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Efficient automatic 3D segmentation of cell 
nuclei for high‑content screening
Mariusz Marzec1*, Adam Piórkowski2 and Arkadiusz Gertych3,4 

Background
High-content screening (HCS) platforms are currently state-of the art approaches for 
drug discovery and drug efficacy assessment. Examining the drug response on HCS 
platforms necessitates the quantification of fluorescent signals captured by automated 
microscopy systems in single cells. To enable quantification of the fluorescence in whole 

Abstract 

Background: High-content screening (HCS) is a pre-clinical approach for the assess-
ment of drug efficacy. On modern platforms, it involves fluorescent image capture 
using three-dimensional (3D) scanning microscopy. Segmentation of cell nuclei in 3D 
images is an essential prerequisite to quantify captured fluorescence in cells for screen-
ing. However, this segmentation is challenging due to variabilities in cell confluency, 
drug-induced alterations in cell morphology, and gradual degradation of fluorescence 
with the depth of scanning. Despite advances in algorithms for segmenting nuclei for 
HCS, robust 3D methods that are insensitive to these conditions are still lacking.

Results: We have developed an algorithm which first generates a 3D nuclear mask in 
the original images. Next, an iterative 3D marker-controlled watershed segmentation 
is applied to downsized images to segment adjacent nuclei under the mask. In the 
last step, borders of segmented nuclei are adjusted in the original images based on 
local nucleus and background intensities. The method was developed using a set of 10 
3D images. Extensive tests on a separate set of 27 3D images containing 2,367 nuclei 
demonstrated that our method, in comparison with 6 reference methods, achieved 
the highest precision (PR = 0.97), recall (RE = 0.88) and F1-score (F1 = 0.93) of nuclei 
detection. The Jaccard index (JI = 0.83), which reflects the accuracy of nuclei delinea-
tion, was similar to that yielded by all reference approaches. Our method was on aver-
age more than twice as fast as the reference method that produced the best results. 
Additional tests carried out on three stacked 3D images comprising heterogenous 
nuclei yielded average PR = 0.96, RE = 0.84, F1 = 0.89, and JI = 0.80.

Conclusions: The high-performance metrics yielded by the proposed approach sug-
gest that it can be used to reliably delineate nuclei in 3D images of monolayered and 
stacked cells exposed to cytotoxic drugs.

Keywords: Image processing, Image analysis, 3D nuclei segmentation, Automated 
analysis, Bio-image informatics, High-content screening
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cells without losing the spatial information, modern screening platforms employ high-
resolution, three-dimensional (3D) image capture. Segmentation of cell nuclei in 3D 
images is an essential prerequisite when quantifying the captured fluorescence in whole 
cells or sub-cellular compartments. However, this segmentation is challenging due to 
variabilities in cell confluency and morphological characteristics induced by chemother-
apeutics, which are often highly cytotoxic. Another challenge that is commonly seen in 
acquired images is the gradual loss of fluorescence intensity and contrast with the depth 
of scanning. Despite advances in algorithms for segmenting nuclei in HCS, robust 3D 
methods that are insensitive to changes in size, shape, texture and staining intensity of 
nuclei induced by harsh experimental conditions are still lacking. Most of the existing 
methods can cope with some but not all of these issues. Others are slow and computa-
tionally expensive and therefore have limited applicability to HCS tasks.

3D HCS screening is a powerful tool for measuring drug response and assessment of 
cytotoxicity and cell viability [1–5]. Modern HCS platforms deliver 3D image data in a 
multiplex format with stacks of optical sections (z-stacks) organized into channels—one 
for each fluorophore. Based on the nuclear masks segmented from a 3D image, HCS 
can count and perform morphological and functional profiling of cells. A relatively large 
number of software platforms are available to generate measurements for HCS stud-
ies [6–10]. However, the problem is that different methods yield different count values, 
and the quality of delineations of 3D masks of nuclei vary when tested in images supple-
mented with ground truth.

To achieve reliable segmentation of nuclei, numerous semi-automated segmentation 
techniques have been developed [7, 8, 11–13]. However, many of them are tailored to 
a specific screening task or require prior setting of multiple parameters [3, 14]. Many 
fully automated methods are frequently restricted by the morphological characteris-
tics of specimens and are thus able to analyse cells with less-complex patterns. Unlike 
in high-magnification images, where fine chromatin details can be quantified, nuclei in 
low-magnification images appear round and often uniformly intense without any vis-
ible chromatin texture. Yet, as image magnification increases, so does the level of visual 
detail in cells, which makes nuclei segmentation more challenging and prone to errors.

Existing 3D nuclei segmentation techniques can be divided into three main fami-
lies: watershed-based, deformable model-based, and level-set-based segmentations 
[15–18]. Watershed-based approaches involve markers (seeds) and are computa-
tionally efficient. However, pipelines which use watershed-based segmentations fre-
quently require pre- and post-processing procedures to deal with possible over- and 
under-segmentations [19–21]. The performance of watershed-based methods is often 
determined by the performance of the seed-generation technique that is run prior 
to the actual segmentation. For instance, one such seed-generation method was pro-
posed in [11]: shape priors derived directly from a non-segmented image were fun-
nelled as features ahead of the actual nuclear segmentation routines. In [11], the 
output of a 3D radial symmetry transform was used to approximate the location and 
shape of nuclei. Watershed-based pipelines can be improved by reducing the num-
ber of processing steps and hyperparameters that govern the segmentation [7, 8]. 
In [16], the authors presented an algorithm for multi-cell segmentation and track-
ing. This method was based on the coupled active surfaces framework. Connected 
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objects determined in the first image frame are segmented with a level-set function. 
One level-set is assigned to each object. Each level-set function is iteratively evolved 
until convergence criteria are satisfied. It the next step, watersheds are used to per-
form rough splitting of level-set functions in connected components. The algorithm 
determines whether existing level-set functions need to be terminated or new func-
tions should be introduced. In the final step, the Radon transform is used to separate 
the level-set functions of closely positioned nuclei.

Approaches that are based on deformable models require less pre- and/or post-pro-
cessing but are more computationally intense, especially for 3D applications. Level-set-
based segmentations utilize geometric active contours [22–24]. To track shapes, they 
connect pixels that have similar intensity, and they yield a 3D surface or a 2D contour 
that delineates individual nuclei. Except for a coupling constraint that inhibits over-
lapping of neighbouring contours, level-set methods do not require explicit param-
eterization and can yield masks for objects with complex shapes. However, they are 
computationally expensive because each object (nucleus) has to be represented by a 
unique level-set function. These requirements increase the computational burden and 
thus often prohibit the use in HCS applications of level-set methods for specimens with 
high cell confluency. In [25], the authors proposed a software system named FARSIGHT, 
which was used for segmentation of various types of three-dimensional (3D) bioimages. 
It utilized the graph cuts method to separate objects from the background, and a cluster-
ing algorithm was used to generate a mask of seeds employed in the seeded watershed 
segmentation.

Another method [26] has been used to separate clustered nuclei from fluorescence 
microscopy cellular images. The authors proposed shape markers and a marking func-
tion in a watershed-like algorithm. Geometric active contours were used to initially seg-
ment 2D images; then, an adaptive H-minima-based algorithm was used to find shape 
markers that served as seeds for watershed-based splitting of closely spaced nuclei. This 
method was adapted to process 3D images.

Deep-leaning (DL) based methods for 3D segmentation of cell nuclei are the most 
recent. They utilize artificial neural network models with convolutional and feature 
extraction layers that perform semantic segmentation of the volumetric image data on 
the network input and yield a 3D mask of nuclei on its output. Their main advantage is 
the automatic extraction of learnable image features that the model automatically distils 
based on the training data in order to distinguish the nucleus from background and sep-
arate one nucleus from another in aggregates [27–30]. These approaches utilize variants 
of the 3D-UNet [31] or Fully Convolutional Neural Network (FCNN) architectures [32] 
in the model’s backbone. Although the DL approaches for 3D nuclei segmentation per-
form well on images of highly confluent cells, they achieve higher segmentation accuracy 
when the nuclear mask or probability scores of the detected nuclei at the model output 
is converted to a set of markers (seeds) for use with watershed segmentation which com-
pletes the segmentation. Examples of this two-step approach can be found in [27, 28, 
30]. To learn robust features, the 3D DL models need a significant amount of training 
data, that is images with every nucleus delineated in 3D. However, this process is time 
consuming and costly because delineations are often generated manually.
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We have developed a new algorithm to robustly delineate and separate nuclei in 3D 
images of cellular specimens. The algorithm was tested on image data from experiments 
that tested DNA demethylating drug screening on human cells. It is based on voxel 
intensity thresholding to generate a preliminary nuclear mask; this is followed by iter-
ative 3D marker-controlled watershed segmentation to separate the nuclei of adjacent 
cells. In the last step, borders of segmented nuclei are adjusted based on local nucleus 
and background intensities. This approach makes it robust against local changes in 
image contrast and intensity. This method is generally dedicated to segmentation of cell 
nuclei in experiments with stacked and closely adjacent cells grown on plates in wells 
that are stained and subsequently imaged in 3D. In comparison to the existing meth-
ods, the proposed approach requires only a small set of shape priors. Our approach was 
developed and tested on high-resolution, 3D, confocal images of human-derived cells 
that had been exposed to anticancer drugs. The nuclei delineation performance of the 
proposed method was compared to state-of-the-art methods, including one previously 
developed by the authors [11]. Our method was also compared with two DL techniques. 
We chose QCANet [27] and 3DCellTracker [28] because their software frameworks were 
made publicly available. In order to apply these methods, our image data were respec-
tively adjusted. To compare results of segmentations by these methods, our images were 
downsized (to achieve similar sizes of voxels of the image data used in training) and nor-
malized before segmentation. In case of referenced methods, the segmentation was car-
ried out with default set of parameters for each method.

Results
The aim of the research was to develop a fast and effective nuclei segmentation method for 
3D cell specimens. The proposed segmentation method is divided into three main stages. 
First, the algorithm analyses the entire 3D image matrix, Im3D , in order to determine the 
statistical parameters of the image and eliminate the background. This stage is performed 
on a downsampled image. The second stage involves segmentation, which leads to accurate 
separation of individual nuclei. Finally, the algorithm reconstructs the cells and then upsam-
ples the obtained 3D masks to the original image resolution. Figure 1 shows a detailed block 
diagram of the developed segmentation algorithm. Initially, the analysed 3D image, Im3D , 
is reduced by 50% in the XY axes; the Z axis remains unchanged. As a result, the memory 
requirements and the time needed for image analysis are reduced by up to 4 times. For the 
reduced matrix of the 3D image (after scaling, Im3Dsc ), the maximum intensity of all image 
voxels, IMax , is determined. The 3D image matrix, Im3Dsc , is then converted to a set of sub-
matrices that have a size of 3×3×3 voxels. Average intensity is determined for each of these 
sub-matrices. Next, based on an automatically determined initial global threshold, they are 
classified as the background or nucleus. This value is calculated by combining the results 
of two selected global thresholding methods (see the “Methods” section for details). The 
thus-classified sub-matrices containing nuclear voxels are recorded in the resulting matrix, 
MResult , and are analysed for single nuclei or group membership. The groups of nuclei 
are then divided (into single nuclei) and the precise shapes of single segmented nuclei are 
determined. Each group of voxels is analysed for shape and size and is classified as either a 
single nucleus ( NCS ) or a group of nuclei ( NCG ). All NCG voxels are re-segmented with the 
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same algorithm but with a higher threshold until further splitting of the cell group is impos-
sible and the nuclei are classified as NCS.

The end result of the algorithm’s operation is a 3D mask of nuclei, NCS , in the exam-
ined 3D image. The separated nuclei are marked with indexes, each containing information 
about the complete voxel list and nuclear size. The last stage involves image upsampling 
and mask adjustment of the nuclear surface. The segmented nuclei can be used for further 
analysis and quantification of specimens. The individual steps of the process are described 
in detail in the “Methods” section.

All key parameters used in the segmentation (nuclei sphericity, solidity, volume ) and cell 
nuclei splitting (nuclei size after distance transform) were established empirically based on 
the training set (10 images with 520 nuclei). The segmentation accuracy in the test set (JI 
and F1-Score), related to changes of parameters were shown in the Tables 1, 2, 3 and 4. 

Examples of cell segmentation results

Figure  2 below visualizes the results of segmentation of selected specimens using the 
above-described method. The cases in Fig.  2a–d are the specimens from Fig.  6a–d, 
respectively. The other cases are the most interesting images from the examined set.

When analysing the images, it can be observed that despite the different visibility of 
cells in the individual layers of the 3D image (cases from Fig. 6), the different confluency 

Fig. 1 Block diagram of the cell nuclei segmentation algorithm and its individual stages
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of specimens, and the different sizes of single nuclei, the algorithm eliminates the back-
ground completely and correctly segments individual cells.

Segmentation of 3D stacks

As the tested 3D images represented monolayer specimens, additional tests were car-
ried out to check the effectiveness of the proposed method in specimens with a greater 
number of cells and optical layers. For this purpose, we montaged three 3D stacks: a) 
S1 , comprising two 3D images (114 layers—#1, #2); S2 , comprising two other 3D images 
(73 layers—#11,#12); and S3 , comprising the S2 stack and two additional 3D images (153 
layers in total—#10–#13) ( S3 ). The stacks were merged along the Z-axis. Figure 3 shows 
the results of 3D segmentation of such combined 3D stacks. It can be seen that despite 
the high cell confluency, the differentiated arrangement of cells in the layers, and the 
different parameters of the 3D images, the segmentation proceeds in a similar way to 
single monolayer images. Background elimination is as effective as in the case of mon-
olayer specimens, and the clusters of nuclei of specimens with different parameters do 
not interfere with the segmentation of the entire 3D stack (Figs. 3, 4).

Table 1 Estimation final value of NCSpherThr

The best result in bold

NCSpherThr 0.65 0.75 0.85 0.95

JI 0.826 0.826 0.826 0.826

F1-score 0.914 0.926 0.929 0.929

Table 2 Estimation final value of NCSolidThr

The best result in bold

NCSolidThr 0.65 0.75 0.85 0.95
JI 0.829 0.828 0.829 0.827

F1-score 0.800 0.844 0.869 0.888

Table 3 Estimation final value of NCVolMin

The best result in bold

NCVolMin 5e−4 5e−5 5e−6 5e-7 5e-8

JI 0.819 0.825 0.826 0.826 0.826

F1-score 0.866 0.910 0.929 0.928 0.928

Table 4 Estimation final factor value of distMinTh

The best result in bold

distMinTh 0.3 distMaxTh 0.4 distMaxTh 0.5distMaxTh 0.6 distMaxTh 0.7 distMaxTh

JI 0.826 0.826 0.826 0.826 0.828

F1-score 0.920 0.925 0.929 0.923 0.904
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Table  5 below compares the results of analysis of individual (3D image) specimens 
with the results obtained after combining them in the Z-axis (3D stack). The accuracy 
metrics for the analogous layers in the case of a 3D image and a 3D stack are similar. 
The slight differences in these metrics that we observed may be due to differences in 
the global image characteristics in the 3D images vs. the 3D stacks comprised of these 
3D images. These differences result from the different capture conditions of individual 
images, the different cell types in the comprising 3D images, or the confocal microscope 
settings during image acquisition. When combining different 3D images in the exam-
ined artificial 3D stack, very bright (from one component image) and darker (from the 
other component image) cells appeared; this is especially noticeable in the case of the 
greater decrease in effectiveness for image id = 13, which was combined into a 3D stack 
from 4 real 3D images (153 layers—S3 ) (Table 5, example 3). As the algorithm tries to 

Fig. 2 Segmentation process, comprehensive sample results. The cases in a–d are the specimens from Fig. 6 
a–d, respectively.
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automatically determine the operating parameters based on the statistical data of the 
entire 3D image, in the case of artificial “mismatched” images, the obtained results may 
be slightly worse, although the values in the real images are better than for the reference 
methods.

Fig. 3 Segmentation results for stacks S1 - a, S2 -  b  and S3 - c–e. Each stack is a result of concatenation of 
selected stacks from the test set

Fig. 4 Accuracy in 3D stacks
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Comparison with other methods

Table 6 summarises the results for the all compared methods. These are the average 
results obtained from the entire set of 27 3D images. It is worth noting that the pro-
posed method achieves better results for almost all of the measured parameters. The 
LSetCelTrk method [16] achieves a lower JI, but it works many times faster. Farsight 
[25] is slightly slower but the results are much better compared to method [11], which 
yielded the best results among the reference methods.

To perform nuclei segmentation with QCANet, voxel dimensions in our images 
were adjusted to those in images the QCANet was trained with. Since voxels in the 
QCANet training images measured either 0.8 µm ×  0.8 µm ×  1.75 µ m or 0.8 µm ×
0.8 µm × 2.00 µ m, a arbitrary downsizing factor of 0.15x was applied to X-Y planes. 
After voxel adjustment, nuclei in our images had approximately the same X–Y–Z sizes 

Table 5 Results of segmentation of the artificial 3D stack specimens from Fig. 3

Image id/type Confluency TP FP FN Prec Sens GT Alg Cells F1-score JIAvg

Cells Count

Count

#1 3D image Low 23 2 0 0.92 1 23 25 0.95 0.79

#2 3D image Low 86 2 26 0.97 0.76 112 88 0.86 0.79

S1 3D stack Low 22 1 1 0.95 0.95 23 23 0.95 0.79

86 2 26 0.97 0.76 112 88 0.86 0.79

#11 3D image Low 39 0 1 1 0.97 40 39 0.98 0.85

#12 3D image Low 78 2 16 0.97 0.83 94 80 0.89 0.84

S2 3D stack Low 39 0 1 1 0.97 40 39 0.98 0.85

76 5 18 0.94 0.80 94 81 0.86 0.83

#10 3D image Low 77 1 8 0.98 0.90 85 78 0.94 0.85

#11 3D image Low 39 0 1 1 0.97 40 39 0.98 0.85

#12 3D image low 78 2 16 0.97 0.83 94 80 0.89 0.84

#13 3D image Mod 88 3 6 0.96 0.93 94 91 0.93 0.84

S3 3D stack Low/ 79 0 6 1 0.92 85 79 0.96 0.84

Mod 37 1 3 0.97 0.92 40 38 0.95 0.86

70 7 24 0.90 0.74 94 77 0.81 0.80

54 3 40 0.94 0.63 94 57 0.76 0.69

Table 6 Comparison with other methods (mean values in the test set)

The best result in bold

Method Precision Recall F1-score JI Time [min]

3D-RSD [11] 0.952 0.847 0.894 0.833 3.5

LSetCelTrk [16] 0.922 0.812 0.858 0.934 152.2

Farsight [25] 0.697 0.798 0.732 0.860 0.8

H-minima shape marking [26] 0.914 0.815 0.858 0.817 2.0

QCANet [36] 0.889 0.740 0.801 0.804 1.9

3DCellTracker [37] 0.971 0.507 0.639 0.631 0.9

Proposed method 0.978 0.887 0.929 0.826 1.5
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as those in the QCANet training images. The downsized stacks were segmented by 
the QCANet and the returned 3D nuclear masks subsequently upscaled to match the 
original voxel dimensions and to compare with ground truth. To evaluate 3DCell-
Tracker, X–Y planes in our original stacks were downscaled to 315 ×  315 pixels in 
order to match the pixel size of images used to train the 3DCellTracker. The speci-
fication of 3DCellTracker requires also that the input stack comprises 21 layers. 
Hence,we further interpolated the input stack along Z axis to generate the 21 layers 
for sequential processing by the 3DCellTracker. The 3D nuclear mask reconstructed 
from the outputted 2D masks was then upscaled back to the original resolution to 
measure nuclei segmentation accuracy against the ground truth.

When tested on our data, the QCANet DL model [27] separated properly all nuclei. 
The DL model from the 3DCellTracker [28] performed similarly to QCANet. Its aver-
age accuracy was lower in high confluency preparations when compared to prepara-
tions with low or moderate cell confluency. To segment nuclei, QCANet required GPU, 
whereas the model from the 3DCellTracker utilized CPU.

The proposed algorithm obtains better results and is also faster than most of the refer-
enced methods. The discussed algorithm does not require any user intervention in order 
to select or tune the operating parameters as they are determined automatically on the 
basis of statistical information obtained from the tested 3D images. Table 7 additionally 
presents the comparison of segmentation results, taking into account the specimen con-
fluency. Segmentation results of tested DL methods are presented in Fig. 15. The results 
of other methods are shown in the article [11].

Discussion
In recent years, the number of 3D cell image segmentation methods has been growing 
rapidly. However, the efficiency and precision of delineating cells and their shapes con-
tinues to be a big challenge, especially in direct 3D analysis. High segmentation speed 
with sufficiently high efficiency is difficult to achieve and requires further development 
of new methods. Another obstacle is the large diversity of tested specimens. The pro-
posed method, owing to the initial image scaling and the final reconstruction of the 
segmented cells to the real resolution, makes it possible to maintain high efficiency 
whilst also reducing the analysis time. Compared to other methods, it combines the 
global approach with the local one. At the initial stage of the analysis, it relies on the 

Table 7 Comparison with other methods (with respect to specimen confluency)

The best result in bold

Method Precision Recall F1-score

Low–moderate High Low–moderate High Low–moderate High

3D-RSD [11] 0.942 0.963 0.830 0.864 0.880 0.909

LSetCelTrk [16] 0.936 0.909 0.862 0.763 0.893 0.824

Farsight [25] 0.751 0.643 0.825 0.771 0.778 0.686

H-minima shape Marking [26] 0.898 0.931 0.795 0.836 0.838 0.878

QCANet [36] 0.903 0.856 0.748 0.722 0.809 0.782

3DCellTracker [37] 0.965 0.983 0.554 0.394 0.692 0.512

Proposed method 0.974 0.989 0.896 0.864 0.932 0.921
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global characteristics of the image to eliminate the background; then, after obtaining the 
approximate shapes of the cells, it uses local parameters for the separation of cell groups 
and final shape adjustment. The most important element in the first stage is the method 
of background elimination and the initial segmentation of cell nuclei that was proposed 
by the authors on the basis of the combination of variable global and local thresholds 
(for the determination of various cluster of nuclei) and the shape parameters of nuclei in 
3D cluster of nuclei. The algorithm’s operating parameters are determined automatically 
on the basis of statistical information obtained from the examined 3D image. In the sec-
ond stage, the most important element among the proposed solutions is the method of 
generating seeds of single cell nuclei and splitting groups of cells into single cells. Com-
bining the results obtained from the modified 3D distance transform and the 3D seed 
watershed algorithm allows additional verification of the number of cells that result from 
splitting. The size range of normal nuclei is determined automatically based on the size 
of the examined 3D image and the size of the analysed clusters of nuclei subjected to 
segmentation. For faster operation, background elimination and cell group splitting are 
performed on images with reduced sizes in the X-axis and the Y-axis. Finally, the cell 
nuclei are reconstructed after segmentation. The final shape of each reconstructed cell 
is corrected at 1:1 scale, taking into account the information about the intensity level 
inside each detected cell. As a result, surface inaccuracies resulting from image scal-
ing are significantly reduced. The developed method works very well for specimens of 
low, medium, and high confluency (Table 7) and is able to divide large clusters of nuclei 
consisting of several dozen adjacent cells (examples in Figs.  6d and 12b, c). However, 
the average F1-score and JI achieved by the 3DCellTracker were much lower than those 
achieved by the QCANet because the 3DCellTracker performed poorly on in speci-
mens with high confluency. Both DL models had overall worse performance than the 
proposed method (Tables 6 and 7). We reason that the proposed method worked better 
than DL models because the DL models are sensitive to spherical object shapes that they 
were trained with. Our data however, includes more arbitrary nuclear shapes (spherical, 
ellipsoid and half-moon) arising from experimental conditions.

The further improvement in performance may be related to the acceleration of the final 
shape adjustment algorithm, which, with a large number of cells, has a visible impact on 
the total analysis time. At the present stage, this algorithm does not use parallel compu-
tations, which has a large impact on its duration. For better verification of its effective-
ness, it seems reasonable to examine the segmentation effectiveness using ground-truth 
data prepared in the form of 3D masks.

Conclusions
The proposed method allows fully automatic segmentation of 3D cell specimens 
obtained from a confocal microscope. All processing steps are carried out in 3D, which 
makes it possible to eliminate the typical problems that occur during 2D segmentation 
(e.g. not taking into account information from adjacent layers). The obtained results, 
compared to other methods, demonstrate higher precision, specificity, F1-Score and a 
comparable JI (Table 6). In comparison with DL methods, the proposed method works 
faster (images were downsized to achieve similar voxels sizes), achieves better results 
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in JI, F1-Score, precision and other parameters. The duration of the proposed method 
is comparable or shorter than that of the reference methods (and when the final shape 
adjustment block is excluded, it is additionally shortened at the expense of a slight reduc-
tion of the JI). The advantage of the method is greater speed and efficiency compared 
to other methods and the use of global and local features at various stages of the algo-
rithm’s operation. The proposed algorithm can reliably segment nuclei in real and simu-
lated large stacks of 3D images of cells with various degrees of cell confluency. Owing to 
the local capture of image characteristics and the multiscale nature of 3D image process-
ing, our algorithm can satisfactorily cope with a variety of cell types, changes in nuclear 
morphology induced by cytotoxic drugs, and decreased fluorescence along the 3D stack.

Methods
Dataset

For this project, we reused a set of previously collected high-resolution image data. 
The method was developed using an independent set of 10 3D images (containing 521 
nuclei). For testing we used a separate set of 27 (from #1 to #27) 3D images (with 2,367 
nuclei). These images were acquired to investigate the expression of the 5-methylcyto-
sine marker in cancer cell lines treated with chemotherapeutics that inhibit DNA meth-
ylation. The set includes image z-stacks of treated and untreated cells of DU145 human 
prostate carcinoma, and treated and untreated HuH-7 carcinoma of the liver fixed on 
glass slides. Besides the 5-methylcytosine marker, the cells were counterstained with 
4’,6-diamidino-2-phenylindole (DAPI)—a common blue-fluorescent dye that binds 
to DNA. Staining was followed by imaging with a confocal laser-scanning microscope 
(TCS SP5 X Supercontinuum, Leica Microsystems Inc.). The imaging yielded z-stacks 
with 35–50 high-resolution 1576 × 1576px large serial optical sections with a voxel size 
of 120 nm × 120 nm × 250 nm (X-, Y-, and Z-axis) and 12 bit/px fluorescence intensity 
for each stain. DAPI and 5-methylcytosine signals were recorded in separate channels. 
For the numerical experiments described in this paper, we repurposed a set of 27 DAPI 
Z-stacks that represented DU145 cells and HuH-7 cells of low (up to 40 nuclei), moder-
ate (41–65 nuclei) and high confluency (73–190 nuclei), and with a high variability of 
nuclear staining intensity and texture [11]. The mid-optical section in each stack is sup-
plemented with ground-truth delineation to assess the segmentation performance. All 
2367 nuclei in the whole set of 3D images were outlined manually by an expert.

The specimens were very diverse: some of them showed an inhomogeneous back-
ground and disturbances in the outermost layers, thus making it difficult to separate 
cells from the background (Fig. 5b–d). Figure 5a additionally shows the obscuration that 
appears in some specimens, which makes it difficult to delineate the precise shape of 
cells. The direct application of a local or global threshold value for the whole specimen 
and all cells nuclei does not make effective separation of cluster of nuclei possible in all 
tested specimens. Two types of artifacts can be distinguished in the tested specimens: 
local noise in individual image layers as a result of the imaging method and imaged cell 
types, Fig.  5a; directional noise with a specific trend in the samples along the Z-axis, 
Fig. 5b, and in layers that are not near the microscope objective, Fig. 5c. In such cases, 
even manual setting of the background intensity threshold to simultaneously separate all 
cells from the background without affecting the nuclear shape to a great extent is difficult 
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or even impossible. The proposed method allows these problems to be eliminated, as 
shown in Fig. 5. This is possible because the threshold values are initially selected in two 
stages: globally for the entire specimen and then locally for the groups of cells, analysed 
separately. As the noise level in different areas of the specimen varies, the visibility of 
the cells is different. The second stage consists in performing proper 3D segmentation 
of the groups of cell nuclei that are formed after the background elimination. Since not 
every segmented cluster of nuclei is correct (i.e. it is not a single cell nucleus) and groups 
of adjacent cells nuclei appear in the image, it is necessary to divide such nuclei groups. 
The 3D watershed method, the analysis of the results from the modified 3D distance 

Fig. 5 Examples of images with a manually selected brightness threshold, and the common problems that 
occur in the specimens. The cell confluency varies from low, through medium, to high (a–d)

Fig. 6 Examples of background elimination and cluster of nuclei separation for specimens with different 
confluency (the cases from Fig. 5a–d, respectively)
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transform, as well as the 3D morphometric parameters of the cluster of nuclei were all 
used in the cell splitting procedure.

The results of background elimination and cluster of nuclei segmentation for the 
examples from Fig. 5 are presented in Fig. 6. The selected examples show that cell con-
fluency varies from low, through medium, to high (Fig. 5a–d). It can be seen that the 
background was eliminated correctly in each case. In some cases, after the background 
elimination, the actual single nuclei of cells as well as groups of adjacent cells are imme-
diately separated. In Fig. 6d, after removing the background, a very large cluster of nuclei 
containing several dozen cells is formed and requires separation. Small areas of residual 
background (e.g. Fig. 6a) will be removed at a later stage. Voxel clouds surrounding some 
cells (Fig.  5a) are also removed in the background elimination step. Figure  6a shows 
some selected groups of adjacent cells, the segmentation of which is discussed below 
and presented in Fig. 11 in the Segmentation and separation of cell groups section.

Figure 7 presents the above-discussed problems (related to several types of image dis-
ruption) using the profiles of the examined images. For the examples in Fig. 5, oblique 
profiles were made, which show how the cells in successive layers stand out against the 
noise. In order to better present the level and type of noise in the images, the histo-
gram was aligned. Figure 7a shows the noise over the entire image area. In Fig. 7b, noise 
appears in the vicinity of cells and is characterized by a trend similar to the profile direc-
tion. In the case of Fig. 7c, the noise level increases again in the upper right part of the 

Fig. 7 Examples of layers with noise and oblique profiles for all layers in the specimens. The noise level for 
specimens from Fig. 5a–d), respectively
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image. In Fig. 7d), the noise is relatively low, and the cells are clearly visible. At the same 
time, it can be observed that the noise level in most of the presented images is not equal 
across the entire profile (Fig. 7b–d).

Background elimination and nucleus segmentation

The first step is to prepare the images for segmentation. Due to the large size 
(1576 ×  1576 px) and the several dozen layers in the Z-axis, compared to the origi-
nals the size of the examined images was reduced by 50% (in the X and Y axes to 
788 ×  788 px) using the nearest neighbour method. The image size in the Z-axis 
remained unchanged. Initial scaling can reduce the analysis time and concentrate the 
nucleus voxels in the outermost layers, where their cluster of nuclei is significantly 
rarefied and may be poorly visible. Due to the large variation in the brightness and 
dynamics of images, scaling makes it possible to improve the visibility of cells by 
averaging the intensity values of voxels inside the cells. The thus-prepared images are 
then converted into a M3×3×3 sub-matrix sized 3 ×3× 3 voxels. This procedure enables 
analysis of the voxel and its surroundings in the examined image. Subsequently, each 
M3×3×3 is classified as background or cellular structure (cell nucleus or a cluster of 
nuclei). This classification is based on a quick thresholding operation with an auto-
matically determined global threshold. However, it proved to be impossible to estab-
lish a universal global threshold value that would effectively separate all cells from the 
background in all images. During the trials, it was observed that an experimentally 
selected threshold value of ThInt1 = 5% of the maximum intensity IMax (from the 3D 
matrix of the Im3D image) provided good background elimination and cell separa-
tion results in the examined images (in the case of 6 images, the nuclei of cells were 
correctly segmented in the first stage). For the other 21 images, this value was not 
optimal (too many groups of adjacent cells were formed) and further splitting was 
necessary. As a result of comparing the effectiveness of various threshold values ( ThInt 
from 5%, 10%, 15% to 20%), it was also established that a value of ThInt2 = 10% IMax is 
the maximum value that allows effective separation of nuclei without destroying their 
structure, which would prevent further segmentation. Therefore, it was assumed that 
the threshold value used for background elimination should not exceed 10% of the 
maximum intensity in the image. In order to determine the initial value of the global 
threshold, ThInt1 , for the classification of cell and background voxels (represented 
by M3×3×3 sub-matrices), several selected methods were tested, including our own, 
for which the algorithm yielded the best results. Figure 8 shows the results of back-
ground elimination and binary mask delineation for a number of selected automatic 
threshold determination methods based on the image histogram. Complex methods 
that combine several basic methods were also tested in the noise elimination pro-
cess, including anisotropic diffusion and background subtract rolling ball algorithms 
[33]. However, it turned out that their computational effort was significantly greater, 
and they had no influence on the obtained results. Therefore, we proposed our own 
method of determining the initial value of the global threshold, ThInt1 , to eliminate 
noise and background. This method is based on the assumption that the noise in the 
examined images is within a certain range of values (Eq. 1). On this basis, the image 
brightness range is determined in which the number of noise voxels is the highest. 
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This method yielded very good results in most images; it effectively responds to the 
noise trends in the image by increasing the value of the threshold, ThIntM1 . In the case 
of some images, it was impossible to further increase the threshold without damaging 
the nucleus structure. As a result of further tests, it was confirmed that the use of the 
triangle thresholding method [34, 35] made it possible in these cases to determine a 
greater threshold value without destroying the nucleus structure, ThIntM2 , as shown in 
Fig. 8.

where:

• NLevel (0.05) is the signal-to-noise level in the examined set of images [3, 36]
• X, Y, Z—dimensions of the 3D image along X,Y,Z axes
• x, y, z—voxel coordinates in 3D in the ranges x = 1, . . . ,X , y = 1, . . . ,Y  , z = 1, . . . ,Z

• Im3D—is the examined 3D image
• Th(i) ∈ {0.05 ...0.2} are the successive values of the threshold for which background vox-

els are counted

(1)

VTh(x, y, z)(i) =

{

1 if Th(i) − NLevel < Im3D(x, y, z) < Th(i)
0 otherwise

VoxCount(i) =
∑

VTh(i)

ThInt1M1 = max(VoxCount(i))

Fig. 8 Method for determining the background threshold based on the image intensity histogram, and 
comparison of the results of different methods for the selected layer. The results for two selected specimens 
(a, b)
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As a result, both methods were combined and a solution was adopted in which ThInt1 is 
determined as the maximization of the results of two automatic threshold determination 
methods (Eq. 2), i.e. the method proposed by the authors (Eq. 1) and triangle thresholding 
[34, 35].

where:

• ThIntM1—threshold determined by the method proposed by the authors (Equation 1)
• ThIntM2—the threshold value equals 10% IMax

Automatically computed ThInt1 values (i.e.about 5%, 6%, 8%, 10%) depend on the image 
content. In case of some images, the computed ThInt1 allows to fully segment the image 
and the algorithm does not reach the second stage which requires computing ThInt2 . 
After determining the initial ThInt1 value, the algorithm starts image segmentation with 
the ThInt1 * IMax value; it then eliminates the background and detects cluster of nuclei 
(Eq.  3). At the same time, the resulting matrices MInitResult(x, y, z) that represent the 
intensity values are created for each MResult(xR, yR, zR) element which is a cell nucleus or 
cluster of nuclei.

where:

• ThInit can take values in the range 0-1
• IMax—maximum brightness in the 3D image

Next, each segmented cluster of nuclei is checked for size and shape as well as the pos-
sibility of its further division; it is then classified as NCS or NCG . The assessment criteria 
for these cluster of nuclei are described in Eq. (4):

where:

• NCVol–3D nuclear volume
• NCVolConv—convex hull volume of the 3D nucleus
• NCSurf—3D nucleus surface
• NCSpher—3D nucleus sphericity
• NCSolidThr—threshold value of 3D solidity = 0.95
• NCSpherThr—threshold value of 3D sphericity = 0.85

(2)ThInt1 = max([ThIntM1,ThIntM2])

(3)
M3x3x3(xR, yR, zR) = mean(Im3DSc(x, y, z))

MResult(xR, yR, zR) =

{

1 if M3x3x3(xR, yR, zR) > IMax ∗ ThInit
0 otherwise

(4)

NCSolid =
NCVol

NCVolConv
≥ NCSolidThr

NCSpher =

3
√

36 ∗ π ∗ NCVol
2

NCSurf
≥ NCSpherThr

NCVolMin ≤ NCVol < NCVolMax
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• NCVolMin and NCVolMax—min and max values of the 3D nuclear volumes in the 
training set

We characterized the nuclear size and shape by sphericity, solidity and volume which 
are properties of ellipsoid [37, 38]. To adjust NCSolidThr , NCSpherThr , NCVolMin values , we 
measured JI and F1-score after substituting values from a wide range. The final values for 
NCSolidThr , NCSpherThr and NCVolMin were picked when JI and F1-score were the highest 
(Tables 1, 2, and 3).

Any NCG segmented structure that does not meet the criteria for a single cell 
nucleus is reanalysed. This time, the algorithm uses a larger threshold: ThInt2 * IMax . 
As a result of increasing the local threshold, groups of cells (undivided in the first 
stage) are slightly reduced, which improves their separation from one another. The 
cells are again subjected to splitting. The proposed method uses the variable local 
threshold value and distance transform applied to the region in the image which con-
tains clusters of cells in order to split them. It improves the efficiency of cell division 
and segmentation in specimens where the visibility of cells varied greatly or there was 
noise in a specific direction.

In the case of specimens in which the visibility of all cells was similar, the cells were 
easy to separate, there was no interference (e.g. in the form of a directional increase 
in noise level), and NCS were efficiently isolated by the algorithm in the first step. 
When large groups of cells were in contact with each other after thresholding with 
global ThInt1 ∗ IMax , only the remaining NCG cluster of nuclei were reanalysed (with 
an increased threshold of ThInt2 ∗ IMax ). The use of the variable local threshold made 
it possible to avoid too much reduction of the area of all cells in the specimen and to 
reduce only densely clustered cells nuclei.

Figure 9 below shows the case of a high-content specimen for which the algorithm, 
in the first step ( ThInt1 ∗ IMax threshold), segments the subset of single cells correctly, 
and the remaining groups that were not successfully segmented (marked in black) are 
transferred to the second stage ( ThInt2 ∗ IMax threshold; Fig. 9b). It can be seen that in 
the case of high cell confluency, not all cluster of nuclei may be segmented correctly 
in the first step and may contain adjacent sub-nuclei, as shown in Fig. 9b).

Fig. 9 Tested specimen (a), single cells nuclei ( NCS ) correctly separated and groups of nuclei ( NCG—in black) 
transferred for further splitting (b)
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Only the remaining NCG structures (cluster of nuclei) that are too large and those 
that could not be separated in the first step (the cases from Fig. 9b, shown in Fig. 10a) 
are re-segmented (with a higher threshold).

Figure  10 shows the second step of division of the remaining specimen cluster of 
nuclei with the threshold ThInt2 . The application of a higher local threshold value 
reduced the cell shapes, which enabled their separation. The cluster of nuclei of 
the cells adjacent in the first step (Fig.  10a) are now segmented correctly (Fig.  10b) 
(marked with different colours).

Segmentation and separation of nucleus groups

The segmentation in the MResult matrix is performed locally based on the shape, size 
criteria, and verification of the possibility of division by combining the results of the 3D 
distance transform [39, 40] and the 3D watershed, according to the following assump-
tions regarding the parameters of a single nucleus: NCS and Equation (4). The following 
parameters, which determine the correct shapes of nuclei in 3D, were designated experi-
mentally on the basis of an additional training set that comprised 10 images with over 
520 nuclei (the final values were estimated based on Tables 1, 2, 3, and 4):

• nucleus solidity parameter NCSolid , as in Eq. (4)
• nucleus sphericity parameter NCSpher , as in Eq. (4)
• nuclear volume parameter NCVol ranging from NCVolMin = 5 ∗ size(Im3DSc) ∗ 10

−6 
to NCVolMax = 2 ∗ size(Im3DSc) ∗ 10

−2 , related to the 3D image resolution, as in 
Equation (4)

• parameter of the size of the separated structure ( imDist23 ) on the basis of the modi-
fied 3D distance map according to the relationship: imDist23 = (imDist2 + 2 ∗ imDist3)

The nucleus group division algorithm is based on a modified 3D distance transform 
( imDist23 matrix, which includes only currently analysed nucleus group) that takes into 
account the disproportions in the sizes of the images on the X, Y and Z axes. The val-
ues of the standard 3D distance transform are significantly reduced by the values in the 
Z axis, which makes it impossible to use this method directly to assess the size of the 
examined nuclei in 3D.

After separating the cell nucleus structures from the background, the algorithm classi-
fies each structure as a single nucleus or a group of nuclei. Two types of nuclei structures 

Fig. 10 Second step of analysis of the high cell confluency specimen (a); division of the remaining NCG 
cluster of nuclei from Fig. 9b, marked in black (b)
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may appear at this stage. The first one is a nucleus that meets the shape and size criteria; 
it is classified as a single, properly separated nucleus, NCS . The second type is a struc-
ture which does not meet the shape and size criteria, NCG . The algorithm attempts to 
divide it by analysing the results of the 3D distance transform (based on imDist23 ) and 
the 3D seed watershed. When the structure is not divided (the number of generated 
seeds is equal to 1 but the structure is greater than the threshold value, NCVol—Eq. 4); 
this means that it is a large structure of adjacent nuclei. Then, the entire NCG cluster of 
nuclei is subjected to splitting with a higher local threshold, ThInt2 . The process of cell 
nucleus division works the same as for ThInt1 ; only the input data differ. These are the 
nucleus structures separated from the background that were created after applying the 
local threshold ThInt2.

The analysed structure (cluster of nuclei or single nucleus) can be classified as NCS in 
four cases: 

(a) in the first stage, when NCSolid ≥ 0.95 , NCSpher ≥ 0.85 and NCVol is in the range 
from NCVolMin to NCVolMax;

(b) when it does not meet point (a) but is not too large and cannot be divided;
(c) when it is divided into sub- nuclei, all sub-nuclei are added (as NCSingle);
(d) when it was not divided in the first stage (at ThInt1 ), or it was too large and was not 

divided in the second stage (at ThInt2 ) and there is no further possibility of splitting 
it or increasing the threshold.

Figure 11 shows the steps of segmentation of the NCG to be divided. After determin-
ing the value of the modified 3D distance transform ( imDist23 ) in the section of the 3D 
matrix ( MResult(NCGID) ) containing the tested NCG cluster of nuclei, the acceptable size 
of nuclei for splitting is calculated with Eq. (6). The performed tests resulted in adopt-
ing the limit values that define the minimum and maximum cell sizes (in relation to the 
value of the 3D distance transform—Eq.  5 for the examined cluster of nuclei—NCG ). 
These values allow the separation of the generated seeds of the created cells that result 
from the analysis of voxel sets in different cell groups:

The analysis of each NCG cluster of nuclei begins with a threshold value for a modified 
3D distance map equal to distMaxTh and decreasing to distMinTh (values are determined 
automatically for each analysed nuclei group—the best factor value is estimated based 
on Table 4 ). The iteration step was �Dist = −0.2 (the fastest analysis rate and nucleus 
division efficiency).

Figure 11 presents the results of splitting two nucleus groups with different degrees 
of connection. Figure  11a, b represents the NCG cluster of nuclei from the example 
in Fig.  6a (cluster of nuclei marked with a red frame). Both cluster of nuclei are cor-
rectly separated from the background, so the algorithm tries to divide them at a later 
stage. In the next stages (Fig. 11c, d), it can be seen that as the threshold size for distTh 
decreases, and new seeds are generated that represent the cell centres within the group. 

(5)
distMaxTh = max(distanceTransform(MResult_NCG))

distMinTh = 0.5 ∗ distMaxTh
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Fig. 11 Steps of splitting some selected cell groups from Fig. 6a (a, b). The selected iterations of the 
specimen (a–c, e). The selected iterations of the specimen (b, d–h). The results of splitting two selected cell 
gropus (i, j)
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For different cluster of nuclei, the number of iterations necessary to generate seeds is dif-
ferent: Fig. 11c (2 iterations), Fig. 11d (10 iterations).

As the distTh value decreases in subsequent iterations, the size of the cell seed in the 
group increases and new ones may appear. Therefore, at this stage it is required to clas-
sify each seed as newly created or previously generated (each seed was enlarged in the 
next iteration). All seeds analysed in each iteration are classified as existing or new ones. 
The criterion used was the distance between the seed centroids (from the previous and 
actual iterations) and the sum of the values of the 3D distance map in the centroids of 
these seeds—Eq. 6. The list of generated seeds is then passed to the 3D seed watershed 
method, whose task is to separate the voxels of nucleus groups—NCG . Due to such ini-
tialization of the 3D seed watershed function, the efficiency of splitting is improved, 
which is particularly evident in the case of two cells that are very close together (Fig. 11a 
and the result in Fig. 11e). Figure 11c, d show the seeds generated in subsequent itera-
tions. The results of the last iteration are used to initialize segmentation by the 3D seed 
watershed. The division of the NCG cluster of nuclei generates the resulting set of NCS

—Fig. 11e–f. The cluster of nuclei from Fig. 11a is split into two nucleus and the cluster 
of nuclei from Fig. 11b is split into 10 nucleus.

where:

• distCentrAct−Prev—Euclidean distance between the seed centroids from the actual 
and previous iterations

• imDist(Prev)—value of the function of the 3D image distance in the cell centroid in the 
previous iteration

• imDist(Act)—value of the function of the 3D image distance in the cell centroid in the 
actual iteration

Figure 12 presents another case of segmentation of a very large NCG1 cluster of nuclei 
(containing several dozen sub-nuclei and several dozen NCS—Fig.  12b). This example 
shows how effectively the proposed method segments such large cluster of nuclei. Based 
on the results of the 3D distance transform in the entire NCG1 , the algorithm automati-
cally determines the size range of the nuclei contained in this cluster of nuclei. It then 
attempts to divide the high-content NCG1 cluster of nuclei. Some nuclei in the specimen 
are already separated in the first step (for ThInt1 ); the undivided ones (black—Fig. 12c) 
are again subjected to splitting (after increasing the local threshold to ThInt2 ). Dividing 
such a high-content cluster of nuclei directly using one method, e.g. 3D watershed, does 
not provide results as good as those of the proposed procedure, which combines the 
modified 3D distance transform, 3D watershed and adaptive cells nuclei segmentation. 
In the end, it can be observed that all individual nuclei are separated in the specimen in 
Fig. 12a, regardless of the different degrees of connection between them (Fig. 12d).

(6)seedNew =

{

false if distCentrAct−Prev < imDist(Act) + imDist(Prev)

true if distCentrAct−Prev ≥ imDist(Act) + imDist(Prev)
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Adjustment of nuclear borders

The last stage of 3D image analysis comprises nucleus mask upsampling from 1:3 to 
1:1 scale and nucleus surface refinement at 1:1 scale. Voxels inside cells are upsampled 
using the nearest neighbour interpolation. Initially, the surface voxels are upsampled 
in the same manner. However, since such upsampling yields a surface contour that is 
3× 3× 3 voxels thick, the contour thickness is reduced, and the nucleus shape is refined 
by surface voxel intensity thresholding. Voxels with intensity higher than ITh ∗ NCMeanInt 
(where NCMeanInt is the mean cell intensity excluding the surface, and ITh is the thresh-
old) are merged with the cell body. Voxels that do not meet this criterion are assigned 
to the background. ITh was set experimentally using the training set: ITh values higher 
than 0.3 significantly reduced the nucleus volume. Lower ITh values had no effect 
on the final nucleus shape. Therefore, we set ITh at 0.3. By applying this approach, the 
mean JI increased on average by 6% in the test set, finally reaching 82% (Table 6). Fig-
ure 13 shows how this approach performed. As a result, the final shape and volume of 
the reconstructed cell more closely matches the expert’s mask (Fig.  f13c–f), and the JI 
reaches higher values.

Evaluation of results

In order to evaluate the segmentation accuracy, two assessment criteria previously used 
in the literature were applied [11, 41, 42]. The first criterion estimates the number of cor-
rect and incorrect cell detections [41]; the second estimates the accuracy of tracing [42]. 
Accuracy was assessed on the basis of 27 ground-truth images containing nuclei out-
lined by the expert (2367 in total). The expert’s masks generated in 2D layers were com-
pared with the 3D binary masks of the segmented nuclei generated by the algorithm. The 

Fig. 12 Segmentation of a large high-content complex cluster of nuclei. a The selected specimen, b first 
stage of segmentation–with global threshold (c) second stage–the segmentation of undivided cluster of 
nuclei with local threshold (d) final result
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accuracy of the algorithms was assessed by comparing the masks in the layers selected 
by the expert.

The subsequent rows in Fig.  14 show the examined images; binary masks manually 
delineated by the expert; binary masks generated by the algorithm; and masks delineated 
by the algorithm and the expert combined in one image for each case.

The algorithm, after a full 3D analysis of specimens, nuclei segmentation and recon-
struction, compared the results for the layer selected by the expert; for this layer, it 
calculated the effectiveness, precision, specificity, F1-Score and JI. The above images 
(Fig. 14) show cellular specimens of varying confluency, high background noise, and the 
segmentation results obtained with the proposed algorithm. The cases in which the algo-
rithm segmented the cell correctly are marked in green, whereas the cases in which the 
algorithm failed to effectively separate a group of cells or divided a single nucleus are 
highlighted in yellow. Red and blue are cases in which the mask delineated by the algo-
rithm was too small or did not agree with the mask selected by the expert or was too 
small (less than 50% of the area of the expert’s mask).

It can be seen that in each case the background is completely eliminated, and the 
nuclei are properly separated from the background. There is a strong agreement 
between the generated binary masks of cells and the masks selected by the expert. The 

Fig. 13 Example of final nucleus shape adjustment and surface voxel classification: a, d Voxels of the cell 
surface after classification at 1:1 scale (cell voxels—white; background voxels—red); b, e comparison with 
the expert’s mask without shape adjustment; c, f comparison with the expert’s mask after shape adjustment 
(white—expert’s mask)
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numbers of cell nuclei determined by the proposed method and the expert are almost 
identical. The algorithm rarely detects areas where cells are not actually present. In a 
few cases, it can be observed that the larger masks of cells delineated by the algorithm 
do not correctly cover the masks of nuclei traced by the expert (yellow in the bottom 
row). This is due to the fact that the algorithm did not properly separate the nuclei in 
the image. Therefore, when a large cell delineated by the algorithm covers more than 
50% of a nucleus selected by the expert, it is not rechecked in terms of how much it 
covers another nucleus when calculating the effectiveness and agreement between the 
masks. TP refers to cases in which the algorithm correctly selected a nucleus mask 
which agreed (for over 50% of the area) with the mask selected by the expert. FP cases 
occur when the algorithm located an area that had been misclassified as a cell, or a 
single nucleus was unnecessarily divided. When comparing the algorithm results with 
the ground truth, if no nucleus matched the selected mask or the algorithm did not 
divide the nucleus group successfully, the cases were classified as FN. The JI for each 
nucleus was calculated as the quotient of the intersection and the sum of the binary 

Layers selected by the expert, and presentation of distortions in individual images

Binary masks delineated by the expert manually

Masks delineated automatically by the proposed algorithm

Combination of binary masks delineated by the algorithm and the expert

Fig. 14 Example results of the analysis: examples from Fig. f2e, f, g, h. TP cases are marked in green; not 
properly separated nuclei are in yellow; FN cases are red; cases when the algorithm designated too small an 
area in relation to GT or FP cases are blue
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masks of the cell segmented by the algorithm and marked by the expert. In contrast, 
the mean JI in the test image was calculated as the quotient of the sum of JI for all 
cells and the number of nuclei (Eq. 7).

where:

• JIAvg—average JI in the examined specimen
• Ai—binary mask of the i-th cell delineated by the algorithm
• Bi—binary mask of the i-th cell delineated by the expert
• ccount—number of detected nuclei

(7)JIAvg =

∑ccount
i=1

Ai∩Bi
Ai∪Bi

ccount

Results of QCANet method

Results of 3DCellTracker method

Results of Proposed method

Fig. 15 Comparison of segmentation results by reference methods and the proposed method. TP cases are 
marked in green; not properly separated nuclei are in yellow; FN cases are red; cases when the algorithm 
designated too small an area in relation to GT or FP cases are blue.

Table 8 Results obtained for the images from Fig. 14

Image TP FP FN Prec Sens Alg.Num GT.Num F1-score JI

Figure 14a 77 1 8 0.987 0.905 78 85 0.944 0.849

Figure 14b 39 0 1 1 0.975 39 40 0.987 0.856

Figure 14c 78 2 16 0.975 0.829 80 94 0.896 0.841

Figure 14d 88 3 6 0.967 0.936 91 94 0.951 0.847
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The results of the efficacy evaluation using the number of correct and incorrect detec-
tions as well as the JI are presented in Table 8 for the cases from Fig. 14.

The results obtained for all the images made it possible to compare the effectiveness 
of the proposed method with other reference solutions (described in the “Results” 
section—Tables 6, 7).
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