

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On the dependence on a parameter of solutions of a linear functional equation

Author: Stefan Czerwik

Citation style: Czerwik Stefan. (1973). On the dependence on a parameter of solutions of a linear functional equation. "Prace Naukowe Uniwersytetu Śląskiego w Katowicach. Prace Matematyczne" (Nr 3 (1973), s. 25-30)

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

STEFAN CZERWIK

ON THE DEPENDENCE ON A PARAMETER OF SOLUTIONS OF A LINEAR FUNCTIONAL EQUATION

1. INTRODUCTION. In the present paper we are concerned with the linear functional equation

$$
\begin{equation*}
\varphi[f(x, t)]=g(x, t) \varphi(x)+F(x, t), \tag{1}
\end{equation*}
$$

where $\varphi(x)$ is an unknown function and $f(x, t), g(x, t), F(x, t)$ are known real functions of real variables. The variable t is regarded as a parameter.

We shall prove that under some assumptions concerning the given functions $f(x, t), g(x, t), F(x, t)$, the solution $\varphi(x, t)$ of equation (1) which is continuous with respect to x is also continuous with respect to the couple of variables x, t.

For the natural parameter the continuous dependence of solutions of equation (1) on given functions has been investigated in [4], [2], and for the more general equation

$$
\varphi(x)=H_{n}\left(x, \varphi\left[f_{n}(x)\right]\right)
$$

in [5].
2. Let us introduce the notations:

$$
f^{0}(x, t)=x, \quad f^{n+1}(x, t)=f\left[f^{n}(x, t), t\right], \quad n=0,1, \ldots,
$$

$$
\begin{equation*}
G_{n}(x, t)=\int_{v=0}^{n-1} g\left[f^{v}(x, t), t\right], \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\bar{F}(x, t)=F(x, t)+c(t)[g(x, t)-1] . \tag{3}
\end{equation*}
$$

The functions f, g, F will be subjected to the following conditions:
(i) The function $f(x, t)$ is continuous in $\Delta=<(a, b) \times T$, where T is an interval (finite or not), $a<f(x, t)<x$ in $(a, b) \times T, f(a, t)=a$ for $t \in T$ and, for every fixed $t \in T, f$ is strictly increasing in (a, b).
(ii) The function $g(x, t)$ is continuous in $\Delta, g(x, t) \neq 0$ in Δ.
(iii) The function $F(x, t)$ is continuous in Δ.
(iv). There exists a function $c(t)$ such that for every closed interval $<\alpha, \beta>\subset T$ there exist an interval $<a, a+d>\subset<a, b>, d>0$, a function $B(x, t)$ continuous with respect to the variable t in $<\alpha, \beta>$ and bounded in $<a, a+d>\times<\alpha, \beta>$, and a constant $0<\Theta<1$ such that the inequalities

$$
\begin{gather*}
|F(x, t)| \leqslant B(x, t), \tag{4}\\
B[f(x, t), t] \leqslant \Theta B(x, t)
\end{gather*}
$$

hold in $<a, a+d>\times<\alpha, \beta>$.
(v) There exists a constant $K>0$ such that

$$
\begin{equation*}
\frac{1}{G_{n}} \frac{1}{(x, t)} \leqslant K \text { for }(x, t) \in \Delta \text { and } n=1,2, \ldots \tag{5}
\end{equation*}
$$

For a fixed $t \in T$ there are the following three possibilities:
(A) The limit

$$
\begin{equation*}
G(x, t)=\lim _{n \rightarrow \infty} G_{n}(x, t) \tag{6}
\end{equation*}
$$

exists, $G(x, t)$ is continous and $G(x, t) \neq 0$ in $<a, b)$.
(B) There existts an interval $J \subset(a, b)$ such that $\lim G_{n}(x, t)=0$ uni$n \rightarrow \infty$
formly in J.
(C) Neither (A) nor (B) occurs.

Now we shall prove
THEOREM 1Suppose that hypotheses (i)-(v) are fulfilled. If, moreover, for every $t \in T$ case (C) occurs, then the solution $\varphi(x, t)$ of equation (1) which is continuous with respect to x, is also continuous with respect to the couple of variables x, t in Δ. It is given by the formula:

$$
\begin{equation*}
\varphi(x, t)=\varphi_{o}(x, t)+c(t) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{o}(x, t)=-\sum_{n=0}^{\infty} \frac{F\left[f^{v}(x, t), t\right]}{G_{v+1}(x, t)} . \tag{8}
\end{equation*}
$$

Proof. On account of theorem 9 in [1] for every fixed $t \in T$ there exists exactly one function $\varphi(x, t)$ satisfying equation (1) and continuous in $<a, b$). It is given by formulas (7) and (8).

Let $<a, p>\times<\alpha, \beta>=I \subset \Delta$ be arbitrarily fixed. In view of (i) we have $\lim f^{n}(x, t)=a$ uniformly in I, hence there is an integer N such that

$$
\begin{equation*}
f^{n}(x, t) \leqslant a+d \text { for } n \geqslant N \text { and }(x, t) \in I . \tag{9}
\end{equation*}
$$

According to $(i v,(v),(9)$ we have have for $v \geqslant N$ and $(x, t) \in I$
$\left\lvert\, \begin{aligned} & \vec{F}[f(x, t), \tau] \\ & G_{v+1}(r, t)\end{aligned} \leqslant K B\left[f^{v}(x, t), t\right] \leqslant K \Theta^{v-N} B\left[f^{N}(x, t)\right] \leqslant K \Theta^{v-N} \sup B(x, t)\right.$.
This shows that series (8) uniformly converges in I and, since I has keen arbitrary, the function $\varphi_{\mathrm{o}}(x, t)$ is continuous in 4 .

Now we shall prove that the function $c(t)$ is continuous in T. Let $t_{o} \in T$ ke fixed and let $\left\{t_{n}\right\}(n=1,2, \ldots)$ be any sequence such that $t_{n} \in T$ and $i_{n} \rightarrow t_{0}$. Sirce case (C) occurs, there exists a point $x_{o} \in\langle a, a+d\rangle$ such that $g\left(x_{0}, t_{0}\right) \neq 1$, and by (ii) there exists a number $M>0$ such that $g\left(x_{o}, t_{o}\right) \neq 1$ for $n>M$. In view of (3) and (4)

$$
\left|F\left(x_{0}, t_{n}\right)+c\left(t_{n}\right)\left[g\left(x_{0}, t_{n}\right)-1\right]\right| \leqslant B\left(x_{0}, t_{n}\right),
$$

and since $\left\{F\left(x_{0}, t_{n}\right)\right\}$ and $\left\{g\left(x_{o}, t_{n}\right)\right\}$ converge (the latter to $g\left(x_{o}, t_{o}\right) \neq 1$), the condition $g\left(x_{0}, t_{n}\right) \neq 1$ for $n>M$. implies the boundedness of the sequence $\left\{c\left(t_{n}\right)\right\}$.

Let us suppose that $\left\{c\left(t_{n}\right)\right\}$ does not converge; then there exist increasing sequances of integers $\left\{n_{k}\right\}$ and $\left\{n_{v}\right\}$ such that

$$
c\left(t_{n_{k}}\right) \underset{k \rightarrow \infty}{\rightarrow} s \text { and } c\left(t_{n_{o}}\right) \rightarrow q, s \neq q,
$$

and consequently

$$
\begin{aligned}
& \left|F\left(x, t_{o}\right)+s\left[g\left(x, t_{0}\right)-1\right]\right| \leqslant B\left(x, t_{0}\right), \\
& \left|F\left(x, t_{0}\right)+q\left[g\left(x, t_{0}\right)-1\right]\right| \leqslant B\left(x, t_{0}\right) .
\end{aligned}
$$

Hence we conclude that equation (1) has for $t=t_{o}$ two different solutions which is imposible (cf. [1], theorem 9). Since t_{o} has been arbitrary, the function $c{ }^{(t)}$) is continuous in T . This completes the proof of the theorem.

We shall show by an example that the conditions (iv) in theorem 1 is essential.

Example. Take $\langle a, b)=<0,1), T=<0,1>$ and consider the equation

$$
\begin{equation*}
\varphi\left(\frac{x}{x+1}\right)=(1+x) \varphi(x)-x+x^{t+1} \tag{10}
\end{equation*}
$$

We have

$$
G_{n}(x, t)=\prod_{v=0}^{n-1}\left(1+\frac{x}{1+v x}\right), G_{n}(x, t) \geqslant 1,
$$

If $t \in(0,1)$, the series

$$
\sum_{n=0}^{\infty} \frac{F\left[f^{n}(x, t), t\right]}{G_{n+1}(x, t)}
$$

converges if $c(t) \equiv 1$ (cf. [1]), whence

$$
\text { for } t>0: \varphi(x, t)=1-\sum_{n=0}^{\infty} \frac{F\left[f^{n}(x, t), t\right]}{G_{n+1}(x, t)} \text { and } \varphi(0, t)=1 \text {, }
$$

for $t=0: \varphi(x, 0)=0$ and $\varphi(0,0)=0$,
and consequently $\varphi(x, t)$ is not continuous at $t=0$, whence, in view of theorem 1, condition (iv) cannot be fulfilled.

3. We put

$$
\begin{equation*}
\left.H_{n}(x, t) \stackrel{\mathrm{dd}}{=} \sum_{i=0}^{n-2}\right|_{v=i+1} ^{n-1} g\left[f^{v}(x, t), t\right] \cdot F\left[f^{i}(x, t) t\right] . \tag{12}
\end{equation*}
$$

Let $x_{0} \in(a, b)$ be arbitrarily fixed. Put

$$
\begin{equation*}
\delta_{0} \stackrel{\mathrm{dt}}{=}\left\{(x, t): x \in<f\left(x_{0}, t\right), x_{0}>, t \in T\right\} . \tag{13}
\end{equation*}
$$

Suppose that:
(vi) For every interwal $<a, \beta>\subset T$ there exists an $\bar{x}_{0} \in a, b$) such that

$$
\lim _{n \rightarrow \infty} G_{n}(x, t)=\lim _{n \rightarrow \infty} H_{n}(x, t)=0
$$

uniformly in $\delta=\left\{(x, t): x \in<f\left(\bar{x}_{0}, t\right), \bar{x}_{0}>, t \in<\alpha, \beta>\right\}$.
Now we shall prove
THEOREM 2. Suppose that hypotheses (i), (ii), (iii), (vi) are fulfilled, and let $c(t)$ be a continuous function in T such that $\bar{F}(a, t)=0$. Then equation (1) has in Δ a continuous solution depending on an arbitrary function. All these solutions fulfil the condition

$$
\varphi(a, t)=\mathrm{c}(t) \quad \text { for } \quad t \in T .
$$

Proof. We put

$$
\begin{equation*}
\psi(x, t)=\varphi(x, t)-c(t) \text { for } \quad(x, t) \in \Delta . \tag{i5}
\end{equation*}
$$

If $\varphi(x, t)$ is a continuous solution of equation (1) in Δ fulfilling condition (14), then $\psi(x, t)$ is a continuous solution of the equation

$$
\begin{equation*}
\psi[f(x, t), t]=g(x, t) \psi(x, t)+\bar{F}(x, t) \tag{16}
\end{equation*}
$$

such that $\psi(a, t)=0$ for $t \in T$, and conversely. By induction we obtain from (16)

$$
\begin{equation*}
H_{n}(x, t)=\psi\left[f^{n}(x, t), t\right]-G_{n}(x, t) \psi(x, t)-\bar{F}\left[f^{n-1}(x, t), t\right] . \tag{17}
\end{equation*}
$$

For every function $\psi_{0}(x, t)$ continuous in δ_{0} and fulfilling the condition

$$
\psi_{0}\left[f\left(x_{0}, t\right), t\right]=g\left(x_{0}, t\right) \cdot \psi_{0}\left(x_{0}, t\right)+\bar{F}\left(x_{0}, t\right), t \in T,
$$

there exists a unique function $\psi(x, t)$ continuous and satisfying equation (16) in (a,b)×T and such that $\psi(x, t)=\psi_{0}(x, t)$ in $\left.\delta_{0}{ }^{1}\right)$. We put $\psi(a, t)=$ $=0$. It is enough to prove that for every $t_{0} \in T$

$$
\begin{equation*}
\lim _{\substack{(x, t) \rightarrow\left(a, t_{0}\right) \\(x, t) \in \Delta}} \psi(x, t)=0 . \tag{18}
\end{equation*}
$$

Let us fix an arbitrary $t_{0} \in T$ and $<\alpha, \beta>\subset T$ such that $t_{0} \in<\alpha, \beta>$. We put $L=\sup |\psi(x, t)|$. By $(v i)$, the condition $F(a, t)=0$ and the conδ
tinuity of the function $F(x, t)$ in Δ, for every $\varepsilon>0$ there exists an N such that

$$
\begin{align*}
& \left|H_{n}(x, t)\right|<\frac{\varepsilon}{3} \text { in } \delta, n \geqslant N \tag{19}\\
& \left|G_{n}(x, t)\right|<\frac{\varepsilon}{3} L \text { in } \delta, n \geqslant N
\end{align*}
$$

$$
\begin{equation*}
|F(x, t)|<\frac{\varepsilon}{3} \text { in }\left\{(x, t): x \in<a, f^{N-1}\left(\bar{x}_{0}, t\right)>, t \in<\alpha, \beta>\right\} \tag{21}
\end{equation*}
$$

Let $(x, t) \in \bar{\delta}=\left\{(x, t): x \in\left(a, f^{N}\left(\bar{x}_{0}, t\right)\right), t \in<a, \beta>\right\}$. There exist an $\ddot{x} \in<f\left(\bar{x}_{0}, t\right), \bar{x}_{0}>$ and $n \geqslant N$ such that $x=f^{n}(\bar{x}, t)$. (17) gives then

$$
\psi(x, t)=H_{n}(\bar{x}, t)+G_{n}(\bar{x}, t) \psi(\bar{x}, t)+\bar{F}\left[f^{n-1}(\ddot{x}, t), t\right]
$$

whence according to (19)-(21)

$$
|\psi(x, t)|<\varepsilon \text { in } \delta
$$

which proves relation (18).
If φ_{1} and φ_{2} are continuous solutions of equation (1), then $\varphi(x, t)=$ $=\varphi_{1}(x, \bar{t})-\varphi_{2}(x, t)$ is a continuous solution of the equation

$$
\varphi[f(x, t), x]=g(x, t) \varphi(x, t)
$$

From [1] it follows that for every fixed $t \in T$ we have $\varphi(a, t)=0$ and consequently $\varphi_{1}(a, t)=\varphi_{2}(a, t)=c(t)$, which completes the proof.

Remark. Theorems 1 and 2 are also true for the equation

$$
\varphi\left[f\left(x, t_{1}, \ldots, t_{n}\right)\right]=g\left(x, t_{1}, \ldots, t_{n}\right) \varphi(x)+F\left(x, t_{1}, \ldots, t_{n}\right)
$$

[^0]
REFERENCES

[1] B. Choczewski and M. Kuczma, On the ,indeterminate case" in the theory of a linear functional equation, Fundamenta Mathematicae 58 (1966), 163-175.
[2] S. Czerwik: On the continuous dependence of solutions of some functional equation on given functions Ann. Polon Math. 24 (1971), 247-252.
[3] J. Kordylewski and M. Kuczma: On some linear functional equation, Ann. Polon. Math. 9 (1960), 119-136.
[4] J. Kordylewski and M. Kuczma: On the continuous dependence of solutions of some functional equations on given functions I, Ann. Polon. Math. 10 (1961), 41-48.
[5] J. Kordylewski and M. Kuczma: On the continuous dependence of solutions of some functional equations on given functions II, Ann. Polon. Math. 10 (1961), 167-174.

STEFAN CZERWIK

ZALEZNOSĆ OD PARAMETRU ROZWIĄZAŃ LINIOWEGO ROXNANIA FUNKCYJNEGO

Streszczenie

W pracy dowodzi się twierdzenia 1 o istnieniu i jednoznacznosci rozwiązañ ciaglych równania (1) w zbiorze $\Delta \mathrm{w}$ przypadku (C). Podaje się przykład dowodzący istotności założenia (iv)

Dowodzi się także twierdzenia 2 o istnieniu rozwiązań ciąglych w $\Delta \mathrm{w}$ przypadku (B) zależnych od dowolnej funkcji.

Oddano do Redakcji 11. 3. 1971 r.

[^0]: ${ }^{1}$) The proof of this fact is analogous to the proof of theorem 1 in [3] and is therefore omitted.

