values:

20

Data Types, Type Conversion | FITPED

double _____
long double _____
float _____

e accuracy to 12 significant digits
e accuracy to 10 significant digits
« accuracy to 8 significant digits
e accuracy to 15 significant digits
e accuracy to 6 significant digits
e accuracy to 18 significant digits

B 3.1.7

Assume the following variable declarations:

double A, B = 0;
float C, D=1.2E-2;

How much total memory do these variables take?

3.1.8

The char data type mentioned earlier is primary used to store character values.
Characters are written into apostrophes, for example:

lal |7| |(|

Each character is stored in the computer memory as an integer. The base character
set (called ASCIlI — American Standard Code for Information Interchange) contains
128 characters with codes 0 through 127. The character code table determines
which number each character is stored in.

The character set is divided into two categories: printable (visible) characters
(letters, digits, punctuation marks) and control characters. The control character is
used to control the output devices, for example, go to a new line, ring bell or
backspace. The control character is written with a special sequence starting with a
backslash.

The control character can be written using its code in octal or hexadecimal, for
some characters there are special sequences, see the following table.

21

Control characters
MName of the character

Data Types, Type Conversion | FITPED

Acronym Code (decimal) Written as

null character (termination of strings) NUL 0 ‘o'

end of text file EOT 4 "' or "wd'

bell {ring bell when shipped to output) BEL 7 7' or "\X7"
backspace BS 8 “W10° or w8’
horizontal tab HT 9 117 or "W or "\’
line feed (new line) LF 10 12" or "wa' or "\n'
form feed (new page) FF 12 "14' or "¢’ or '\
carriage return CR 13 "\15' or "xd' or "\r'
escape (start of printer control sequences) ESC 27 "\33' or "x1a'

B 3.1.9

Match the appropriate values.

LF

CR

form feed

BEL _____
e written as'\7'
e written as '\10'
e written as '\xc'
e Wwritten as '\n'
e written as'\r'
o written as "\xf'

BT 3.1.10

Match the appropriate values:

A control character used for the start of new page

Control character for tab mark is

Control character for the new line

When you want to beep you send character _

e HT

22

Data Types, Type Conversion | FITPED

. EOT
« BS
« LF
« BEL
. FF
3.1.11

The user can define his own data types, which can then be treated similarly to
predefined ones. This can be very advantageous if, e.g. we want to get rid of
dependence on a particular type and we want to generalize the notation so that we
can change the data type of the processed values by changing it in one place.

The typedef keyword is used to define a new type, followed by a type definition, and
a new type identifier, such as:

typedef unsigned int Value_type;

Then we can use this new type to declare variables:

Value_ type Current, Sum = 0, Max, Min;

Then, in the algorithm for calculating the sum and extreme values from the input
sequence, we can process unsigned integers once, sometimes they can be decimal
numbers, just replace the Value_type definition.

3.2 Data type conversion

3.2.1

The value stored in a particular memory location can be understood in different
ways. So we sometimes need to tell the compiler that the value of a particular
variable is to be processed differently than the data type of that variable.
Sometimes, the compiler automatically executes this change itself. For example, if
you insert an int variable value into a long long variable, the compiler automatically
extends the int value to long long. This is called implicit data conversion.

We can also specify explicit type conversion. It is written in two possible ways:

type (expression)

or if the data type is written in more words:

23

Data Types, Type Conversion | FITPED

(type) expression

Examples:

char (48 + digit)
(long long) sum

If the resulting value does not fit in the converted type, this value is truncated. For
example:

int A=1000000000;
long long B;
B=9*A; // we multiply value A by a 9

The result is 410065408, but the right result can be 9000000000. To solve this
mistake we need to write:

int A=1000000000;
long long B;
B=9* (long long)A;

B 3.2.2

We have defined a variable X of the type short int with a value of 300. What do we
get if we convert to an unsigned char?

44 (or character ',")
300 (or char ')

255
344 (or two characters "n,")

3.3 Data types (programs)

3.3.1 Data types

Declare one integer variable without sign which takes 2 bytes of memory, named
MyVar. Then declare one real variable of 12 bytes, named MyBigVar.

c1_types1.cpp
#include <|iostream>

using namespace std;

int main () {

24

Data Types, Type Conversion | FITPED

// declare the wvariables here:

//
// the test of proper declaration:
cout <|<| sizeof (MyVar)<|<|" bytes.'"<|<|endl;
cout <|<| sizeof (MyBigVar)<|<|" bytes."<|<|endl;
return O;

3.3.2 Type conversion

Declare a variable named Letter of type char and 4-byte long integer variable named
Number which will assign to an ordinal number of variable Letter.

c1_types2.cpp
#include <|iostream>

using namespace std;

int main () {
// declare the variable Letter here:

[/ === mmm
//===============================

cin >> Letter;

// declare and assign the variable Number here:
[/ === mmm
//===============================

cout <|<| "The character " <|<| Letter <|<| " has an
ordinal number "

<|<| Number <|<| "." <|<| endl;
return O;

25

Assignment and Operators

Chapter 4

Assignment and Operators | FITPED

4.1 Expression, statement, assignment

4.1.1

The expression prescribes some calculation. It is composed of operands and
operators.

The operand is a constant value or variable. The operator may be a sign for
arithmetic operation, logical operation or other manipulation with values of various
types. The operator may be a function too.

Many expressions are written like in math, but there are differences.

Expression examples (a - circle content, b — triangle perimeter, ¢ — root of the
quadratic equation):

a) Radius * Radius * 3.14
b) sideA + sideB + sideC
c) (-b + sqrt(b * b - 4 * a * ¢c)) / (2 * a)

Notes: Operators have their priorities (order of evaluation). Parentheses have the
highest priority, they are used only round unlike in math. Operator for multiplication
is written like "*" and unlike in math cannot be neglected. The sqgrt function (square
root) is in the cmath library, and this library must be appended with the #include
<cmath> command. Each function has its parameters in parentheses, parentheses
must be written even if the function has no parameters. For exact value of the
number Pi, we can use the constant M_PI from cmath library. So the exact value of
circle contents we obtain as

Radius * Radius * M PI

B 4.1.2

Suppose we have the variable Radius with the radius of the sphere. We want to
calculate the volume of the sphere, V=4/3 nirs. Which expression will make the
correct calculation?

Radius*4*Radius/3*Radius*3.14
4/3M_PI Radius*3
4*3.14/Radius*3*Radius*Radius
4Radius*Radius*Radius/3M_PI

27

Assignment and Operators | FITPED

41.3

An assignment is a special operator that works from right to left. On the right side,
it has an expression that is first calculated, and on the left side, it has a variable into
which the calculated expression value is inserted. The assignment operator has
various shapes. The simplest is "=", for example:

Volume = SideA * SideB * Height;

At the same time, the expression serves as a command that stores the calculated
expression value in the specified variable. Therefore, it is more of an assignment
statement, not an expression. The assignment statement is one of the simple
commands and is one of the most widely used program elements.

The assignment has various shapes. In short, we can write the fact that the value
on the right side is added (or multiplied, etc.) to the variable on the left side along
with the assignment. For example, we need to add a SideC value to the TotalLength
variable. We can write:

TotallLength = TotallLength + SideC;

or also abbreviated

TotallLength += SideC;

Similar to the + = operator, we can use *=, /=, -=, %= etc.

B 4.1.4

We have the following code:

int Vv, a =10, b =5, ¢ = 9;
V= (a+=2) * (b -=3) * (¢ /= 3);
cout << "Volume = "<< V << endl;

What result will we see on the screen?

e Volume =72
e Volume =18
e Volume =450
e« Volume =150

28

Assignment and Operators | FITPED

1 4.1.5
Some operators are presented in the following table:

Operators in C++

Operator Syntax Example
Adding two numbers o a+b
Subtracting two numbers - a-b
Multiplying two numbers " a*b
Dividing two numbers / a’b
Modulo of the integer division of the two numbers % a%b
Greater than £ a>b
Less than = a<b
Greater and equal than (without space between) >~ a>=b
Less and equal than <= a<=Db
Equal (attention: TWO equal signs in a row) = a==>b
Not equal = al=b
and a and b
Logical and (conjunction) & a & b
or aorb
Logical or (disjunction) N allb
- ! g
Negation
Assignments o duo

Operators can be divided into several groups. For example, additive operators are +
and -, multiplicative are *, / and%, relational (used to compare values) are ==, ! =, >=
etc. The operators differ in their priorities. Operators in the same group have the

29

Assignment and Operators | FITPED

same priority and are evaluated from left to right in the expression. The higher the
operator's priority, the earlier it is calculated in the expression. You can change the
priority of calculation by enclosing a part of the expression in parentheses.

Examples:

int A =10, B =5, C = 4, result;
result = A + B * C; // result is 30

result = (A + B) * C; // result is 60
result = A + C / B; // result is 10
result = (A + C) / B; // result is 2
result = A * C / B; // result is 8

result = (A * C) / B; // result is 8 - the same as above

B4 4.1.6

We need to calculate the following formula: y=y-x / [i-(i-1)]

Which of the following statements calculates the value of this formula?

o y*=x/(i*(i-1))
oy +=y*x/i/(i-1)
oy =y*x*1/i*(i-1)
o y*=y*x /(i%i-1)

B 4.1.7

We need to recalculate the Celsius temperature to Fahrenheit. We know that F = 9C
/ 5+ 32, where C is Celsius temperature. Which of the following expressions
correctly computes the Fahrenheit temperature?

e F=9*C/5+32;
e F=9C/5+32;
e F=9/5/C+32;

F = 9C/(5+32);

4.1.8

In the previous sections, it was stated that the assignment is one of the operators.
Therefore, the assignment statement is also an expression. The value of this
expression is the value inserted into the variable on the left side of the assignment.

30

Assignment and Operators | FITPED

We can use this fact if we want to insert this value into another variable. For
example:

int CountA, CountB, CountC, StartingValue = 1;
CountA = CountB = CountC = StartingValue;

In this case, all three variables will have the same value that is equal to the contents
of the StartingValue variable.

The assignment operator is evaluated from right to left. This is different from many
other operators, for example, the addition is evaluated from left to right. So the first
operation is assigning StartingValue to the CountC variable. This value is then
inserted into the CountB variable (the same value as in CountC) and then is inserted
into the CountA variable.

The assignment operator can be used in any part of another expression. We will
achieve a double effect: assigning a value to a variable and at the same time using
that value in another part of the expression. Example: We want to calculate the
content and perimeter of a rectangle. The sides of the rectangle are in variables a
and b. We can assign the initial values in the first expression and then use these
values in the second expression:

int a, b, content, perimeter;
content = (a = 3) * (b = 4);
perimeter = (a + b) * 2;

This notation is not the best because assigning initial values is lost inside the first
expression and is slightly confusing but illustrates the function of the assignment
operator.

BT 4.1.9

The engine of a certain car has 4 cylinders. What is the volume of ten such cars?
The input values are the radius and height of one cylinder. Add the correct parts to
the code.

#include <iostream>
#include <cmath>
using namespace std;
int main () {
float radius, height, volume;

cin >> >> height;
cout << "Volume of given cylinder is " <<
() << endl;

31

Assignment and Operators | FITPED

cout << "Volume of four such cylinders is " << () <<
endl;

cout << "Volume of cylinders of ten cars with the same
engine is "<<

<< endl;

return O;
}

e volume =radius * radius * M_PI * height

o radius

e volume* 10

e volume * M_PI * radius

o height

e volume

e radius * radius * 10 * M_PI

e 4*radius * radius * height

e volume*=4

e radius *= M_PI * height
4.1.10

A very frequently used operation is to add or subtract one. The so-called
incremental operator serves to simplify the syntax of increasing or decreasing the
value of the variable.

This operator is written as a two + or two — and it has two possibilities of use: as a
post-increment (written after a variable) or as a pre-increment (written before a
variable).

The post-increment works by first using the current value of the variable in the
expression and then increasing it by one. Conversely, a pre-increment first
increases the value of the variable by one and then the new value is only used in the
expression. Examples:

int x = 10; y;
y = x++ * 5; // y is 50 and new value of x is 11
y = ++x * 5; // y is 60 and new value of x is 12

Thus, increasing the value of variable X by one can be done in four ways:

X=X+1; // this is long :-(,
// but clear :-) and commonly used in other

languages
X += 1; // the use of assignment operator
X++ // postincrement

32

Assignment and Operators | FITPED

++X // preincrement

B 4.1.11

We have defined this part of the code:

int a =6, b =12, c = 4;
cout << a++ + --b * c++ << endl;

What will appear on the screen?

e« 50
« 80
o 72
e 05

4.2 Assignment and operators (programs)

4.2.1 Simple assignment 1

Try to complete code to obtain product and difference of two values X and Y.

c1_assignl.cpp
#include <|iostream>

using namespace std;

int main () {
int X=3, ¥Y=1;
// complete the code here:

cout <|<| "Product of numbers X and Y is:
"<|<|product<|<|endl;

cout <|<| "Difference between X and Y is:
"<|<|differ<|<|endl;
}

4.2.2 Simple assignment 2

Try to complete code to obtain the sum of squares of values X and Y

33

Assignment and Operators | FITPED

input : none
output: 25

4.2.3 Simple assignment 3

Calculate the discriminant of a quadratic equation.

c1_assign3.cpp
#include <|iostream>

using namespace std;

int main () {
int A=1, B=3, C=2; // coefficients of quadratic equation
// complete the code here:

cout <|<| "The discriminant is: "<|<| D <|<|endl;

4.2.4 Simple assignment 4

Calculate roots of quadratic equation with given coefficients A, B, C. Suppose two
real roots only.

4.2.5 Simple assignment 5

Calculate three members of the Fibonacci sequence from the given two members.

c1_assign5.cpp
#include <|iostream>

using namespace std;

int main () {
int M1=55, M2=89; // two members of Fibonacci sequence
// complete the code here:

cout <|<| "The members are: "<|<|M3<|<|", "<|<|M4L|L]|",
"<|<|M5<|<L|"."<|<|endl;
}

34

Formatted Input/Output

Chapter 5

Formatted Input/Output | FITPED

5.1 Formatted input/output

5.1.1

We suppose that the actual compiler is C++, so we have to link a library with
standard C input/output features. This library is named "cstdio". The link to the
header file is written as:

#include <cstdio>

For input, we may use the function scanf. This function has the first parameter
which defines the data type of input values and the next parameters are memory
addresses to store read values.

For output exists function printf. This function has the first parameter which
defines the shape of the output string and the next parameters define output values
(variables or expressions).

Both functions have some common types of format parameters. So we can define
how may input value be read and the same way we define how may be output value
written.

Some simple examples of format parameters:

%d -- decimal integer value

3f -- float wvalue

%s -- string (array of chars)
%x -- hexadecimal integer value
%¥c —-- one character

Some simple examples of read/write values:

scanf ("%d", &count); /* one integer value is read to a
variable on address count. Note, that the address of the
variable is indicated by the & */

scanf ("$£f%s", &price, customer); /* one float value stored to
price and some characters stored to the variable named
customer. Customer is array of characters and this is direct
address, so we do not need the & */

printf ("Total count is %d.", count); /* integer value from
variable count is written into given sentence */

printf ("The customer %s have to pay $%f.", customer, price);
/* name of customer and price are written in given sentence */

36

Formatted Input/Output | FITPED

Bf 5.1.2

The following program reads two integer values and stores them into two variables
MeasureA and MeasureB. Fill the appropriate parts into code:

#include
int main () {
int MeasureA, ;
scanf (" ", & , &)
0;

}

e <cstdio>

e MeasureA

e halt

e %d%d

e <|iostream>
e MeasureB

o %2d%2f

e return

e MeasureB

B 5.1.3

We have the following piece of code:

int A=10, B=3, C=14;
printf ("Values are %d.%d, more than %d times and %c is name of
first variable.", B, C, A, 65);

Which output exactly corresponds with the previous code?
o Values are 3.14, more than 10 times and A is the name of the first variable.
o Values are 10.3, more than 14 times and 65 is the name of the first variable.
o Values are 10 and 3, more than 14 times and A is the name of the first

variable.
o Values are 14, more than 30 times and 65 is the name of the first variable.

5.1.4

The specifiers mentioned in the previous text (d, f, ¢, s, etc.) can be supplemented
with four groups of sub-specifiers in the following order:

37

Formatted Input/Output | FITPED

%[flags] [width] [.precision] [length]specifier
Some of these sub-specifiers are listed in the following tables:
Flags

Sub-specifier Description

- Left-justify within the given field width; Right justification is the default (see width
sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for positive
numbers. By default, only negative numbers are preceded with a - sign.

0 Left-pads the number with zeroes (0) instead of spaces when padding is specified
(see width sub-specifier).

Width
Sub-specifier Description

(number) The minimum number of characters to be printed. If the value to be
printed is shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

Precision
Sub-specifier Description

.number For integer specifiers (d, i, 0, u, x, X): precision specifies the minimum
number of digits to be written. If the value to be written is shorter than this number,
the result is padded with leading zeros. The value is not truncated even if the result
is longer. A precision of 0 means that no character is written for the value 0.

For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the
decimal point (by default, this is 6). For g and G specifiers: This is the maximum
number of significant digits to be printed. For s: this is the maximum number of
characters to be printed. By default, all characters are printed until the ending null
character is encountered. If the period is specified without an explicit value

for precision, 0 is assumed.

The length sub-specifier modifies the length of the data type. For example output
value of type int may be written as signed char, short int, long int, long long int:

Length
Sub-specifier Description

hh writes integer as signed char

38

Formatted Input/Output | FITPED

h writes integer as short int
| writes integer as long int
Il writes integer as long long int

L writes double as long double

Examples:

printf ("%$010d", 1977); // displays 000001977
printf ("%$+5.2f", 3.1); // displays +3.10
printf ("%$-10d%d", 1, 1); // displays 1 1

B 5.1.5

We have three values stored in variables float A, int B, and unsigned char C. We
need the following shape of the output:

The return count of negative numbers is 00014.
Minimal number with sign was: -796.85000 and its category was:

Q.
Fill the following statement with appropriate format specifiers and sub-specifiers:

printf (

» B, A, C);

"The return count of negative numbers is %05d.\nMinimal number with sign

was: %+10.5f and its category was: %c."

e "The return count of negative numbers is %50x. Minimal number with sign
was: %-5.5d and its category was: %hh."

e "The return count of \nnegative \nnumbers is %d. Minimal \nnumber with
sign was: %10f and its category was: %HH."

e "The return count of negative numbers is \n%5d. Minimal number with sign

was: %3.50 and its category was: %C."

5.1.6

There is another approach to input and output values in the C++ language. We have
to first include a library with input/output operations called iostream:

39

Formatted Input/Output | FITPED

#include <iostream>

The operations for input and output are stored into namespace "std", so we have to
write "std::" as a prefix of the operation name. More info about namespaces will be
discussed later.

C++ input/output is solved as objects called streams. Input stream for standard
input is called cin and output stream for standard output is called cout.

For the simple input can be used statement in the following form:

std: :cin >> wvariable;

The name "cin" stands for "console input". The value from the standard input file is
stored into variables according to the data type of this variable. When we use
multiple operators ">>", we can input multiple values. This is the simplest form for
common input.

Example:

std::cin >> first >> second;

For the simple output can be used following statement:

std: :cout << expression;

where "expression" is a variable or combination of variables and operators. The
name "cout" stands for "console output". Note that operator "<<" have certain
priority and operators used in expression may have less priority. Then we have to
enclose this expression into parentheses. To output multiple values can be written
multiple operators "<<" and multiple expressions. Each expression is calculated first
and then is written to the output stream.

Example:

std: :cout << "The result value is " << first * second <<
1] . \nn .

Note the "\n" is the control character for the new line.

The cout has some internal items accessible with dot notation, for example:
» precision(n) — sets the number of decimal positions of float numbers to n
« width(n) — sets the size of the next output expression to n characters.

« fill(c) — sets the character-filled to output expression instead of spaces.

Example:

40

Formatted Input/Output | FITPED

float radius=2.752, volume;

volume = 4/3 * M PI * radius * radius * radius;
std: :cout.precision(4); std::cout.width (40) ;
std::cout.fill('/") ;

std: :cout << volume<<endl;

The output value will be:
[1717171171111777777777//177/7/7/7/7///////65.48

Some of these formatting settings are usable via so-called manipulators (will be
discussed later).

B4 5.1.7

Choose appropriate options:

#include < >
int main () {
int lengthA, lengthB;

cout "Enter two side of the rectangle, please:\n";
"The contents of this rectangle is " 5
return O;
}
e cin >>lengthA >> lengthB
e jostream
° <<
o <<lengthA * lengthB << ".\n"
e cCout=<<
5.1.8

So-called manipulators are used to adjusting the output shape of the values
displayed. Manipulators are written in the same way as output variables or
expressions in the cout command. The following table shows some useful
manipulators:

41

Formatted Input/Output | FITPED

Manipulators for output

Manipulator Description

end| end of line

dec switches output of integers to decadic system (implicit)

oct switches output of integer to octal system

hex switches output of integer to hexadecimal system

showpos shows plus sign for positive numbers (with zero)

noshowpos switches off displaying plus sign for positive numbers

left left aligning

right right aligning

internal fill character is displayed between sign and value

fixed displays real numbers with a fixed position of the decimal point
scientific switches displaying of real numbers to scientific shape (with exponent)

uppercase all letters in numbers (hexadecimal or scientific) are in upper case

nouppercase all letters in numbers (hexadecimal or scientific) are in lower case

setprecision(p) sets the precision of real number to p

setw(x) sets the width of the next output to x characters

setfill(c) sets the fill character to ¢

Manipulators setw, setfill and setprecision are implemented in header file iomanip, so we have to include them (#include <iomanip:).

Some examples:

cout << showpos << 56; // displays +56

cout << setw(5)<<left<<-56; // displays two spaces and -56
cout << fixed << setprecision(3) << 3.141592; // displays
3.142

cout << scientific << setprecision(2) << 142; // displays
1.42e+002

cout << setw(1l0) << left << setfill('/') << fixed
<<setprecision(3) << 3.115926; // displays 3.142/////

The settings you make in one output statement also apply to the following
commands until you undo the settings. The exception is the setw manipulator
which applies only to the following expression.

Br 5.1.9

We have to calculate the volume of the sphere. We want to display the radius and
volume below each other, aligning them to 10 positions on the right, as is shown on
the following schema:

Radius of sphere: 2.752 cm,
Volume of sphere: 65.478 cm3

Which code displays exactly this shape of output?

42

Formatted Input/Output | FITPED

« cout <|<| "Radius of sphere: " <|<| setw(10)
<|<|setprecision(3)<|<|fixed<|<|right<|<|radius <|<| " cm," <|<| end]I; cout <|<|
"Volume of sphere: " <|<| setw(10)<|<|volume <|<| " cm3"<|<|end];

« cout <|<| "Radius of sphere: " <|<| radius:setw(10):3 <|<|right <|<| " cm," <|<|
endl; cout <|<| "Volume of sphere: " <|<| volume:setw(10):3 <|<| " cm3"<|<|end|;

e cout <|<| "Radius of sphere: " <|<| nouppercase
<|<|setprecision(3)<|<|floated<|<| leftspaces <|<|radius <|<| " cm," <|<| end];
cout <|<| "Volume of sphere: " <|<| leftspaces <|<|volume <|<| " cm3"<|<|end]I;

« cout <|<| "Radius of sphere: " <|<| width(10) <|<|precision:3<|<|fixed<|<|right
<|<| radius <|<| " cm," <|<| endl; cout <|<| "Volume of sphere: " <|<| width(10)
<|<| volume <|<] " cm3"<|<|end]l;

15.1.10

The cin command with the ">>" operator assumes a simple input that omits the so-
called white space characters (spaces, tabs, line breaks). This method is useful for
entering numbers, individual characters, and some strings. Often, however, we need
to work with input values somewhat differently, using other input stream tools.

To enter individual characters without skipping the white space we can use the get
method of input stream cin. Example:

char ch;
cin.get(ch) ;

To modify the behaviour of input operations we can set the input stream with setf
or unsetf. For example:

cin.unsetf (ios: :skipws) ;
This flag sets/unsets skip of white space characters. Other flags for example are:

« boolalpha - reads (and writes) boolean values as a string true/false instead
of 1/0.

o showbase — write integral values preceded by their corresponding numeric
base prefix.

o showpoint — write floating-point values including always the decimal point.

» showpos — write non-negative numerical values preceded by a plus sign (+).

Notice that several manipulators have the same name as these flags (but as global
functions instead).

For reading strings (a character array, not a string type), the getline method is used
in addition to the basic form. The getline method has two or three parameters:

char S[20];

43

Formatted Input/Output | FITPED

cin.getline(S, 10); // reads max. 9 characters plus \0 or to
the end of line

We can read to the given delimiter:

cin.getline(S, 15, ':');
// reads max. 15 characters or to the colon or to the end of
line

The last method is useful for reading strings from CSV files for example.

B4 5.1.11

Two characters are on the input. Find out what categories these characters include
(white characters, letters, digits, punctuation). Add the corresponding parts to the
following code.

char a, b;

if () cout << "a is white character"<< endl;
else if (a>='0' and a<='9') cout << "a is digit'"<<endl;
else if ((a>='A' and a<='Z') or (a>='a' and a<='z'"))
cout << "a is letter" << endl;
else cout << "a is punctuation”" << endl;
if () cout << "b is white character"<< endl;
else if (b>='0' and b<='9') cout << "b is digit'"<<endl;
else if ((b>='A' and b<='Z') or (b>='a' and b<='z"))
cout << "b is letter" << endl;
else cout << "b is punctuation" << endl;

e a=="'ora=='tab'

. b<=I I

° a==I I

e cin >>(get)a; cin >> (get)b;
e a<="'

e b=='""or b=="tab’

« cin.get(a); cin.get(b);

44

Formatted Input/Output | FITPED

5.2 Formated input/output (programs)

5.2.1 Formatted output 1

We have two numbers — tax-free amount and VAT given on the input. Calculate
amount with VAT and write: "Result is XXX.YY €." The number has to occupy the
position of 10 characters have to be on 2 decimal digits and formatted to the right
side.

5.2.2 Formatted output 2

We have the name, surname and salary of the person given on the input. Write this
information on output so that personal name will occupy 15 characters (padded by
spaces), surname 25 characters and salary 7 characters without decimal places.
The salary will be aligned right.

5.2.3 Formatted output 3

We have one word and one integer value given on the input. Task: display one row
on output where input word will be on the left side, occupy 20 positions, input
integer value will be in the right side, occupy 7 positions and between the word and
the number will be leaders dots, for example:

5.2.4 Formatted output 4

We have two integer numbers given on the input. Display these numbers and their
sum in hexadecimal code, for example:

Input numbers 10 and 15 in hex: A + F = 19

5.2.5 Formatted output 5

We have two input integer numbers. Display them in the octal system and display
their product as well. The exact shape of output is:

Product of decimal numbers 10 and 8 in octal code: 12 * 10 =
120

45

Formatted Input/Output | FITPED

5.2.6 Formatted output 6

We have given one real number, the requested number of positions and the
requested number of decimal places on the input. Display the input real number
with specified sizes and display underscores instead of spaces.

For example — input numbers are 7.78 10 4 and on output, we will see:

The number is: 7.7800

5.2.7 Formatted output 7

In some spreadsheets, it is possible to format values so that a sign is placed on the
left and a value on the right. There may be a fill between the sign and the number
(most often spaces, but also other characters). Create a similar format: there is a
real number at the input and the displayed width in characters. Display the number
so that the sign is on the left, the number is on the right, and the fill is done with
dots. For example, input number 2.45 on size 10 will be displayed as:

5.2.8 Formatted output 8

The output of the typical SQL command "select": strings are aligned to the left,
padded with spaces and wrapped with the character'|'. We have given two strings
on the input. Display them to a size of 10 characters. For example input strings Alex
and Barnie will be displayed following (remember to write an end of line):

|Alex |Barnie |

5.2.9 Formatted output 9

The hexadecimal system is used to easily express binary values always storing
data on a computer in whole bytes or groups (for example, 4 bytes). Thus, the
values are displayed so that the number of digits is always the same and
corresponds to the desired byte width and is filled with zeros from the left. Assume
that the input is an integer value and the required number of bytes to display.
Display this value in hexadecimal with the appropriate width. For example, the input
is a pair of 26 4, the output will be:

0000001A

46

Formatted Input/Output | FITPED

5.2.10 Formatted output 10

There are five integer values at the input. Write a histogram of their relative shares
in the total. Each 10% will be displayed as 5 stars. For example, for values 132 3 1
we obtain the following:

*k k%%
kkhkkkkkhkhkkkkkkkk

1

3

2. kkkkkkkkkk

3. kkkkkkrkkkkhkkkk
1

*kk*k*k

form_output10.cpp
#include <|iostream>

#include <|iomanip>
using namespace std;

int main () {
int numl, num2, num3, num4, num5;
cin >> numl >> num2 >> num3 >> num4d >> num5;

// enter the appropriate code here:

return O0;

47

Logical Operators

Chapter 6

Logical Operators | FITPED

6.1 Logical data type and logical operators

6.1.1

A bit is the minimum amount of information that we can imagine since it only
stores either value 1 or 0, which represents either YES or NO, activated or
deactivated, true or false, etc. This means two possible states each one opposite to
the other without the possibility of any shades. We are going to consider that the
two possible values of a bit are 0 and 1.

Several operations can be performed with bits either in conjunction with other bits
or themselves alone. These operations receive the name of boolean operations, a
word that comes from the name of one of the mathematicians who contributed the
more to this field: George Boole (1815-1864). There is a special data type named
bool. Values of the bool type are false and true. The value false is implemented as
zero in computer memory, the value true is implemented as one (or any non-zero
value). Boolean values are also called logical values and data type bool is also
called logical data type.

Basic operators with logical values are and, or, not, xor. The following table shows
the results of operations with these operators.

Logical operations

value Avalue Bnot AAand BAor BA xor B
false false true false false false
false true true false true true
true false false false true true
true true false true true false

Input and output of logical values

For C language compatibility, both input and output logical values are represented
by numeric values. A value of false is zero, and a value true is 1. We can change this
behaviour by setting stream format flag boolalpha. Then we can read string "true"
or "false" as a logical value and write the logical value in form of strings "true" or
"false".

6.1.2
A logical expression is similar to an arithmetic expression. It is composed of
operands and operators. However, operators calculate the results in the form of a

logical value. For example the expression

(2 or b) and not (c and d)

49

Logical Operators | FITPED

is a logical expression where a, b, ¢, d are operands (variables) and "or",
are logical operators.

andll' llnotll

Similar to the arithmetic expression, logical operators have their priorities. The
logical expression is evaluated according to these priorities. The change of priority
can be prescribed by brackets.

All comparisons can be a part of a logical expression. For example, x ==y is true
when x and y are equal. Variables x and y may be any numbers, characters, strings
and so on. Example:

(x '=5) and (x > 0)

The expression value is true when x is positive but not equal to five.

B 6.1.3

Suppose we have a declaration:

bool first=false, second=true;

What value will the following expression have:

not ((first xor second) and (first or second))

o False
e True

Bt 6.1.4

The value of variable Salary is between 1000 and 3000 € inclusive. Which of the
following expressions will be true if Salary meets that condition?

(Salary >= 1000) and (Salary <|= 3000)
(Salary = 1000) or (Salary = 3000)
(Salary <|=1000) xor (Salary >= 3000)
(Salary >= 1000 and <|= 3000)

Bf 6.1.5

We need to find out whether the variable Number has an odd non-negative value.
Which of the following terms is true with the specified criterion?

50

Logical Operators | FITPED

o (Number >=0) and (Number % 2 == 1)
e Number positive and Number odd

o (Number !=0) or (Number % 2 != 0)

o Number between 0 and odd(100)

= 6.1.6

We have the following code:

char one, two;

cin >> one >> two;

cout << (((one == 'a') or (one == 'e')) and ((two == 'x') or
(two == 's'))) << endl;

For which inputs will the output be 1?

e axis

e especially
e average

e ethernet

e Session

6.2 Logical operators (programs)

6.2.1 Logical expressions 1

Complete the program which reads a length of a square and writes value 1 if the
content of this square is between 10 and 100.

logic.cpp
#include <|iostream>

using namespace std;

int main () {

int SquareSide, Content;

cin >> SquareSide;

Content = SquareSide * SquareSide;

// here enter code for output logical information about
content of square.

return O0;

51

Logical Operators | FITPED

6.2.2 Logical expressions 2

Complete the program that reads two lengths and writes value 1 if these lengths
are identical.

6.2.3 Logical expressions 3

Complete the program that reads personal height in centimetres and weight in
kilograms and writes value 1 if BMI of this person is under 25, zero instead. The
BMI is calculated as the weight divided by the square of the height in meters.

6.2.4 Logical expressions 4

Complete the program that reads personal height in centimetres and weight in
kilograms and writes value 1 if BMI of this person is out of normal range (18.5, 25),
zero instead. The BMI is calculated as the weight divided by the square of the
height in meters.

logic4.cpp

#include <|iostream>
#include <|cmath>
using namespace std;

int main () {
int height, mass;

cin >> height >> mass;

// here enter code for output logical information about
personal BMI.

return O0;

6.2.5 Logical expressions 5

A mortgage applicant wants to finance a € 100 000 property. He gets a loan when
he asks for a maximum of € 80 000 and earns more than € 1 500 a month. When he

52

Logical Operators | FITPED

is younger than 35, he gets € 90 000 and can only earn € 1 000 a month. The entry
is the required amount, monthly earnings and the applicant's age. Type 1 to get a
loan, zero instead.

53

Conditional Statements

Chapter 7

Conditional Statements | FITPED

7.1 Conditional statement "if"

7.1.1
Flow control

A simple C++ statement is each of the individual instructions of a program, like the
variable declarations and expressions seen in previous sections. They always end
with a semicolon (;), and are executed in the same order in which they appear in a
program.

But programs are not limited to a linear sequence of statements. During its process,
a program may repeat segments of code, or take decisions and bifurcate. For that
purpose, C/C++ provides flow control statements that serve to specify what has to
be done by our program, when, and under which circumstances.

Compound statement

Many of the flow control statements explained in this section require a generic
(sub)statement as part of its syntax. This statement may either be a simple C/C++
statement, such as a single instruction, terminated with a semicolon, or a
compound statement. A compound statement is a group of statements (each of
them terminated by its own semicolon), but all grouped together in a block,
enclosed in curly braces: {}:

{ statementl; statement2; statement3; }

The entire block is considered a single statement (composed of multiple
substatements). Whenever a generic statement is part of the syntax of a flow
control statement, this can either be a simple statement or a compound statement.
The compound statement may have its own local declaration which is valid only in

the range of this statement. This is useful for example to divide variables that are
useless in other parts of the program.

7.1.2

Condition

A condition is any boolean expression. We say that the condition is fulfilled if the
value of this expression is true. Otherwise, the condition is not met. The condition is

used as a part of some flow control statements.

Flow control — branching

55

Conditional Statements | FITPED

The branching is the division of the program flow into two (or more) variant parts.
Which part will be performed in a particular moment is most often driven by the
value of the condition.

The most often situation is to divide flow control into two branches. The "if"
statement can only execute a command if a condition is met or another statement
if a condition is not met. The syntax of this statement is:

if (condition) statementl; else statement2;

Note the condition is enclosed to parenthesis. Both statement1 and statement2 can
be simple statements or compound statement.

Words "if" and "else" are keywords. Keywords cannot be used in another way than
in their defined meaning. Therefore, they will be highlighted in bold to distinguish
them from other parts.

We can use an incomplete if statement that omits the part that starts with else. In
this case, nothing is done if the condition is not met.

Br7.1.3

Select the command that displays variable Count only if it is even.

o if (Count % 2 == 0) cout <|<| Count <|<| endI;
o if {Count % 2 == 0} (cout <|<| Count <|<| endI;)
o if (cout % 2!=1) Count <|<| cout <|<| end|;

o if (Count == 2) {cout <|<| Count <|<| endl};

B 7.1.4

A student will receive a 1000 € yearly scholarship if his or her average is better than
1.2. Write a message about the scholarship of students. Fill in the corresponding
parts to the following code.

Average;
Average;
if cout << "This student receives €1000";
else cout << "This student receives no scholarship.";

e int
e cout >>;
e Cin>>

o (Average<1.2)

56

Conditional Statements | FITPED

o (Average ==1.2)
e unsigned long
o float

= 7.1.5

We have a variable Measure with a value of 5. Will the following statement write a
message "Insufficient value"?

if ((Measure > 0) and (Measure % 2 == 1) and (Measure <=10))
cout << "Measure is OK";
else cout "Insufficient wvalue";

« False
e True

B 7.1.6

We have the following code:

int Sum = 0, Current;
cin >> Current;

if (Current % 5 == 0)

Sum += Current;

Current++;
cout << "Sum is: " << Sum << ", Current is: " << Current <<
endl;

The input value was 11. What appears on the screen when we launch this code?
e Sumis: 0, Currentis: 10
e Sumis: 11, Currentis: 10

e Sumis: 0, Currentis: 12
e Sumis: 11, Currentis: 11

7.1.7

Sometimes it is necessary to branch a program to more than two branches. To do
this we can use the if statement within a branch of another if statement.

57

Conditional Statements | FITPED

For example, we need to determine whether a numeric variable X is positive,
negative or zero. We can write:

if (X == 0) cout << "X is zero" << endl;
else // variable X is positive, or negative - we have to test
it:

if (X < 0) cout << "X is negative" << endl;

else cout << "X is positive" << endl;

In the same way, we can branch to even more branches. We can write additional if
statements.

In order to see in the source text which branch belongs to which command, we use
indentation as shown in the previous example.

B 7.1.8

Select a command that detects a larger value from the two specified integer
variables Number1 and Number2.

o if (Number1 > Number2) cout <|<| "Number1 is greater than Number2" <|<|
endl; else if (Number1 <| Number2) cout <|<| "Number2 is greater than
Number1" <|<| end];

o if (Number1 == Number2) else if (Number1 > Number2) cout <|<| "Number1
is greater than Number2" <|<| endl; else cout <|<| "Number2 is greater than
Number1" <|<| end];

o if (Number1 <| Number2) cout <|<| "Number2 is greater than Number1" <|<|
endl; else if (Number1 != Number2) cout <|<| "Number1 is greater than
Number2" <|<] endl;

o if (Number1 == Number2) cout <|<| "Number1 is greater than Number2" <|<|
endl; else if (Number1 > Number2) cout <|<| "Number2 is greater than
Number1" <|<| end];

& 7.1.9

Assume a variable Distance which contains a distance of two stops on the railway.
We need to calculate fares when we know that up to 10 km is paid 1 €, from 10 to
20 km 2 €, from 20 to 40 km 3 € and from 40 to 100 km 5 €. For distances of over
100 km, 3 € per 100 km is charged.

» if (Distance <| 10) cout <|<| "Fare is 1 €"; else if (Distance <| 20) cout <|<| "Fare
is 2 €"; else if (Distance <| 40) cout <|<| "Fare is 3 €"; else if (Distance <| 100)
cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) * 3)
<|<| n €II;

58

Conditional Statements | FITPED

» if (Distance > 0) cout <|<| "Fare is 1 €"; else if (Distance >= 10) cout <|<| "Fare
is 2 €"; else if (Distance >= 20) cout <|<| "Fare is 3 €"; else if (Distance >= 40)
cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) * 3)
<|<| " €

« if (Distance <| 100) cout <|<| "Fare is 5 €"; else if (Distance <| 40) cout <|<|
"Fare is 3 €"; else if (Distance <| 20) cout <|<| "Fare is 2 €"; else if (Distance <|
10) cout <|<| "Fare is 1 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) + 1) *
3) <I<| " €',

« if (Distance <|= 10) cout <|<| "Fare is 1 €"; else if (Distance <|= 20) cout <|<|
"Fare is 2 €"; else if (Distance <|= 40) cout <|<| "Fare is 3 €"; else if (Distance
<|=100) cout <|<| "Fare is 5 €"; else cout <|<| "Fare is " <|<| (((Distance / 100) +
1) *3) <|<| " €',

B4 7.1.10

The worker worked X hours. Norma's 40 hours. The worker receives a basic salary
of €300 for meeting the standard. For a 20% overrun, he will receive a €50 bonus,
but salary is reduced by a €100 for normas non-compliance. Calculate the salary of
a worker who has worked for X hours. Fill in following code the appropriate pieces:

if () cout << "Salary is ",
else if () cout << "Salary is €300";
else cout << "Salary is €350";

e X==40
€350

X< 40%1.2
€300
€200
X<40

B 7.1.11

The teacher works especially with very good students on one hand and with very
weak students on the other. The student is graded A to E. The teacher, therefore,
needs to know if the student is very good (A or B) or weak (he has an E). Fill in the
corresponding parts to the following code.

Grade;
cin >> Grade;
if cout << "Excellent student";
else if cout << "Weak student";

59

Conditional Statements | FITPED

o (Grade>="A")

e char

o (Grade !="C'and Grade !='D")
o (Grade =='E')

o (Grade =="A'or Grade == 'B')
e int

o float

7.2 Command if (programs)

7.2.1 Conditional statement 1

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the amount you entered.

condstat.cpp
#include <|iostream>

using namespace std;

int main () {
float Amount, Discount;
cin >> Amount;
// Enter appropriate code here:

cout <|<| "Discount is " <|<| Discount <|<| endl;
return O;

7.2.2 Conditional statement 2

The size of the mortgage loan is at most 80% of the property price and the
applicant must earn at least 1500 € per month. If the applicant is at most 35 years
old, he can get up to 90% of the property price and earn at least 1000 € a month.
Otherwise, he won't get any credit. On input are the cost of the property, earnings
and the applicant's age. Calculate the maximum amount of credit that this
applicant will receive.

60

Conditional Statements | FITPED

7.2.3 Conditional statement 3
We have a math function: (y = sqrt{frac{x-1}x*2-3}})

Task: Calculate the value of this function for given x on input. Display result value
with 4 decimal places. In case the function doesn't have a solution in the range of
real numbers, write the message "The function has no solution for given x."

7.2.4 Conditional statement 4

We have three coefficients A, B, C of a quadratic equation (Ax*2+Bx+C=0).
Calculate the roots of this equation in real and complex ranges. For any type of
result write the following comments:

1. The solution has two real roots: xxxxx and yyyyy.
2. The solution has one double root: xxxxx.
3. The solution has complex roots xxxxx +/-i yyyyy.

All result numbers write with four decimal places.

7.2.5 Conditional statement 5

To pass the credit, the student has three tests, 20 points for each. None of them
can have zero points. If all of them meet at least 80%, they will not only have the
credit, but also the exam for A. The input values are three numbers indicating the
number of points obtained by the student in each test. The outputs are sentences
corresponding to the evaluation in individual cases:

1. The student does not obtain credit.

2. The student obtains credit.
3. The student obtains credit and exam for A.

7.2.6 Conditional statement 6

There are two names at the input. Write down which is the first in alphabetical
order.

61

Conditional Statements | FITPED

7.2.7 Conditional statement 7

There are three numbers at the input. Write these numbers in ascending order.

7.2.8 Conditional statement 8

If the driver is driving at a speed of 10 km / h higher than allowed, he gets a fine of
20 €. If he is driving at a speed of 20 km / h higher than allowed, he will receive a
fine of 50 €. Input has two numbers — allowed speed and actual speed. Write out

whether the driver will be punished and how. There will be a sentence at the output:
The driver will not be fined. / The driver will be fined ... €.

7.3 Conditional expression

7.3.1

If the result of the branching is only the calculation of an expression, it is possible
to use rather simple writing instead of the if statement.

For example, we need to calculate fares based on distance travelled. From 0 to 19

km is paid 1 €, over 20 km is paid 2 €. We can write the calculation with the if
statement:

if (Distance < 20) Fare = 1;
else Fare = 2;

We can write the same with a conditional expression:

Distance < 20 ? Fare = 1 : Fare = 2;

or even more briefly

Fare = Distance < 20 ? 1 : 2;

Operator "?" and "." is often called ternary operator — it has three operands:
condition, first expression and second expression.

B 7.3.2

We have two pieces of code:

62

Conditional Statements | FITPED

First:

if (SideA <= SideB) SideA *= 2;
else SideB *= 2;

Second:
SideA = SideA <= SideB ? SideA * 2 : SideB * 2;
Do both codes the same thing?

e« False
e True

& 733

We need to insert a square content or a square perimeter into the X variable,

according to whichever amount is greater. The square side is in the Side variable.

Select the correct code that does this.

X = (Side * Side > 4 * Side) ? Side * Side : 4 * Side;
X = Side * (Side > 4 ? Side : 4);

X = (Side * Side <| 4 * Side) ? Side * Side : 4 * Side;
X = (Side * 2 <| 4 * Side) ? 2 * Side : 4 * Side;

Bt 7.3.4

We need an expression that returns the initial value of Count and adds one to the
Count value if the Current variable is negative. Fill in the blanks with the
corresponding code:

?

e Count-=1
-Current <| 0
Count

Count +=2
(Current>=0
Count++
Count =1
Current< 0

63

Conditional Statements | FITPED

Bf 7.3.5

We have the following code:

if (Sum > 1000) { Count ++; Sum -= Current; }
else {Count --; Sum += Current;}

Which of the pieces of code does exactly the same action?

e Count=Sum>10007?Count+1:Count-1;, Sum=Sum > 1000 ? Sum -
Current : Sum + Current;

e Sum =Sum > 1000 ? Sum - Current : Sum + Current; Count = Sum > 1000 ?
Count+1:Count-1;

e Count=Sum <| 1000 ? Count ++ : Count --; Sum = Sum <| 1000 ? Sum -
Current : Sum + Current;

e Sum +=Sum > 1000 ? -Current : Current; Count += Sum > 10007 1 :-2;

& 7.3.6

Rewrite the following code using the if statement:

Speed += Lap < 100 ? CurSpeed : ;
Lap += Lap < 100 ? 1 : O;

o if (Lap <| 100) { Speed += CurSpeed; Lap++; }

o if (Lap > 100) Lap-; if (Lap <| 100) Speed = CurSpeed; else Speed = -
CurSpeed;

« if (Lap <| 100) Speed = Speed + CurSpeed; Lap = Lap + 1;

o if (Lap <| 100) else {Speed += CurSpeed; Lap--;}

B 7.3.7

When calculating the arithmetic expression, we have to check whether the input
values allow the calculation to be performed. Calculate the value of the
expression log10 ((a2 -vb) / (a - b)). Input values are a and b.

Fill in the following code the appropriate pieces:

float a, b, result;
cin >> a >> b;
if {
result = ;
if {

64

Conditional Statements | FITPED

result = loglO (result) ;
cout << "The result is: "<<result<<endl;

}

else cout << "The expression cannot be evaluated.'"<<endl;}

else cout << "The expression cannot be evaluated.'"<<endl;

o (log10(result) = 0)
log10((a*a - sqrt(b)) / (a - b))
(b>=0)or(a==b)
(a*a-sqrt(b)) / (a-b)
((@a-b!'=0) and (b >=0))
(result > 0)

B4 7.3.8

Determine whether the entered numbers x and y satisfy the equation y=34 /(x+12).

float x, y, fraction;
string Message;

cin >> x >> y;

if (x + 12 !'= 0)

Message = *** ? "Numbers are satisfying the equation. "
"Numbers aren't satisfying the equation.";
else Message = "The fraction cannot be evaluated.";

cout << Message << endl;

Choose the right part of the code that needs to be replaced by three stars.

e (y==34/(x+12))
e (y*x-12)==34
e (y==(34/x+12)
e (x+121!=34/y)

7.4 Conditional expression (programs)

7.4.1 Ternary operator 1

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the amount you entered.

65

Conditional Statements | FITPED

ternop.cpp
#include <|iostream>

using namespace std;

int main () {
float Amount, Discount;
cin >> Amount;
// Enter appropriate code here:

cout <|<| "Discount is " <|<| Discount <|<| endl;
return 0O;

7.4.2 Ternary operator 2

The size of the mortgage loan is at most 80% of the property price and the
applicant must earn at least 1500 € per month. If the applicant is at most 35 years
old, he can get up to 90% of the property price and earn at least 1000 € a month.
Otherwise, he won't get any credit. On input are the cost of the property, earnings
and the applicant's age. Calculate the maximum amount of credit that this
applicant will receive. Use ternary operator instead of if statement.

7.4.3 Ternary operator 3

We have a math function: (y = sqrt{frac{x-1}{x*2-3}})

Task: Calculate the value of this function for given x on input. Display result value
with 4 decimal places. In case the function doesn't have a solution in the range of

real numbers write value -100.0000. Use the ternary operator to calculate the
conditions.

7.4.4 Ternary operator 4

There are three numbers at the input. Write these numbers in ascending order. Use
the ternary operator.

66

Conditional Statements | FITPED

7.4.5 Ternary operator 5

If the driver is driving at a speed of 10 km/h higher than allowed, he gets a fine of
20 €. If he is driving at a speed of 20 km/h higher than allowed, he will receive a fine
of 50 €. Input has two numbers — allowed speed and actual speed. Write out
whether the driver will be punished and how. There will be a sentence at the output:
The driver will not be fined. / The driver will be fined ... €.

Use the ternary operator.

7.5 Switch to more branches

7.5.1

In some cases, branching into multiple branches can be written with the switch
command. This command tests the value of an integer or enumerated expression
and then decides which branch the program control moves to.

Syntax of switch command is:

switch (expression)

{
case valuel : statementl; break;
case value2 : statement2; break;
etc.
case valueN : statementN; break;
default: statement;
}

The break statement always terminates the execution of the entire switch
statement. If we do not specify a break, the switch statement continues to execute
the next branch, even if it is a branch whose value does not match the evaluated
expression. The default branch is executed if neither value matches the
enumerated expression. The default branch may be omitted.

The break statement will also be discussed later.

B 7.5.2

Suppose the following code:

char MyCharacter;
cin >> MyCharacter;

67

Conditional Statements | FITPED

switch (MyCharacter) {
case 'a': cout << MyCharacter;

case 'e': cout << MyCharacter;
case 'i': cout << MyCharacter;
case 'o': cout << MyCharacter;
case 'u': cout << MyCharacter;

case 'y': cout << MyCharacter;
default: cout << "+any consonant."

}

The "e" character was entered. What will be displayed on the screen after this code
is executed?

eeeee+any consonant.
e+any consonant.
eiouy

eiouy+any consonant.

B 7.5.3

We need to quantify integer powers to the fifth degree. Variable Base contains a
powered value, variable Power contains the required power of variable Base. We
use the switch command. Which listing resolves the specified task?

switch (Power){ case 0: result = 1; break; case 1: result = Base; break; case 2:
result = Base*Base; break; case 3: result = Base*Base*Base; break; case 4:
result = Base*Base*Base*Base; break; case 5: result =
Base*Base*Base*Base*Base; break; default: result = 0; }

result = Base; switch (Power){ default: result = 0; break; case 0: result = 1;
break; case 5: result *= Base; case 4: result *= Base; case 3: result *= Base;
case 2:result *= Base; case 1:; }

switch (Power){ case 0: result = 1; break; case 5: result *= Base; break; case
4: result *= Base; break; case 3: result *= Base; break; case 2: result *= Base;
break; case 1:; default: result = 0; }

result = Base; switch (Power){ case 0: result += 1; case 1: result += Base;
case 2: result += Base*Base; case 3: result += Base*Base*Base; case 4:
result += Base*Base*Base*Base; case 5: result +=
Base*Base*Base*Base*Base; default: result += 0; }

B 7.5.4

We have two variables: Op1 and Op2. We want to process some arithmetical
operations depending on variable Choice which contains one character specified

68

Conditional Statements | FITPED

the operation: '+ for addition, '-' for subtraction, *' for multiplication, or '/' for
division. Fill in the following code the appropriate pieces:

int Opl=24, Op2=8;
char Choice;
cin >> Choice;

switch {
case '+': cout << "Result is: "<<
case '-': cout << "Result is: "<< Opl - Op2 << endl; break;

case '*': cout << "Result is: "<< Opl * Op2 << endl; break;
case
default: cout << "Unresolved operation." << endl;

e Op1 ++ Op2 <|<| break;

o '/ cout <|<| "Resultis: "<|<| Op1/ Op2 <|<| endl; break;

e '/ cout << "Resultis: "<< (0Op2!=07? Op1/ Op2:0) << endl; break;
e (Choice)

e Choice

e Op1+ 0p2 << endl; break;

B 7.5.5

One character is entered from the input. You need to decide whether it's a vowel, a
consonant, or a different character (not a letter). Fill in appropriate pieces of code:

char Character;

cout << "Enter any character: ";

cin >> Character;

Character = toupper (Character); // converts letter to upper

case

if
switch {
case 'A':
case 'E':
case 'I':
case '0O':
case 'U':

case 'Y': cout << "The '"<<Character<<"' was a
vowel. '"<<endl; break;

default:

} else

e cout <|<| "The "<|<|Character<|<|" was a digit."<|<| end];

69

Conditional Statements | FITPED

(Characteris 'A' to 'Z")

(A'to'Z")

((Character >='A") and (Character <= 'Z"))

(Character)

cout << "The ""<<Character<<<" wasn't a letter." << end|;
('A' <|= Character <|="Z")

cout << "The ""<<Character<<" was a consonant." << end|;

7.6 Switch command (programs)

7.6.1 Switch application 1

Value-added tax is calculated according to the category to which the relevant goods
belong. The categories are marked 1 (5% tax), 2 (10% tax), 3 (15% tax), and any
other number represents a basic tax of 21%. On the standard input are two
numbers: the tax category and the tax-free price of the goods. Calculate the price of
goods with tax.

7.6.2 Switch application 2

There is an integer value at the input and the required output after it: 0 is in decimal,
1 in octal, and 2 in hexadecimal. Write the entered number in the desired system.

70

Loops

Chapter 8

Loops | FITPED

8.1 The while statement

8.1.1

Program loops represent the basis of almost all programs. Most algorithms are
based on loop value processing. All loops can be divided into two groups:
conditional loops, counted loops. Conditional loops are further divided into loops
with a condition at the beginning, a condition at the end, and a condition in the
middle. So we have four types of loops. First, we deal with conditional loops.

What is a loop exactly?

A loop is a few commands to be executed repeatedly but not forever. We must
always determine when commands are to be again repeated and when the
repetition is to end. For conditional loops, the point at which the repetition ends is
determined by fulfilling a condition. For counted loops, the number of repetitions is
determined in advance.

So conditional loop has a condition, i.e. logical expression that controls the
repetition. A poorly determined condition may cause the loop to be performed
forever (looping) or not at all. Looping is a serious bug in program construction.

8.1.2
A conditional loop has the following common structure:

« start of the loop,
» loop body (commands to be repeated),
o end of the loop.

The loop control condition can be placed at the beginning of the loop body or at the
end. Loops with control conditions at the beginning or at the end are preferred. The
loop with a control condition at the beginning has the following syntax:

while (condition) command;

The keyword while determines the start of the loop. Note the condition is always
enclosed in parentheses. The loop body contains one statement only, but this
statement may be a compound statement that is composed of many other
statements enclosed by curly brackets. The end of this loop is composed of an end
of body command.

Example:

72

Loops | FITPED

while (Current > 0) {
Count++;
cin >> Current;

}

The most important thing is to build the condition correctly. There must be at least
one statement in the body of the loop that affects the condition value. In this
example, it is the cin command - inserts a value from the input into the Current
variable and then controls the loop pass.

If the loop has a condition at the beginning, it is necessary to prepare everything
before the loop so that the condition can be evaluated before the loop starts. So we
need to input the first value of Current before the loop:

cin >> Current;

while (Current > 0) {
Count++;
cin >> Current;

B 8.1.3

Let's have the following loop:

int Count = 100;
while (Count > 50)
cout << "Round No. " << Count-- << endl;

Is the loop condition built correctly to avoid an endless loop?

e True
o False
8.1.4

Often we need to process the numbers entered from the input. There are several
ways that a job is given:

1. We know which value is the last; this last value may be part of the data or it
may be a breakpoint (stop value) that we can't process with other values.

2. We know the count of input numbers.

3. We don't know their number nor do we know which value is the last.

73

Loops | FITPED

Each of these cases has a somewhat different loop design that is able to read and
process the entered numbers.

We start with the simplest situation, that is when we know the last number that is
not a part of the data and shouldn't be processed together with the data.

= 8.1.5

There is a sequence of numbers on input, representing the prices of goods sold in
one day. The last number in the input sequence is zero. We have to find out the
total price of the goods sold. Fill in the correct parts to the following code:

int Price, Sum = 0;
cin >> Price;
while

{

}
cout << "Total price is " << Sum << endl;

e Sum += Price;

o (Price!=0)

e cin >> Price;

o (Price ==0)

e Pricet++

e (Sum!=0)
8.1.6

The conditional do-while loop has a condition at the end. This means that the loop
body will always run at least once. The syntax is as follows:

do statement
while (condition) ;

The loop starts with the keyword do. If we need more than one statement in the
loop body, we use a compound statement. The condition is enclosed by
parenthesis and its value true forces to repeat the loop body. Example:

The user has to enter an integer value between zero and 20. If he enters the wrong
number, he will be repeatedly prompted to enter the correct value.

74

Loops | FITPED

int Value;

do {
cout << "Please, insert any number between 0 and 20: ";
cin >> Value;

} while ((Value <0) or (Value > 20));

When this loop is over, we are sure that the Value variable has the correct value.

8.1.7

Now we can return to the numeric input options. We will now deal with the case that
we know the last value that is part of the data and should be processed with the
data. For this case, a conditional loop of the do-while type is best suited.

Example: Suppose a sequence of real values is prepared at the input and the last
value is 42. We have to determine how many values are on the input.

float Value; // variable for input value
int TotalCount = 0; // variable for total count of input

values
do {
cin >> Value; // we read one value
TotalCount++; // counter of values is increased
} while (Value != 42); // when input value is not 42, we

continue in the loop

Note that the end condition expresses the situation where the loop body is to be
repeated again.

We can use this algorithm also if the end value does not belong to the data, but its
processing does not affect the result. For example, the input contains integer
values, last value is zero. We have to find out the sum of the numbers. In this case,
the addition of the numbers with the ending zero does not affect the result.

Er 8.1.8

Let's assume that prepared input values represent the number of students in each
exam during the current term. We know that there were exceptionally many
students in the last exam — 48. We have to find out how many exam tests were
done this term in total. Fill in the appropriate pieces of code:

int Exam, Total = 0;
// Exam - number of students in one exam;

75

Loops | FITPED

// Total - Total exam tests
do {

} while
cout << "Total exam tests executed: " << Total << endl;

o (Exam != 48);

e cin <|<| Exam;
o (Exam ==48);
e Total ++;

o (Total !=48);

e cin >> Exam;

e Total += Exam;

B 8.1.9

Input values represent daily revenue from product sales in euros. The last number
is zero and this is a sentinel only. Find out what was the biggest revenue in the
input data. Fill in appropriate pieces of code:

float Revenue, MaxRevenue;

while {

cin >> Revenue;

}

cout << "The biggest revenue was " << MaxRevenue << " €." <<
endl;

« if (Revenue > MaxRevenue) MaxRevenue = Revenue;
« cin >> Revenue; MaxRevenue = Revenue;

« MaxRevenue = 99999; cin >> Revenue;

« if (Revenue > MaxRevenue) Revenue = MaxRevenue;
o (Revenue !=0)

o (MaxRevenue > 0)

8.1.10
Another case of input data processing is when we do not know the end value nor

the number of input data. So we process the data as long as there is something in
the input.

76

Loops | FITPED

The moment when there is nothing on the input, we find out by testing the reading
operation. When reading, the input stream "cin" is set to true if reading succeeds
and values are inserted into the appropriate variables, and false otherwise.
However, the unsuccessful reading may be another reason than the end of the data,
for example, a misspelt numeric value containing illegal characters.

Example: Determine how many real numbers are on input.

int Count = 0;
float Current;
while (cin >> Current) Count++;

B 8.1.11

The input contains a sequence of real numbers representing the company's
monthly profits. Find out the total profit of the company and write down the
smallest positive profit for the given period. Add the appropriate parts to the
following program.

#include <iostream>
using namespace std;

int main () {
float Profit, TotalProfit ;
while () {
TotalProfit += Profit;
if (Profit>0 and Profit>MinProfit) ;
}
cout << "Total profit is " << TotalProfit << endl;
cout << "The smallest positive profit is "<<
MinProfit<<endl;
return 0;

e MinProfit = Profit
e MinProfit = 10000
° = 0'

° ='1 00

e Profit = MinProfit
e MinProfit = 1e50
e Profit!=0

e cin >> Profit

77

Loops | FITPED

8.2 The while loop (programs)

8.2.1 While loop basics

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the sequence of amounts you entered. The input sequence
ends with a value of 999, which is not data.

8.2.2 While loop 2

A sequence of integer numbers is on input. Calculate the sum of non-negative
numbers from the input sequence.

8.2.3 While loop 3

Calculate the average of the real numbers that are on input. You know that the last
number is zero.

8.2.4 While loop 4

The average daily temperature is calculated from three measurements (at 7, at 14,
at 21 o'clock). The temperature at 21 o'clock is counted twice. The entry is made up
of a series of triplets of daytime temperatures, instead of the last triple, there is
only one number -100. Calculate and display the average temperature over a given
period, which is the average of daily averages. Determine the situation when only -
100 is on input.

8.2.5 While loop 5

Every month, the funds deposited in the real estate fund account for a certain
monthly percentage which depends on current conditions and may be different
each month. We can also deposit a monthly additional amount to the fund. The task
is to calculate the resulting amount on your account. The first input value is the
initial state of the account, followed by a sequence of pairs of numbers. Each first
number indicates the monthly additional deposit and the second number is the
percentage of appreciation in the given month. After reading all input values, write
down the resulting account status of the given fund. The result value display with
two decimal places.

78

Loops | FITPED

8.2.6 While loop 6
The input is a sequence of numbers representing potato yields per year from one

hectare of land (100 kg/ha). Write the serial number of the year in which the highest
yield was reached.

8.2.7 While loop 7
The input is a continuous text ending with a dot. Find out how many digits it

contains and the percentage of spaces for this text.

while7.cpp
#include <|iostream>

using namespace std;

int main () {
// Enter appropriate code here:

cout.precision(2) ;
cout <|<| "Number of digits: "<|<|digits<|<|", spaces: "

<|<|fixed<|<|float(spaces)/float (allchar)*100<|<|"%"<|<|endl;
return O;

}

8.2.8 While loop 8

The input is a sequence of numbers representing potato yields per year from one
hectare of land (100 kg/ha). Write the serial number of the year in which the highest
increase of yield was reached.

8.2.9 While loop 9

There is one integer number on input. Write this number on output in the binary
system including possible negative signs.

79

Loops | FITPED

8.2.10 While loop 10
There is one integer number on the input. Determine if this number is a prime

number. Write sentence: "Number ... is a prime number." or "Number ... is not a
prime number.".

8.3 The do loop (programs)

8.3.1 The do loop 1

Write the number of the positive real numbers that are on input. You know that the
last number is zero.

8.3.2 The do loop 2

The input is a continuous text ending with a dot. Find out how many letters and
digits together it contains.

8.3.3 Thedo loop 3

The sequence of ones and zeroes ended with "=" is on input. Convert this sequence
to a decimal value and write it as a result.

8.3.4 The do loop 4

If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the
discount amount for the sequence of amounts entered on the input. The input
sequence ends with a value of 0 that is not data.

80

Loops | FITPED

8.4 Counted loop for

8.4.1

The for loop is intended for cases where we know the number of times a loop is
repetitive. It is a complement to a conditional loop that is performed by meeting a
condition.

The syntax of for loop is following:

for (initialization; condition; control) statement;

There are three expressions in brackets after keyword for that determine how the
loop body is executed. The loop execution is usually controlled by the value of a
numeric variable, which is called a loop control variable.

The first expression specifies the initial setting. Usually, the initial value of the
control variable is set here. This expression is always calculated only once before
the loop starts. We can also use there the declaration of a control variable that will
only function inside the loop body and will be automatically deleted when the loop
ends.

The second expression is always evaluated before each execution of the loop
body. It is a condition whose fulfilment allows the execution of the loop body. If this
condition isn't met, the loop is terminated.

The third expression is used to update the value of the control variable. It is
automatically executed at the end of the loop body. We can add or subtract one or
any other value (also float).

Simple example: We want to display numbers from 10 to 20:

for (int CV = 10; CV <= 20; CV++) cout << CV << endl;

We can omit the initialization expression if the initialization was performed earlier:

int CV = 10;
for (; CV <= 20; CV++) cout << CV << endl;

If we omit the second expression, the loop will be executed forever (infinite loop). In
that case, there is no point in mentioning the third expression.

The expression can contain more commands divided by commas. For example, we
can have two variables used in the loop body:

for (int a=1l, b=3; a*b < 100; a+=3, b+=4)
cout << a << ", " << b << endl;

81

Loops | FITPED

The loop body can contain only one command. If we need more commands, we use
a compound statement.

= 8.4.2

We have the following code:

int Value, Sum = 0;

for (int C = 1; C < 5; C++)
{cin >> Value; Sum += Value;}

cout << Sum << endl;

Numbers 13579 11 13 15 were entered when running this program. What was the
output value?

e 16
o 21
o« 7
e 5
8.4.3

Looking at the three expressions that need to be written in the for-loop bracket, it is
basically the same thing we would have to do with the while loop. So what is the
difference between using a for and while loop? If we want to write pure code, we
will use the for loop just if we know in advance how many times it will be repeated.
In all other cases, we use the while loop.

The for loop can be easily rewritten to a while loop. For example the following loop:

for (int i = 10; i <= 100; i+=3) {
cin >> current;
sum += current;
cout << "We processed " << i << " values.'"<< endl;

can be rewritten to:

{int i = 10;
while (i <=100) {
cin >> current;
sum += current;
cout << "We processed " << i << "values."<< endl;

82

Loops | FITPED

i+=3;
}}

Therefore, the for loop may seem unnecessary. Its benefit is that in the case of a
known number of repetitions, we have all three essential elements of the loop
(initialization, repetition condition, modification of the control variable) in one place
in the parentheses.

Similarly, you can rewrite a while loop to a for loop. For example, to read a
sequence of numbers ending with -1 and summing up the values, we can write:

cin >> cur;

while (cur '= -1) {
sum += cur;
cin >> cur;

}
And in case of for loop we write:

for (cin >> cur; cur '= -1; cin >> cur) sum += cur;

We strongly warn against various dirty tricks, such as modifying the control variable
inside the for loop. For example:

for (char X = 'A'; X <= 'Z'; X ++) {
cout << "We processed character: " << X << endl;
if (X == 'P') X += 5;

}

Looking at the beginning of the loop, we see the repetition for all the characters of
the uppercase alphabet, but 5 characters are skipped inside the loop.

Er 8.4.4

We need to calculate the factorial of an input number N. The input number is non-
negative. Which code solves this task?

e intN,F=1;cin>>N;for(intl=N;I>1;I-)F*=I;

e intN,F=0;cin>>N;for(intl=N;I>=1;1-)F+=1;
e intN,F=1;cin>>N;for(intN =1;1<|N; N--) F*=N;
e intl=1,F=0;for(cin>>N;1>1;1-)F*=1,

83

Loops | FITPED

B 8.4.5
We have a functiony = (3 - x) / (x2-2x + 1).

We need to list a table of functional values for x going from 1 to 2 with a step of
0.05. Fill in matching pieces to the following code.

float denom;

for () {

denom = g

cout <K x << " " << endl;
}

e (denom!=07(3-x)/denom : "--")
e intx=1;x<|=2; x++

o X"2-2x+1

e (denom==07?3-x/denom:0)
e X*X-2*x+1

o floatx=1;x<=2;x+=0.05

B 8.4.6

Rewrite the following while loop to the equivalent for loop (choose the right
equivalent):

int result = 1, coef = 1; cin >> inp;
while (coef <= inp) {

result *= coef;

coef ++;

o intresult = 1; cin >> inp; for (int coef = 1; coef <|= inp; coef ++) result *= coef;

o int coef = 1; cin >> inp; for (int result = 1; result <|= inp; result ++) result *=
coef;

« intresult, coef; cin >> inp; for (coef = inp, result = 1; coef >= 1; coef --) result
*= coef;

o intresult =1, coef; cin >> inp; for (coef = 1; coef >= 1; coef ++) result *= coef;

84

Loops | FITPED

8.5 The for loop (programs)

8.5.1 The for loop 1
If you buy at least 100 €, you get a 5% discount. For a purchase of at least 200 €,
you get a 10% discount and 20% off for purchases over 400 €. Calculate the

discount amount for the sequence of amounts you entered. The input sequence
begins with an integer that represents the number of values entered.

8.5.2 The for loop 2

A sequence of N integer numbers is on input. The N is the first value on input.
Calculate the sum of non-negative numbers from the input sequence.

8.5.3 The for loop 3

Calculate the average of the real numbers that are on input. You know that the first
value on input is a number of input values.

8.5.4 The for loop 4

There are two N and K values at the input. Calculate the value of the combination
number (N over K). Note that the combined number is calculated as N!/((N-K)! K!)

8.5.5 The for loop 5

There is a non-negative integer on input. Display this value in a binary system at 32
digits.

8.5.6 The for loop 6

An arithmetic sequence is specified at the input: the first member (integer value),
the difference (integer) and the required number of members. Write the members of
the sequence so that there are comma and one space between the members, and a
dot after the last member. Do not write a new line at the end.

85

Loops | FITPED

8.5.7 The for loop 7

A geometric sequence is specified at the input: the first member (real value), the
quotient (real) and the required number of members. Write the members of the
sequence so that there are comma and one space between the members, and a dot
after the last member.

8.6 Affecting the passage through the loop

8.6.1

The break command allows you to end the loop. This means that anywhere within
the loop body, it is possible to jump behind the loop and avoid further repetitions.

The break statement has already been mentioned by the switch statement. Its
meaning was the same — to terminate the command and jump beyond its end.

The break command is one of the program jump commands. The principles of
good programming practice do not allow the jump command because it always
interferes with the clarity of the program.

Thus, the break statement should be always avoided. It is usually seen as a dirty
trick. It presents potential bugs and makes looping unclear. If we write a conditional
loop, it should be clear from its condition when the loop works and when exactly it
will stop repeating. Similarly, for the for loop, we should determine how many times
the loop body is repeated from the notation in parentheses. In both cases, the
existence of a break statement in the loop body completely disrupts this
information.

Example:

Suppose we are, to sum up, the sequence of the input values ending with zero.
However, it may happen that the sum exceeds 10,000, in which case we should stop
reading and addition. We can use "dirty trick" with the break command:

int Sum = 0, Value;

do {cin >> Value;
if (Sum >= 10000) break;
Sum += Value;

} while (Value '= 0);

As you can see, the break command divides the body of the loop into two parts -
the part before and after it. The body part before the break statement can be
executed less than the part after it. This is very dangerous and annoying, for
example, when looking for errors, because with a longer body of the loop, it may not

86

Loops | FITPED

be obvious that some commands in the body of the loop were not executed due to
the jump beyond the end of the loop.

However, we can also write the correct loop condition and avoid the annoying break
statement:

int Sum = 0, Value;
do {Sum += Value;
cin >> Value;
} while (Value '= 0 and Sum <= 10000) ;

B4 8.6.2

We want to calculate the factorial of a given number N. We have allocated an int
variable for the result. However, it is possible that during the calculation it is found
that the result exceeds the capabilities of this variable. The first variant of the
program is based on the factorial calculation using the for loop. We add the
condition to terminate the calculation if the result variable is going to overflow (it is
over circa 400 million).

int N, result = 1;

cin >> N;

for (int i = 2; i<=N; i++) {
if (result > 400000000) break;
result *= i;

}
Rewrite the code without using the break command.

o intN,result =1; cin >> N; for (inti = 2; i<|=N and result <| 400000000; i++)
result *=i;

o intN,result =1;cin >>N; for (inti = 2; (i>N or result <| 400000000; i++) result
*= j;

o intN,i, result; cin >>N; for (i = result = 1; result <| 400000000; i++) result *=i;

o intN,i=2, result = 1; for (cin >> N; N<|=400000000; i++) result *=i;

8.6.3

The continue command causes the loop body to end and jump to a new loop.
Similar to the undesirable use of the break statement, the continue statement is
equally undesirable.

Example: We should sum the values of the input numbers ending with zero.

However, if there are 10 between the numbers, we should not include it in the sum.

87

Loops | FITPED

int Cur, Sum = 0;

cin >> Cur;

while (Cur '= 0) {
if (Cur == 10) {cin >> Cur; continue;} // jump to next loop
Sum += Cur;
cin >> Cur;

}

Similar to the break command, the loop body is divided into two parts by the
continue statement. The part before the continue statement is always executed,
while the part after the continue statement is executed only if the condition is not
met. This can cause unwanted effects because the loop body commands are not
executed the same number of times.

The continue statement can always be avoided by using a more understandable
structure, such as:

int Cur, Sum = 0;

cin >> Cur;

while (Cur '= 0) {
if (Cur !'= 10) Sum += Cur;
cin >> Cur;

B 8.6.4

We have the following code:

int Value, Func;

bool Test;

for (Value = 0; Value <= 100; Value ++) {
Test = Value $ 10 == 0;
if (Test) continue;
Func = Value * Value - 2 * Value + 1;
cout << Value << " " << Func << endl;

}

How many lines are displayed on the output?

L] 90
[] 101
[] 100
L] 91

88

Loops | FITPED

EX 8.6.5

We have the following code:

int Value, Func;

bool Test;
for (Value = 0; Value <= 100; Value ++) {
Test = Value % 10 == 0;

if (Test) continue;
Func = Value * Value - 2 * Value + 1;
cout << Value << " " << Func << endl;

}

How can we rewrite this code to perform an identical action but not include the
continue?

« int Value, Func; for (Value = 0; Value <|= 100; Value ++){ if (Value % 10 != 0)
cout <|<| Value <|<| " " <|<|] Value * Value - 2 * Value + 1 <|<| end|; }

e int Value, Func; bool Test; for (Value = 0; Value <|= 100; Value ++){ Test =
Value % 10 == 0; if (Test) { Func = Value * Value - 2 * Value + 1; cout <|<|
Value <|<| " " <|<| Func <|<| endI; } }

« int Value, Func; bool Test; for (Value = 0; Value <|= 100; Value ++){ Test =
Value % 10 == 0; if (ITest) Func = Value * Value - 2 * Value + 1; cout <|<| Value
<|<| " " <|<| Func <|<| endI; }

« int Value, Func; for (Value = 0; Value <|= 100; Value ++){ if (Value % 10 == 0) {
Func = Value * Value - 2 * Value + 1; cout <|<| Value <|<| " " <|<| Func <|<| end];

}}

8.7 Loop damage (programs)

8.7.1 Loop damage 1

Employee age data are input. It is necessary to calculate the average age of the
specified group. However, if an incorrect value appears in the data (a negative
number, a number greater than 200), only a warning message "Incorrect input data."
will be displayed to standard error output. Determine missing input data and display
a warning message "Missing input data." to standard error output.

Avoid the command break in the program solution.

89

Loops | FITPED

8.7.2 Loop damage 2

Employee age data are input. It is necessary to calculate the average age of the
specified group. However, if an incorrect value appears in the data (a negative
number, a number greater than 200), this value can't be processed.

Consider the variant using the continue command but write down the target
solution without this command.

90

User-Defined Functions

Chapter 9

User-Defined Functions | FITPED

9.1 User-defined functions

9.1.1

Each program consists of smaller parts called subroutines. Subroutines are defined
as logically integrated parts of a program that have a clearly defined activity and
communicate with the environment in a known manner. For example, the
subroutine is a log function or the main function.

Subroutines can be logically divided into functions and procedures. A function is a
subroutine that returns a value and that is processed further. A procedure is a
subroutine that does not result in a single value, but the result is a processed
algorithm.

In C / C ++ language, procedures and functions are technically defined in the same
way, differing only in expressing the output value. It is often said that there are only
functions.

In addition to the procedures and functions that are already done and can only be
used, the programmer can create his own. The definition of own subroutine is as
follows:

<type> <identifier> (<parameters>) { <body> }

The type is any data type except array (see later). The identifier is the name of the
function. Parameters are given in parentheses, these are the variables that the
function communicates with the environment. The curly brackets list the
commands that prescribe what a function/procedure does.

The function data type determines the type of value that the function calculates and
returns. It's called a return value. If we want to define a procedure, we will use a
special type of void.

There is a special return statement inside the function body. This command
terminates the function and defines the return value. A function that returns a value
must have that statement. A procedure that does not return a value does not
contain a return statement. A return statement is similar to a break statement that
forcibly terminates a cycle. The return statement forcibly terminates the execution
of function statements. For the sake of clarity and clarity of the function body, the
return statement should always be written as the last command in the function
body.

A small example: We will declare a function that returns a less value from its two
parameters:

int min(int a, b) {
if (a < b) return a;

92

User-Defined Functions | FITPED

else return b;

}

We see that the return value of the function is of the int type, the function is called
min and has two parameters of type int: a and b. In the function body, it is
determined which value of the two parameters is smaller, this value is then used as
the output value using the return statement.

If we want to use this feature, we'll call it in any expression, such as:

int first, second;

cin >> first >> second;

cout << "The smaller value is: " << min(first, second) << "."
<< endl;

B 9.1.2

The function definition for calculating cylinder volume with radius R and height V.
Fill in the corresponding part to the following code:

Volume

o float

o (floatR, float V)

e Result = M_PI*R*R*V,
o {floatR; float V}

e int

e {return R*R*M_PI * V;}

9.1.3

The subroutine parameters can be imagined as variables to be used in the
subprogram body for processing and calculation. These parameters are called
formal parameters. When the subroutine is called up, the specific values with which
the subroutine is to work are put in place. These parameters are called actual
parameters.

At the time of the subroutine call, the actual parameter values are copied to the
formal parameter locations. This process is called a value call. If we change the
value of a parameter within the subroutine body, the actual value does not change.

If the function does not have any parameters, we must write empty parentheses in
the definition and in the call too. However, the parameters express the subroutine

93

User-Defined Functions | FITPED

communication with the environment. So if we don't specify any parameters, it's
suspicious because it's not clear how the subroutine will communicate.

= 9.1.4

We want to do a subroutine that lists a small multiplication table. Fill in the
appropriate pieces into the following code:

Multi {
for (int x=1; x<=10; x++) {
for (int y=1; y<=10; y++) cout << setw(6) << x*y;

}
}
o float
o (intx,y)
e x=1;y=1,
« 0
e Vvoid
e cout<<endl
e int
9.1.5

We have an integer variable X. Then we define a function in which we have the
variable X again. Let's look at the following code of the whole program:

#include <iostream>

using namespace std;

int MyFunc (int a, int b) {
int X;
for (X=1; X<=b; X++) a *= b;
return a;

}
int main() {
int X=5;
cout << MyFunc(2, 3) << endl;
cout << "Variable X = " << X << endl;
return O;
}

94

User-Defined Functions | FITPED

What will appear on the output? The correct answer is:

54
Variable X = 5

The value of 54 is the multiplication of 2 * 3 * 3 * 3. The value of 5 is the original
value of the variable X that was declared in the main program. The variable X, which
is declared inside the MyFunc function, is called local because it applies only within
this function. Because it is named the same as the X variable that is declared in the
main program, it covers it and the X variable from the main program becomes
unavailable in MyFunc.

The term local variable is called a variable that is defined in a given function.
However, we can work with all the variables that are defined in the parent functions
unless they have the same names as the local variables. Then we call such
variables global.

B 9.1.6

We have the following code:

int a = 1;
float RealFunc(int a) {
return a * 0.01;
}
int main() {
int a = 10;
cout << RealFunc(a) << endl;
return 0;

}

What will be displayed after executing this code?

o 0.1

e 0.01

o 1

¢« 10
9.1.7

Among all subroutines, the main function plays a special role. It represents the
main program, that is, what is run after compilation into machine code and what it

95

User-Defined Functions | FITPED

communicates with the operating system. Like all other subroutines, the main
function can communicate through parameters and return a value.

What are the actual parameters of the main function and what does it return?

After the program is compiled, an executable code is created. This can be started
by calling from the command line. Like other commands, a compiled program can
accept parameters from the command line, ie, strings written on the command line
after the executable file name.

For this reason, the main has two parameters in the following order: the first is an
integer and tells how many parameters have been specified from the command
line. The second is a pointer to the strings (to be discussed later) and allows you to
work with the values of each parameter from the command line. Example:

int main (int NumPar, char** ArrayPar) ({
cout << "This program was executed with "
<< NumPar << " parameters." << endl;
return O;

}

After compilation and execution from the command line, the program writes out
how many parameters were specified at the command line startup. We can work
with the values of individual parameters using a string array (to be discussed later).

The first parameter is always the name of the program itself, including any access
path. For example, we can ask from within the program what directory the program
was started from. It also follows that the number of parameters is always at least 1.

The return value of the main function returns to the operating system and can
process this value. The value is stored in an environment variable named "$?" (more
detailed information about environment variables depends on the operating system
used). It is normal that the output value 0 indicates to an operating system a
successful execution of the program, the nonzero value indicates various error
states (e.g., no file found, division by zero, etc.).

B 9.1.8

We have to create a program that decides what it will do according to the number
of parameters from the command line. However, if no parameters are specified, it
outputs output code 4 as the result, otherwise, it will have output code 0. Fill in the
corresponding part to the following code:

main {
if {
ProcessProgram (Params) ;

96

User-Defined Functions | FITPED

return O;

|
}
° VOid
o (Number>1)
o (int Number, char** Params)
o (Params!=0)
e else Number=0;
e int
« 0
o (char Params, int Number)
o elsereturn 4;
9.1.9

A subprogram can be defined in two places. This is called the forward definition.
First, the header is specified (data type, identifier, parameters and semicolon) and
then any time later, the subroutine body is added to the repeated header as-is on
the following scheme:

float Forwarded(float B, int X);

and at any later position

float Forwarded(float B, int X) {
for (int i=1l; i<=X; i++) B *= 1i;
return i;}

For example, we need this property to call subroutines: subroutine A calls the
subroutine B and the subroutine B, in turn, calls the subroutine A. This situation
cannot be realized without a forwarded definition.

The second situation where we use the forward definition is to insert a subroutine
into another subroutine. For example, we have a function to calculate the integral of
a real function F. We define this function inside a function for calculating the
integral, see example:

float Integral (float A, float B){ // function for calculate
the integral
float result, X;
float F(float X); // integrand; forward definition
result = (F(A) + F(B)) / 2;
for (X=A; X<=B; X+=0.01l) result += F(X);

97

User-Defined Functions | FITPED

result *= 0.01;
return result;

}
float F(float X){ // definition of body of forwarded function

return 2 * sin(X - M PI * 0.33) + 1.271;

[19.1.10

Parameters passing

When a subroutine is used, the program activity is transferred to that subroutine
and the parameters are passed. This parameter passing can take place in two ways
with different effects.

It has already been mentioned above that the actual parameter is copied to the
locations designated for formal parameters. This method of passing parameters is
called a value call.

Thus, the process of passing parameters by value means that at the time the
subroutine is called, the passed value of each parameter exists twice — once in the
actual parameter and once in the place of the formal parameter. The copy in the
formal parameter can then be changed in any way, but the actual parameter value
will not be affected. Therefore, calling by value is used for parameters that
represent input data for a given subroutine. The real parameter can also be not only
a variable but any expression of a given type that is calculated first and then copied
to a formal parameter.

The second way of passing parameters is by calling by reference. In this case, a
copy of the value of the actual parameter is not made, but the address of the
variable that is in the role of the actual parameter is passed. This means that a
formal parameter refers to the same memory location as the actual parameter -
that is, like only the variable is renamed. This implies that any manipulation of a
formal parameter value within a subroutine is also a manipulation of the actual
parameter value.

This mechanism is used if we want to insert the results into the actual parameters,
ie for the output values, by the subroutine.

Distinguishing whether it is a parameter called by reference or by value is done by
the & character, which is the operator to get an address (reference) in memory. So
by writing &vrbl, we say that we do not mean the value of the variable vrbl but its
address (reference).

To make matters worse, some data types are passed by reference automatically

because they are represented as pointers. For example, the array data type. The
pointers and arrays will be discussed later.

98

User-Defined Functions | FITPED

Examples:

The procedure reads the input numbers and passes the sum and the number of
reading data as a result:

void Read(float &Sum, int &Count) {

float Number;

Sum=0; Count=0;

while (cin>>Number) {Count++; Sum += Number;}
}

Functions for moving a king on a chessboard: the position is given by the X and Y
coordinates (row and column of the chessboard, values in the range of 1 to 8), the
desired direction of movement (one of eight options). If this move can be made (the
new field is on the chessboard), the function returns true, otherwise false. The new
position will be in parameters X and Y:

bool King(int &X, int &Y, int Where) {
switch (Where) {
case 1: // move to the right
if (X<8) {X++; return true;} else return false;
case 2: // move up
if (¥<8) {Y¥++; return true;} else return false;
case 3: // move to the left
if (X>1) {X--; return true;} else return false;
// ... all other possible directions analogously

}
}

B 9.1.11

We have the following program:

#include <iostream>

using namespace std;

void Multiply(int A, int &B) {
B = --A * B;

}

int main () {

int X, Y;
cin >> X >> Y;

Multiply (X, Y)
cout << "X = " << X << ", Y =", Y << endl;
return O;

99

User-Defined Functions | FITPED

There are two numbers on input: 3 and 7. What will appear on output?

-

-

1]
NN = =
A NN

[)

X< X X X
1

N W N W

<< =<=<
1

-

9.2 Functions (programs)

9.2.1 Functions 1

Create a function that calculates the sin(x) value. Calculate the first 10 members of
the Taylor series. Compare the result with the function available in the cmath
library.

funct1.cpp
#include <|iostream>

#include <|cmath>
#include <|iomanip>
using namespace std;

// enter function "mysinus" here:

int main () {

double a, f1, £2;
cout <|<| " mysinus library sin difference'"<|<|
endl;
cout.precision(5) ;
for (a=0; a<|=2*M PI; a+=0.3) {
fl = mysinus(a); £2 = sin(a);
cout <|<| setw(9) <|<| right <|<]| fixed
<|<] £f1 <|<]| setw(1ll) <|<| £2 <|<| setw(1l4) <|<| f2-f1
<|<| endl;
}

return O;

100

User-Defined Functions | FITPED

9.2.2 Functions 2

Define a function to determine the prime numbers. Use this function to write first N
prime numbers value N is on input.

funct2.cpp
#include <|iostream>

#include <|cmath>
using namespace std;

// enter function "isprime" here:

int main () {

int N, count=0, Number=0;
cin >> N;

while (count<|N) {

Number++;

if (isprime (Number)) ({
cout <|<| Number <|<L|" ";
count++;

}

}
cout <|<| endl;

return O;

9.2.3 Functions 3

Write a subroutine that exchanges the values of two real variables in parameters.
Use this subroutine in a program that reads three values and lists them in
descending order.

funct3.cpp
#include <|iostream>

#include <|cmath>
using namespace std;

// enter function "myswap" here:

101

User-Defined Functions | FITPED

int main () {

double A, B, C;
cin >> A >> B >> C;

if (A<|B) myswap (A, B);
if (B<|C) myswap(B, C);
if (A<|B) myswap (A, B);

cout <|<| A <|<|", "|<|B<L|<L|", "<|<L|CL|<L| endl;
return O;

9.2.4 Functions 4
Write a function that calculates the factorial value of N. Use a non-recursive variant.

If the result exceeds the allowed value range, the calculation result will be zero.

funct4.cpp
#include <|iostream>

using namespace std;

// enter function "factorial" here:

int main () {

int Number;
long long int NFact;

cin >> Number;

NFact = factorial (Number) ;

cout <|<| "Factorial of "<|<|Number<|<|" is ";

if (NFact==0) cout <|<| "too big to calculate" <|<| endl;
else cout <|<| NFact <|<| endl;

return O;

102

User-Defined Functions | FITPED

9.2.5 Functions 5

Write a function to find out the number of digits of a given integer. Use this function
to determine the total number of digits of the entered sequence of integer values.

funct5.cpp
#include <|iostream>

using namespace std;

// enter function "NumDigits" here:

int main () {

long long int Number;
int Digits=0;

while (cin >> Number)
Digits += NumDigits (Number) ;

cout <|<| Digits <|<| endl;

return O;

9.2.6 Functions 6
Write a function that reads and verify that the entered personal identification

number is correct. Note that personal identification numbers have 10 digits and
have to be divisible by 11.

funct6.cpp
#include <|iostream>

using namespace std;
// enter function "CheckPIN" here:
int main () {
if (CheckPIN()) cout <|<| "This personal id is correct."

<|<| endl;

103

User-Defined Functions | FITPED

else cout <|<| "This personal id is incorrect." <|<|
endl;

return O;

9.3 Recursion

9.3.1

In some tasks, the resulting value is defined by a specific previous value. For
example, the value of the 10th member of the geometric series is defined as the
value of the 9th member multiplied by the quotient. If we have calculated a previous
member with some function, then we can use this function for the next member. So
we can write:

f(x))=f(x-)

If we programmed the function f, we need to call the same function inside her body,
and this case is called recursion.

Recursion is a kind of loop. But each function call creates new variables that this
function contains, so there is a significant difference between recursion and loop. It
is possible to replace the loop with recursion, but sometimes we cannot replace
recursion with just a loop.

Evaluation of member of geometric sequence:

int StartMember = 2, Quotient = 3;
int Geom(int Member) {
if (Member>l) return Geom(Member - 1) * Quotient;
else return StartMember;

}
Note that, just like a loop, you need to think here about ending a recursive call. So in

this example, we have to ask how many members we count. If it is the first member,
then we do not recursively call the function, but we assign an initial value only.

B 9.3.2

We need to sum the numbers entered from the input. The numbers end with zero.
We define the task recursively:

Si=Si-1+C1; So=0

104

User-Defined Functions | FITPED

According to the recursive assignment, we compose the program. Fill in the
appropriate pieces into code:

{

int Current;
cin >> Current;

if return 0;

else return _
}

e intSum()

e (Sum!=0)

e X+ Current

e int Sum(int X)

e Sum() + Current

o (Current == 0)
9.3.3

As mentioned, recursion is a kind of loop. However, the main difference to a loop
command is that each time a subroutine is called, its parameters and local
variables are stored. If we do not use this effect, the use of recursion instead of an
ordinary loop is a really stupid idea.

In every Beginner's Guide, we read that factorial calculation can be done by the
recursive call. Considering the common mathematical definition of factorial:

n!=n-(n-1)!I and 1!=1
then it is natural to program the calculation using a simple recursive function:

int Fakt(int N) {
if (N>1) return N * Fakt(N-1);
else return 1;

However, such a function is an expression of a totally erroneous approach with a
waste of memory resources. In such cases, the use of an ordinary loop is
incomparably more efficient.

However, if we use recursive calls to store local variables, we get very efficient
writing and execution of the given task. A good example is reversing the sequence
of input values. We have for example a sequence of integer values ended by —100
and we need to write this sequence in reverse order. The whole program with the
recursive procedure is:

105

User-Defined Functions | FITPED

#include <iostream>
using namespace std;
void Reverse () {
int Inp; // local variable
cin >> Inp;
if (Inp !'= -100) {Reverse(); cout << Inp << endl;}
}

int main () {
cout << "Enter numbers ended with -100: ";
Reverse () ;
return 0;

Appropriate recursive subroutines will be discussed later.

B 9.3.4

We want to calculate the nth member of the Fibonacci sequence. The calculation
formula is:

Fi=FiatFiz; Fo=0; F1=1.
Will it be efficient to use recursion for this task?

o False
e True

9.4 Recursion (programs)

9.4.1 Recursive subroutines 1

The input is a sequence of real values. Write this sequence in reverse order. Use a
recursive subroutine.

9.4.2 Recursive subroutines 2
Write a function that calculates the factorial value of N. Use a recursive variant.

Determine if the result exceeds the allowed value range, otherwise, the calculation
result will be zero.

106

recfunct2.cpp
#include <|iostream>

using namespace std;

// enter function "factorial" here:

int main () {

int Number;
long long int NFact;

cin >> Number;
NFact = factorial (Number) ;

User-Defined Functions | FITPED

cout <|<| "Factorial of "<|<|Number|<|" is ";
if (NFact==0) cout <|<| "too big to calculate" <|<| endl;
else cout <|<| NFact <|<| endl;

return O;

9.4.3 Recursive subroutines 3

Write a function that calculates the first N members of Fibonacci sequence. Use a

recursive variant. Value N is on input.

WARNING! This implementation is very inefficient and should not be used at all.
The example is included only as a recursion exercise. The calculation time for small
values of N increases to large values and for N exceeding 50, you do not have to

wait for the result.

recfunct3.cpp
#include <|iostream>

using namespace std;

// enter function "Fibon" here:

int main () {
int Number;

cin >> Number;

107

User-Defined Functions | FITPED

for (int i=1; i<|=Number; i++)
cout <|<| Fibon(i) <|<| " ";
cout <|<| endl;

return O;

9.4.4 Recursive subroutines 4

The input is a sequence of integer values. Write the sum of this sequence. Use a
recursive subroutine.

108

Arrays

Chapter 1 0

Arrays | FITPED

10.1 Array
10.1.1

Structured data types

The term structured data type refers to a data type that is composed of multiple
components, so it can store multiple values at a time. Structured type items can be
both simple and structured types, so structures of almost any complexity can be
created. The simplest and the best-known structured type is an array.

Why array?

We often need to process several (many) values of the same data type. To do this,
we need the appropriate number of variables. However, it would be very
inconvenient if we had to declare and process the entire set of variables separately.
Therefore, we can make one variable with multiple folders. Such a variable with
multiple folders of the same type is called an array. Individual components are
distinguished by serial numbers, which we call indexes.

The indexes always start with zero in the C/C++ language, so for example a ten-
component array has indexes of 0 to 9.

In previous algorithms, we were processing a series of values, yet we didn't need an
array. So when is the array necessary? This is in the case when we need to access a
series of data repeatedly. In all previous algorithms, we were gradually processing
the data and we no longer needed the processed values, so we have rewritten them
with new ones (for example, read from the input or calculated from various
sources). However, there are many algorithms that need to process the input data
multiple times, to reorder (sort) it or otherwise modify it. There everywhere is
necessary to use the array.

How array?

If we want to declare an array, we use the same method as when declaring a simple
variable, just add the required number of items to the square brackets. For example,
a five-element array of Payments composed of integer items will be declared:

int Payments[5];

We get an array whose components will have indexes 0 through 4.

Similar to simple variables, you can insert an initial value directly into an array when
declaring it. However, it is necessary to use a slightly different syntax here. Values

inserted into individual items must be written in a list enclosed in curly braces
separated by commas, for example:

110

Arrays | FITPED

int Payments[5] = {100, 80, 300, 250, 140};

B 10.1.2

Choose from the following options to declare an array to store float numbers as
your business's monthly turnovers.

o float Flow[12];

» signed char Flow[12];

e int Flow[11];

o double Flow{1,2,3,4,5,6,7,8,9,10,11,12};

110.1.3

As we already know, if we want to work with a variable, we write its identifier. If we
want to work with individual array components, we write the index of the
component to the array identifier in square brackets. An index can also be entered
in the form of an expression that is first calculated and then used to access the
appropriate item. The index can only be integer values or values that can act as
integers.

Suppose declaration of Payments array:

int Payments[5];

Examples:

Payments[3] = 100;
int m = 0;
Payments [m+3] = Payments[m+2] - 5;

Very often, we need to process all the components of the array in the same way, for
which the for loop is great. For example, a list of all items together with their
indexes can be written:

for (int i=0; i<5; i++) cout << i << ": "<< Payments[i] <<
endl;

Note that the variable i passes through the indexes from zero to 4.
When declaring the array, we specify the number of folders, which is always 1

greater than the value of the last index. It is therefore very advantageous for array
manipulation to have a constant specifying the number of array items. We can then

111

Arrays | FITPED

refer to it everywhere, giving us the opportunity to change the size of the array in
one place:

const int NumOfPayments = 10;

int Payments[NumOfPayments] ;

for (int i=0; i<NumOfPayments; i++) cout << i << ": " <
Payments[i]<<endl;

= 10.1.4

We have the following code:

char Vowels[6] = {'a', 'e', 'i', 'o', 'u', 'y'};
cout << Vowels[3] << endl;

Does the character "i" appear on the screen (without quotes)?

e« False
e True

B 10.1.5

We have a daily close stock price array for the last working week. In the following
code, complete the parts so that the prices will be read from standard input and
then will be correctly displayed for each day.

#include <iostream>
using namespace std;
int main () {
int Day;
cin >> Stock[Day-1];

cout << "Day No. " << Day+l << ": The price is " <<
Stock[Day] << endl;
return 0O;

« for (Day=1; Day=5; Day++)
o float Stock[5];

« for (Day=1; Day<=5; Day++)
o int Stock[4];

» for (Day=0; Day<5; Day++)

112

Arrays | FITPED

. for (Day=0; Day<|=5; Day++)
o char Stock[Week];

1 10.1.6

It is very advantageous to use an array if we create its data type in advance. We can
then simplify some manipulations, such as declaring totally identical arrays at
different locations or passing such arrays as subroutine parameters.

As mentioned earlier, it is possible to define custom data types using the typedef
keyword. In the case of an array data type definition, it is necessary to add a
number of array items into the type definition, for example:

typedef float TEnterprises [10];

We get a data type that we can use to declare multiple identical arrays:

TEnterprises Salaries, Profits = {O, 0, O, 0, O, O, O, O, O,
0},

B1 10.1.7

Task: We have the input values that consist of pairs of data: enterprise number and
profit for goods sold. The company has ten enterprises, the enterprise numbers are
from 1 to 10. Write down the total profits of every enterprise from all input data.

The program is:

#include <iostream>
using namespace std;
int main () {
// ... HERE IS MISSING CODE
int Num; int Profit;
while (cin>>Num>>Profit) Profits[Num-1]+=Profit;
for (Num=0; Num<1l0; Num++)
cout << Num+l << ": " << Profits[Num] << endl;
return O;

}
Select the appropriate missing part of the code.
« typedef int TProfits[10]; TProfits Profits = {0,0,0,0,0,0,0,0,0,0};

e int Profits[11];
« typedef int Profits[10]; Profits TProfits = {0,0,0,0,0,0,0,0,0,0}

113

Arrays | FITPED

« int TProfits[10] = {0,0,0,0,0,0,0,0,0,0};

[110.1.8

Indexes are used to access array items. Arrays can always be indexed from zero in
the C/C++ language. When declaring an array, the number of entries M is specified.
If you use an index outside of 0 to M — 1 to access the array entry, the compiler
does not check that the index does not belong to that array. Therefore, it is always
necessary to check whether the index is correct or not.

If we access an array item outside the specified range, we can read the contents of
the memory that is behind the allocated array. But we can also modify this memory,
which can lead to very tricky and unexpected errors, which only occur under certain
circumstances and are very difficult to find.

B 10.1.9

We want to insert values read from standard input into the array. We don't know
how many values are on the input. Is the following code correct?

typedef float TValues[100];
TValues Values;

int Num=0;

while (cin>>Values[Num]) Num++;

o False
e True

10.1.10

The sizeof function is used to determine the size of a variable in the computer's
memory. If we want to determine the size of the array, we can use this function. If
we want to find out how many components an array has, we have to divide the
result by the size of one component. In this case, it is advantageous if user data
types are defined for both the array and its components.

For example:

typedef int Value;
typedef Value TValues[15];

114

Arrays | FITPED

Then we can write:

cout << "Number of items is "<< sizeof (TValues) /
sizeof (Value) << endl;

= 10.1.11

How many items does the Values array have when we know that sizeof (Values) =
64 and the array component is double data type? (We assume that there is no
alignment of values in the memory to larger units.)

« 8

e 16

e« 10

e 64
10.1.12

The enumeration type (enum) is a subset of an integer type. Its values are named
identifiers, so each value can be very clearly understood in the program. For
example, while an integer 5 used in a condition or an expression does not give an
idea if we write Friday instead of 5, it is clear that it is the day of the week.

Definition of enum data type:

typedef enum {

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday
} TWeek;

The values are automatically numbered from zero. However, we can assign an
arbitrary number to each value, so values don't have to go in the order in which they
are written. For example:

typedef enum {
red = 0xFF0000,
green = 0xO0O0FFO0O,
blue = 0x0000FF,
white = OxFFFFFF,
black = 0x000000
} TRGBColors;

115

Arrays | FITPED

Enum type values cannot be read from standard input and identifiers are not
displayed on output. The integer representation of identifiers is displayed on output
only.

Because the enum type is a subset of an integer type, it can also be used for array
indexing. We have for example an array indexed by day of the week - the type
TWeek mentioned above:

int SaledPieces|[6];

Suppose that this array is filled with numbers of saled pieces of cars and we need
to display the content of this array for workdays only:

for (TWeek W = Monday; W <= Friday; W = TWeek (int(W)+1))
cout << SaledPieces[W] << ", ";
cout << endl;

& 10.1.13

Suppose that the input is a sequence of pairs of values — the price of the car sold
and its colour. Output the sum of the car prices for each colour. Select the correct
part of the code in the following program.

typedef enum {black, red, green, blue,
yellow, magenta, cyan, white, silver} TColor;

// select the appropriate part of code HERE

TCars Sales;
int Price, NumColor;
for (int i=black; i<=silver; i++) Sales[i]=0;
while (cin >> NumColor >> Price) {

if (NumColor >= black and NumColor <=silver)

Sales[NumColor]+=Price;
}
cout << "Overview of sold cars by color:" << endl;
for (int i=black; i<=silver; i++)
cout << setw(1l0) << left << ColorNames[i]
<< setw (10)<<right<<Sales[i] << endl;

« typedef int TCars[silver+1]; const string ColorNames|silver+1] = {"black”,

"red", "green”, "blue”, "yellow", "magenta”, "cyan", "white", "silver"};
« typedef int TCars[silver]; const string ColorNamesJsilver] = {"black", "red",
llgreenll, llbluell' llyellow n n

, "magenta”, "cyan”, "white", "silver"};

116

Arrays | FITPED

« typedef int TCars[7]; const string ColorNames[7] = {"black", "red", "green",

"blue”, "yellow", "magenta’, "cyan", "white", "silver"};
« typedef int TCarslsilver]; const string ColorNamessilver] = {'black’, 'red,,
'green’, 'blue’, 'yellow', 'magenta’, ‘'cyan’, 'white’, 'silver’};

10.2 Arrays (programs)

10.2.1 Arrays 1

The input is a sequence of integer values (maximum 100 values). Write this
sequence in reverse order. Use an array.

10.2.2 Arrays 2

The input is a sequence of integer values, maximum 100 values. Write all values
which are higher than the average input values.

10.2.3 Arrays 3
There are pairs of values at the input. The first number indicates the day of the

week (1 is Monday, etc.), the second number indicates the volume of production in
euro. Sum the production volume for each day of the week and output these totals.

10.2.4 Arrays 4

There is a series of integer values at the input, the last value is zero. Determine the
frequencies of input numbers at intervals of 1..10, 11..20, etc., up to 91..100.

10.2.5 Arrays 5

There is a series of integer values at the input. Determine the number of individual
decimal digits from which the input values are composed.

117

Arrays | FITPED

10.2.6 Arrays 6

There is a sequence of integers on the computer input. The task is to encrypt this
input so that individual digits, spaces, positive and negative signs are replaced with
other characters that the user enters before a series of numbers. So the input starts
with 13 characters - the first ten are used to encrypt the digits 0..9, the other two
encrypt the plus and minus signs respectively, and the last character encrypts the
space. The output is composed of an encrypted sequence of input numbers.

118

Multidimensional Arrays

Chapter 1 1

Multidimensional Arrays | FITPED

11.1 Array of arrays

11.1.1

C/C++ knows only one-dimensional arrays. However, the array component can be
an array too, then you can get multidimensional arrays. The declaration is:

double Matrix[12][10];

This gives you a 12-item array where each item has ten float-type items. Note that
adding the next index will create an array of items that consist of the previous
array.

We can do it in another way that is more flexible and clearer. We will use type
definitions and constant definitions (the constants will be mentioned later):

const int NumCols = 10; // number of columns
const int NumRows = 12; // number of rows
typedef double TRow [NumCols];

// type definition of the row of matrix as an array of
double
typedef TRow TMatrix [NumRows];

// type definition of whole matrix as an array of rows
TMatrix Matrix; // declaration of matrix variable

In this shape, we can change the size of a matrix at any time by simply changing
constants, which is very flexible. The constants can be further used whenever we
refer to the dimensions of a matrix (reading elements, listing elements).

B 11.1.2

Assume that the input contains 57 real values. Create a matrix of 3 rows of 19
values and enter the input numbers. Then write the matrix to standard output so
that the numbers are arranged in rows. Add the corresponding parts to the
following code:

const int Items = 19;
const int Rows = 3;

TMatrix Mat;
for (int I=0; I<Rows; I++)

for (int I=0; I<Rows; I++) {

120

Multidimensional Arrays | FITPED

for (int J=0; J<Items; J++) cout << Mat[I][J] << " ";
cout << endl;

o for (int J=0; J<ltems; J++) cin >> Mat][l][J];

cout <|<| Mat[I+1][J+1] <|<] ": *;

typedef double TRow[Rows]; typedef TRow TMatrix[ltems];
typedef double TRow[ltems]; typedef TRow TMatrix[Rows];

cout << "Row No.: " << [+1 << " "
for (int J=0; J<|Rows; J++) cin >> Mat[l][J];

B7 11.1.3

We have two matrices of equal dimensions and they are filled with integers. The
TMyMatrix data type has been defined, and the matrix dimensions are given by the
NumRows and NumCols constants. Choose from the following code options that
sum these two matrices.

o TMyMatrix MA, MB; int B=0, A; while (B<[NumRows){A = 0; while
(A<|NumCols) {MA[B][A] += MB[B][A]; A++;} B++;}

o TMyMatrix MA, MB; int X, Y; for (X=0; X<[NumCols; X++) for (Y=0;
Y<|NumRows; Y++) MA[X][Y] += MBIX][Y];

o TMyMatrix MA, MB; int A=0, B=0; while (B<|[NumRows) while (A<|NumCols)
MAI[B][A] += MBIBJ[A];

o TMyMatrix MA, MB; for (int A=0; A<|NumRows; A++) for (int B=0;
B<|NumCols; B++) MA[B][A] += MB[B][A];

B 11.1.4

In the following code, complete the correct parts to transpose the square matrix.

const int Order = 10; // order of the matrix

OMatrix Mat; double aux;

for (int x=0; x<Order; x++)

for (int y=0; y<Order; y++) cin >> Mat([x] [y]:’
for (int i=0; i<Order; i++) {

for (int I=0; I<Order; I++){ cout << "Row: " << I+l << ": ";
for (int J=0; J<Order; J++) cout << Mat[I][J] << " ";
cout << endl;}

121

Multidimensional Arrays | FITPED

o for (intj=0; j<|=0rder; j++)

Matlil[jl=Mat[j][i]; j++;}

typedef double QMatrix[Order][Order];

{aux = Matl[il[jl; Mat[i][j] = Mat[j][i]; Mat[j][i] = aux;}
typedef double QMatrix[Order];

for (int j=i+1; j<Order; j++)

= 11.1.5

Task: There is a sequence of pairs of numbers on the input: the department number
(1 to 7) and the salary of a worker of that department. List average salaries for
individual departments.

From the following options, select the part of the code that belongs to the following
program:

#include <iostream>
using namespace std;
int main () {
typedef int TDept[2];
typedef TDept TFactory[7]:;
TFactory OurFact;
int Num, Salary;
for (Num=0; Num<7; Num++) {
OurFact[Num] [0]=OurFact[Num] [1]=0;
}
while (cin>>Num>>Salary) {
OurFact [Num-1] [0] ++;
OurFact[Num-1] [1]+=Salary;
}
// SELECTED PART OF CODE BELONGS HERE
return O;

o for (Num=0; Num<|7; Num++) if (OurFact[Num][0]!=0) cout <|<| "Dept. No. "
<|<| Num+1 <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<|
endl; else cout <|<| "No workers. " <|<| end];

o Num=0; while (Num<|7){ if (OurFact[Num][1]==0) cout <|<| "Dept. No. " <|<|
Num+1 <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<| endI;
else cout <|<| "No workers. " <|<| endl; }

o Num=0; while (Num<|7){Num++; if (OurFact[Num][1]==0) cout <|<| "Dept. No.
"<|<| Num <|<| ", avg. salary: " <|<|] OurFact[Num-1][0]/OurFact[Num-1][1] <|<]|
endl; else cout <|<| "No workers. " <|<| endI; }

122

Multidimensional Arrays | FITPED

o for (Num=1; Num<|=7; Num++) if (OurFact[Num][0]'=0) cout <|<| "Dept. No. "
<|<| Num <|<| ", avg. salary: " <|<| OurFact[Num][1]/OurFact[Num][0] <|<| end];
else cout <|<| "No workers. " <|<| endI;

11.2 Multidimensional arrays (programs)

11.2.1 Matrix 1

There is a number N (max 20) on the input, indicating the order of the square
matrix, followed by real numbers representing the row-entered matrix. Write the
entered matrix and follow the transposed matrix.

matrix1.cpp
#include <|iostream>

#include <|iomanip>
using namespace std;

// define data type TMatrix here:

void DisplayMat (TMatrix M, int Count){ // display matrix
cout || "-—mmmmmmme e e - "<|<| endl;
cout.precision (3) ;
for (int i=0; i<|Count; i++){
for (int j=0; j<|Count; j++)
cout<|<| setw(9)<|<|fixed<|<|right<|<|M[i][j];
cout<|<|endl;

}
cout <|<| endl;

int main () {
// enter your code here:

return O;

123

Multidimensional Arrays | FITPED

11.2.2 Matrix 2

There is a number N on the input, indicating the order of the square matrix, followed
by real numbers representing the row-entered matrix. Recalculate the matrix so that
it has a value of 1 on the main diagonal. (Hint: you have to divide each row by the
value on the main diagonal. In the case of the zero elements of the main diagonal,
the entire row will be zero.)

124

Strings

Chapter 1 2

Strings | FITPED

12.1 Strings

12.1.1

Typical programs contain two categories of data — numbers and character strings.
These elements then build other structures. Numeric data types have already been
discussed, now we look at character strings.

The character string is implemented in most languages as a kind of array whose
components are individual characters. The data type for characters has already
been specified - this is char (unsigned char).

Like numeric value arrays, we can construct an array of character values:

char Name[35] ;

This will give you an array of up to 35 characters, with each character you can
manipulate using the appropriate index.

However, a string is not exactly the same as a character array but is different in
several respects. Each character string must have its current length specified. If we
have a Name variable that can store up to 35 characters, we would work with
unoccupied folders when saving a specific name less than 35 positions. Therefore,
the end of the string is indicated by a special zero character '\Q'. Strings of this type
are called null-terminated "\0'. Therefore, when determining the length of a string,
we always have to assume that there is one extra character.

In order not to determine exactly how many items the character array has, we can
make a declaration when the number of items is determined by the value entered:

char Address[] = "Rodeo Drive, Holywood";

The length of this string will then be given by the number of characters plus the
terminating character null.

B 12.1.2

Assume a Description variable with the following definition:
char Description[] = "This is sum of values.";
The number of components of this variable will be 23. True or false?

e True
o False

126

Strings | FITPED

B 12.1.3

We have a string variable to store the ISBN. What value will this variable have after
performing the following code?

char ISBN[14] = "9887074283225";
ISBN[1] = '7'; ISBN[3] = '8'; ISBN[11l] = '1';

o 9788074283215
o 9877874283221
o 7887074283125
o 1887074288275

B 12.1.4

We have a string variable to store the ISBN. What will be displayed after processing
the following code?

char ISBN[18] = "978-80-7428-321-5";
ISBN[3] = '\0'; ISBN[6] = '/'; ISBN[1l1l] = '/'; ISBN[15]='/";
e 078

» 978\80/7428/321/5
o 978\80\7428\321\5
« 978\080\07428\0321\05

12.1.5

To work with a character array, there are operations stored in the standard string.h
library. If we want to use this library in the C++ language, it is available under the
name cstring, so we can write

#include <cstring>

Functions:

« strlen(s) - integer function for determination of the length of string s (i.e. the
number of characters without end null character);

» strcpy(dest, source) — function copies string source into string dest;

» strcat(dest, source) — function appends string source to the end of string
dest;

127

Strings | FITPED

« strchr(str, ch) — this function searches character ch in string str and returns a
pointer to the first position of character ch. If the character is not found, this
function returns NULL;

o strstr(str, substr) — this function searches substring substr in string str. The
result is similar to strchr function;

o strcmp(s7, s2) - integer function compares strings s7 and s2. The result of
this function is a negative number if s7<s2, result 0 is returned if s7==s2 and
a positive number otherwise.

B4 12.1.6

Assume that in the standard input is a name and surname (on each line separately).
Put them in one string variable, write down the total number of characters and write
only the last name from the variable. Add the appropriate parts to the following
code.

char Name[35], Surname[40], FullName[75]1="";
cin >> Name >> Surname;
strcpy (FullName, Name) ;

cout << "The length is "<< << endl;
cout << "The surname is: '"<< << endl;

o strlen(FullName)

o length(FullName)

o strcat(FullName, " "); strcat(FullName, Surname);
» strcat(FullName, Surname); strcat(FullName, " ");
o strcpy(FullName, strstr(Name, ')+1)

e Surname

» sizeof(FullName)

12.1.7

An array of characters still has an array behaviour, so we can't simply do a number
of useful operations. For example, we have the following code:

char Name[20] ;
Name = "Smith"; // an error will be reported here

We get an error because the Name variable is of type char[20] and we try to assign
a value of type const char[6] on the right side of the assignment.

128

Strings | FITPED

Therefore, the C++ language has an std library that implements the string data type.
So code:

std: :string Name;
Name = "Smith";

implements variable Name which can be processed both as an array of characters
and as a whole string. If we use the using namespace std construction, which we
normally do for standard input and output, we don't have to write std :: string, but
just a string.

12.1.8

The string data type available in C ++ is created somewhat differently, it is
implemented as an object. The objects will be discussed later, at this point we will
show the operations that can be performed with the string type.

Because the string data type is an object, the operations are stored "inside" it and
are available through the variable name and period. Thus, the syntax is completely
different from the operations that were shown at the character array.

Suppose the following declaration:

string SomeChars;

We can then use these operations:

e SomeChars = "any string" — assigning of any constant value into string
variable;

« SomeChars.length() — the length of string

o Concatenation with a "+" operator, for example: SomeChars = "Paul" +
"Smith";

o SomeChars.clear() — deleting all characters from string variable

o SomeChars.find("Sm") - find a position of string "Sm" in variable
SomeChars. If the substring is not found, the result of this function is a
number greater than the maximum number of characters (i.e. value greater
than length()).

o SomeChars.substr(3, 5) — a substring from index 3 and of length 5. In our
case, this will return substring "l Smi".

+

129

Strings | FITPED

12.2 String (programs)

12.2.1 Strings 1

There is a sequence of strings at the input (one string per line). Write the longest
string from the input sequence.

12.2.2 Strings 2

There is a sequence of strings at the input (one string per line). Find a string with
the largest relative proportion of punctuation and white characters.

12.2.3 Strings 3

There is a sequence of strings at the input (one string per line). Remove from all
strings all non-alphabet characters.

12.2.4 Strings 4

There is a sequence of strings at the input (one string per line). Write a string that is
first alphabetically and a string that is last alphabetically.

12.2.5 Strings 5

There is a sequence of strings at the input (one string per line). Find out which
strings are palindromes (i.e. both left and right read are the same).

130

Struct Data Type

Chapter 1 3

Struct Data Type | FITPED

13.1 Structured data type struct

13.1.1

Data type struct is a collection of items. Each item may be of a different type. This
structure wrapped its items and may be as one variable.

The common shape of structure definition is:

struct {
type iteml;
type item2;

} identifier;
For example:

struct {
string FullName;
int Salary;
float Weight;

} MyPerson;

To manipulate with items we use the dot convention:

MyPerson.FullName = "James Bond";
MyPerson.Salary = 1000000;
MyPerson.Weight = 75;

It is very useful that two structures of the same type can be assigned to each other,
unlike arrays. Therefore, it is useful to create a data type of the appropriate
structure first and then declare variables of this type:

typedef struct {

string FullName;

int Salary;

float Weight;
} TPerson;
TPerson MyPerson, Brother, MyTeacher, MyWife; // four
variables
MyPerson.FullName = "Jean Gabin"; MyPerson.Salary = 60000;
MyPerson.Weight = 90; // insert some values to items
Brother = MyPerson; // Brother got the same values as MyPerson
Brother.FullName = "Paul Gabin";

132

Struct Data Type | FITPED

B 13.1.2

We have the following code:

struct {int IdMat; float Length;
string Description;} Storeltem;
Storeltem GreenCanvas;

Is declaration of variable GreenCanvas correct?

o False
e True
13.1.3

The basic motivation for using a structure is to concentrate several different items
into one variable. If we build an array from such records, we can move entire
records instead of individual items as needed, for example, when we need to swap
items in sorting or searching.

To create an array with records we use a known process. We need for example an
array of engines:

typedef struct {string Series; int Weight; int Distance;}
TEngine;

const int MaxNumOfEngines = 75;

typedef TEngine WholeDepot[MaxNumOfEngines] ;

Example of engine array usage: Suppose the array is filled with values and the total
number of engines is in the ActuaINumOfEngines variable. Put the engine with the
smallest weight into the Shunting variable:

TEngine Shunting; int ActualNumOfEngines = 58;
int MinW=0; // index of the lightest locomotive
for (int i=1; i<ActualNumOfEngines; i++)
if (WholeDepot[i] .Weight<WholeDepot[MinW] .Weight) MinW = i;
Shunting = WholeDepot[MinW] ;

B 13.1.4

Define a person's record array (name, height in centimetres, weight in
kilogrammes). Fill this array with data read from the input and display the name of
the person with the smallest BMI (Body Mass Index = weight in

133

Struct Data Type | FITPED

kilogrammes/square of height in metres). Add the corresponding section to the
following code:

float BMI (TPerson P) {
float h = float (P.Height) ;
return P.Weight / ((h/100)* (h/100)) ;
}
const int MaxNumOfPerson = 100;
typedef TPerson TDepartment [MaxNumOfPerson] ;
TDepartment OurDept;
int ActNum=0, MinBMI = 0;

while (cin) {
if () MinBMI = ActNum;
ActNum++;
}

cout << "Min. BMI has " << OurDept[MinBMI] .Name << endl;

o BMI(OurDept[ActNum]) < BMI(OurDept[MinBMI])

« typedef struct {int Name; string Height; float Weight;} TPerson;

o >>QurDept[ActNum].Name >> OurDept[ActNum].Height >>
OurDept[ActNum].Weight

o typedef struct {string Name; int Height; int Weight;} TPerson;

o BMI(Height, Weight) <| BMI(MinBMI.Height, MinBMI.Weight)

e >> OurDept[ActNum]

13.1.5

Structure items can have one more meaning — they can be used to determine what
space to store. It is advisable that the sequence of items forms integral bytes. The
number of bits on which the item is to be stored is written after the colon for each

item. For example, have the following definitions:

typedef enum {woman, man} TSex;

typedef enum {nonsmoker, smoker} TSmoker;
typedef enum {student, teacher} TRole;
typedef enum {driver, nodriver} TDriving;

Now we will create a structure that will contain some data, but will store it in
minimal space:

typedef struct {
TSex Sex:1;
TSmoker Smokes: 1;

134

Struct Data Type | FITPED

TRole Role: 1;
TDriving Driver: 1;
int NumChild: 4;

} TPerson;

This structure takes up only 8 bits in memory, ie one byte, and 5 information is

stored on it. So we can easily work with the individual bits of the respective byte, for

example:

TPerson MyWife; // one byte of memory
MyWife.Sex=woman;
MyWife.Smokes=smoker
MyWife.Role=teacher;
MyWife.Driver=driver;
MyWife.NumChild=2;

& 13.1.6

We have the following structure:

typedef struct {
bool readonly: 1;
bool system: 1;
bool hidden: 1;
bool archive: 1;
bool directory: 1;
bool shared: 1;

} TFileAttrib;

TFileAttrib MyFile;

Will the size of the MyFile variable be greater than one byte?

o False
e True

13.2 Struct (programs)

13.2.1 Structs 1

There are data of three persons on input: name, age and salary. List these people in

ascending order by age.

135

Struct Data Type | FITPED

13.2.2 Structs 2

There are a number of data pairs at the input: the title of the goods and the number
of pieces in the warehouse. List the names of the goods that have the amount of
pieces above average in the warehouse.

13.2.3 Structs 3

It is necessary to store product information: category (1..13), new/used (bool),
number of pieces (0..50), how much is reserved (0..25). Create a record that stores
this information in minimal space. Display amount of memory for this record. There
are data on several items at the input. List these goods in reverse order. Check the
correct values entered. An incorrect category will be inserted as 0, an incorrect
logical value as false, an incorrect number of pieces as 0, and an incorrect reserved
value as the number of pieces; if it exceeds 25, then as half the number of pieces.

13.2.4 Structs 4

There are a number of Cartesian coordinates of points in the plane at the input
(max. 100). Write these points sorted by distance from the origin of the
coordinates.

13.2.5 Structs 5

There is a series of integer values at the input. Determine which value occurred
most times at the input.

136

Union Data Type

Chapter 1 4

Union Data Type | FITPED

14.1 Union data type

14.1.1

The union data type is very similar to the structure (struct data type), the difference
is in the way the items are stored in memory. For the struct type, items are placed
one after the other in the order they were written in the type definition. For union, all
items are located starting with the same memory address, that is, they share the
same memory space. What good is this way for? We assume that we always need
only one option for real data. The rest of the items, therefore, does not take up
unnecessary memory. A type definition is like the struct definition, but the keyword
struct is replaced by keyword union:

typedef union {
int intnumber;
double realnumber;
char txt[7];

} TNumbers;

For example, we need to store locomotive parameters. For each type of locomotive,
however, we need something different — for the steam locomotive the heating
surface of the boiler, for the diesel locomotive the number of engine cylinders and
for the electric locomotive the voltage in the power system. For example, if we have
an array of such records, each array entry may contain a record of another
locomotive type, but unused items will not occupy any additional space. Let us
define such structure:

typedef enum {steam, diesel, electric} TTypelok;

typedef union {
float Boiler;
int Cylinders;
int Voltage;

} TLokParam;

typedef struct {
string Label;
float Weight;
TTypelok Traction;
TLokParam LocoPar;
} TLocomotive;

const int MaxNumloco = 150;
typedef TLocomotive TDepot[MaxNumLoco] ;

138

Union Data Type | FITPED

Note that we have placed locomotive-bound traction parameters in a structure
where there are other components common to all types, as well as a component
that lists the locomotive type. This item is called the distinguishing item because it
can be used to tell which of the union items is valid. Typically, the distinguishing
component is defined as an enumeration or an integer.

= 14.1.2

We have the following union structure:

typedef union {
int anynumber;
char bytes[4];

} TTwo;

TTwo MyVariable;

Next, we have an integer stored in memory so that the most significant byte is the
first. We use a defined structure to display the values of individual bytes that make
up an integer in memory:

cin >> MyVariable.anynumber;
for (int i=0; i<4; i++) cout << (int)MyVariable.bytes[i]<<" ";

After entering a certain number was displayed:

0010

What number has been entered?

e 256
« 100
« 1024
o 1

B 14.1.3

We have a structure TDepot that we defined above:

typedef enum {steam, diesel, electric} TTypelok;
typedef union {

float Boiler;
int Cylinders;

139

Union Data Type | FITPED

string PowerType;
} TLokParam;

typedef struct {
string Label;
float Weight;
TTypelok Traction;
TLokParam LocoPar;
} TLocomotive;

const int MaxNumloco = 150;
typedef TLocomotive TDepot[MaxNumLoco] ;

and a variable Manchester of this type:

TDepot Manchester;

Next, assume that the variable Manchester is filled with data about 88 locomotives.
The task is to display all steam locomotives with a weight above 80 tons and all
diesel locomotives with a number of cylinders less than 16. Select the appropriate
parts in the following code:

const int NumlLoco = 88;
cout << "Steam locomotives with weight above 80 tons:'"<<endl;
for (int L=0; L<NumLoco; L++)
if ()
cout << <<endl;
cout << "Selected diesel locomotives: "<<endl;
for (int L=0; L<NumLoco; L++)
if ()
cout << << endl;

o Manchester|[L]. TTypeLok==steam and Manchester[L]. Weight>80
« Manchester|L].Traction==diesel and Manchester[L].Cylinders<|16
« Manchester|L].Label <|<|", num of cylinders is " <|<| Manchester|[L].Cylinders
o Manchester[L].TLocomotive.Label <|<|", weight is " <|<|
Manchester[L]. TLocomotive.Weight
« Manchester|L].Traction==diesel and Manchester[L].LocoPar.Cylinders<16
« Manchester|[L].Traction==steam and Manchester[L].Weight > 80
o Manchester|[L].Label << ", num of cylinders is " <<
Manchester[L].LocoPar.Cylinders

o Manchester[L].Label << ", weight is " << Manchester[L].Weight

140

Union Data Type | FITPED

14.2 Union (programs)

14.2.1 Union 1

There is a number of types double on the input. Display them in the binary system
as stored in the computer-s memory. Show the most significant bits on the left.

14.2.2 Union 2

Create an array whose components can be integers or real numbers or strings of 7
characters. The input is a sequence of pairs - type value (0 = integer, 1 = real
number, 2 = string) and followed by the value of the type. The last pair has only the
first value of —1. Fill these values into the array and list first all integer values, then
all real values and then all string values.

141

Pointers |

Chapter 1 5

Pointers | | FITPED

15.1 Pointers

1 15.1.1

The pointer represents the address in the computer's memory. It is used for many
purposes and to manage pointers is one of the basic skills in writing programs.

The pointer definition is very simple — the asterisk character is given before the
variable name.

Pointer declaration example:
int *ptrint;

We can also define a new pointer type. Note that the asterisk is written after the
data type, for example

typedef float* tdataptr;

Pointers allow you to work with addresses in memory, which in some cases is very
important for optimizing memory usage and optimizing data access.

] 15.1.2

The pointer (address) of the variable itself is not useful but is important to use this
address to access the variable located at that address. If P is a variable of type
pointer, then *P allows you to work with a variable whose address is in P.

How to get a variable address?

The address of the variable in memory is automatically assigned by the compiler
when declaring the variable. We do not normally need this address because we
work directly with the variable through its identifier. The variable is created at the
time of declaration and expires with the end of the block in which it is declared. The
address of such a variable can be obtained by the unary operator & written before
the variable identifier. The operator & will be discussed later, see the Reference.
This is the first way to get an address. For example:

float MyData; // the address of MyData was given by the
compiler

float *AddrData; // pointer to float data type

AddrData = &MyData; // address of MyData is stored to pointer
AddrData

*AddrData = 4.5; // store data to variable of address of
MyData;

143

Pointers | | FITPED

cout << MyData << endl; // will be displayed 4.5

The second way to get an address is quite different. In the previous case, we
worked with the address assigned by the compiler at the usual variable declaration.
We can use this variable throughout the block in which it is declared. However, if we
no longer need it, we cannot release it from our memory. The second option is a
system where memory is allocated only when the variable is needed and can be
released at any time. These are dynamic memory allocation and dynamic
variables. For dynamic variables, completely different memory space is used than
for non-dynamic variables. Typically, this block has a much larger size than the
memory block for the declared variables. So it is natural that we try to place the
data in dynamic variables. The dynamic variable address assignment is made by
the new operator:

float *AddrData; // declaration of dynamic variable
AddrData = new float; // memory allocation and assignment of
new address

*AddrData = 18.78; // the use of dynamic variable

When allocating memory, we can also assign an initial value:

AddrData = new float (18.78) ;

We can allocate memory for the array. At the time of allocation, we can specify the
required number of field items:

typedef int TMyData; // data type of array items

TMyData *ActValues; // pointer to array item

ActValues = new TMyData[52]; // allocation of array with 52
items

We can assign an address constant. We have only one constant for pointers of all
types. This constant is NULL and represents an empty pointer (pointer which points
nowhere). We'll use this pointer wherever we want to provide an empty address that
we can test.

AddrData = NULL;

B 15.1.3

Task: Input is a sequence of decimal numbers. The first input value is the count of
numbers entered. Write the numbers to the output in reverse order.

Choose from the parts offered here that belong to the following code:

int Num;

144

Pointers | | FITPED

cin >> Num;
// choose one answer HERE:

for (int i=0; i<Num; i++) cin >> Values[i];
for (int i=Num-1; i>=0; i--) cout << Values[i] << endl;

« float*Values; Values = new float[Num];
« float Values; Values = new float[Num];
o float *Values[Num];

« float Values = float [Num];

15.1.4
The delete operator is used to free memory and remove the dynamic variable.

delete AddrData;
delete [] ActValues;

To remove the array from memory, you have to write brackets after keyword delete.

The value of the pointer is undefined after deallocating of memory. This it is
strongly recommended to assign freed pointer with constant NULL. We can then
simply detect that this pointer is no longer valid.

Deallocating memory is a very important operation. When the memory is released,
we can allocate the same space in the next step of the program.

Because the process of allocating and freeing memory is random, it is possible that
the free blocks are still shrinking in memory. If we do not release a variable but lose
a pointer to it, the block will become inaccessible but will remain in memory and
cannot be released. This situation is called a memory leak.

Typical error:

int *p;
P = new int;
// ... using p

p = new int; // old address is replaced by new one!

The old address is no longer accessible and the first allocated block remains in
memory.

145

Pointers | | FITPED

B 15