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In this paper we continue our recent analysis [K. Haydukivska et al., J. Mol. Liq., 2021, 328, 115456] of complex
molecules with two branching points at both ends of the linear backbone with 𝑓1 and 𝑓2 side arms starting
from them, known as the pom-pom polymers. Here, we analyze the asymmetric case, 𝑓1 ≠ 𝑓2, by applying both
the analytical approach, based on the direct polymer renormalization, and computer simulations using both
dissipative particle dynamics and Monte Carlo methods. We study the role played by the molecular asymmetry
of average polymer conformations, considering the infinite dilution regime and good solvent conditions.The
quantitative estimates are reported for the set of universal size and shape characteristics of such molecules and
for their individual branches, all the functions of 𝑓1 and 𝑓2. In particular, we evaluate the size ratio of the gyration
radii of symmetric and asymmetric pom-pom topologies with the same molecular weight and quantitatively
reveal an increase of the effective size of a molecule caused by its asymmetry. We also introduce and analyse
the asymmetry factor and estimate the shift of the center of mass caused by the presence of side stars, which
can serve as another characteristic of the asymmetry of pom-pom structure.

Key words: polymers, shape characteristics, continuous chain model, dissipative particle dynamics

1. Introduction

The study of macromolecules of a hyperbranched structure is of great interest both from both
academic and commercial points of view. Typical examples are commercial low density polyethylene
(LDPE), which consists of linear polyethylene backbones with attached alkyl branches [1, 2]. The multiple
long-chain branches are found to considerably increase the viscosity of the melts of such molecules due
to their mutual entanglements [3]. In general, the properties of such macromolecules are determined by
the competition between the steric repulsion between the side chains and the configurational entropy of
the main backbone: varying the density of the side chains and their length leads to the change of the
effective stiffness of a backbone over a wide range.

The simplest case of a polymer architecture, that correctly captures the characteristics of commercial
long-chain branched polymers, is the pom-pom structure [4]. It is assumed to consist of a linear backbone
chain with two terminal branching points of functionalities 𝑓1 and 𝑓2, respectively. The rheological
properties of these structures in melts were investigated in references [3, 5–7].

In our study, we concentrated on the conformational properties of such macromolecules in an infinite
dilution regime. In our preceding work [8], we studied the simplified symmetric case with 𝑓1 = 𝑓2. The
main attention was focused on a set of universal conformational characteristics of macromolecules, which
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are independent of any details of the chemical structure and are governed only by the so-called global
parameters. In particular, to estimate the impact of the complex topology of a molecule on its effective
size measure in a solvent, it is useful to consider the so-called size ratio 𝑔 of mean-squared gyration
radii of the complex molecule ⟨𝑅2

𝑔⟩complex and that of the simplest linear polymer chain ⟨𝑅2
𝑔⟩chain of the

same total molecular weight [9]. For the case of a pom-pom topology, in the simplest case of Gaussian
polymers, when the monomer-monomer excluded volume is neglected, one has [9, 10]:

𝑔 𝑓1 , 𝑓2 =
3( 𝑓 2

1 + 𝑓 2
2 ) + 4( 𝑓1 + 𝑓2) + 12 𝑓1 𝑓2 + 1

( 𝑓1 + 𝑓2 + 1)2 . (1.1)

More subtle universal characteristics, specific to branched polymers, are the individual branch swelling
ratios 𝑔( 𝑓 ), defined as the ratio of the averaged gyration radii of side or backbone branches to that of a free
linear chain of the same molecular weight. These ratios characterize the averaged effect of crowdedness,
caused by a mutual influence of adjacent branches on their respective conformations. Applying both the
theoretical approach and the computer simulations, we quantitatively described the effects of the stretch
and “compactization” of both the symmetric pom-pom polymer and of its individual branches by means
of 9 universal size ratios [8].

In the present paper, we generalize this analysis to the case of asymmetric pom-pom molecular
topology and provide an impact it has on the swelling properties of such molecules in a good solvent,
given by a set of the relevant size and shape ratios. We see at least two experimental situations, when
such asymmetry can appear. The first one covers the case of precisely controlled synthetic protocol and
intentional synthesis of an asymmetric polymer for special purpose (e.g., asymmetrical shape, specific
behavior under a flow, etc.). The second one is related to the synthetic protocol, which generates some
level of natural polydispersity in the functionality of the terminal beads.

The layout of the rest of the paper is as follows. Sections 2 and 3 provide a brief encounter with both
analytical and numerical methods used in our study. We introduce the continuous and the random-flight
model of a polymer, describe the direct polymer renormalization approach; the numerical methods of the
dissipative particle dynamics and the pivot algorithm of the lattice Monte Carlo method. In the following
section 4, we report the obtained results, that are based on the approaches described. The conclusions
and an outlook are provided in section 5.

2. The methods: analytical approach

2.1. Continuous chain model

Within the continuous chain model [11], pom-pom polymer is described as a set of trajectories in
continuous space. Each of the trajectories has the length 𝐿 and is parametrized by radius vector r(𝑠) in
𝑑-dimensional space, with 𝑠 changing from 0 to 𝐿. The Hamiltonian of this model can be written as:

𝐻 =
1
2

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠
[
dr𝑖 (𝑠)

d𝑠

]2
+ 𝑢

2

𝐹−1∑︁
𝑖, 𝑗=0

𝐿∫
0

d𝑠′
𝐿∫

0

d𝑠′′ 𝛿(r𝑖 (𝑠′) − r 𝑗 (𝑠′′)), (2.1)

where 𝐹 = 𝑓1 + 𝑓2 + 1 is the number of trajectories, the first term in the expression (2.1) represents a
connectivity of each trajectory and the second term describes a two point interaction with a coupling
constant 𝑢 known as excluded volume interaction [12].

It is a well known property of the model that all topologies are described by the same Hamiltonian [13–
15] and differ only at the level of partition function, which for the pom-pom case reads:

𝑍
pom−pom
𝑓1 , 𝑓2

=
1
𝑍0

𝑓1∏
𝑖=1

𝑓2∏
𝑗=1

∫
𝐷r(𝑠) 𝛿(r𝑖 (0) − r0(0))𝛿(r 𝑗 (0) − r0(𝐿)) e−𝐻 . (2.2)

Here, r0 denotes a backbone trajectory, the two sets of delta-functions place 𝑓1 and 𝑓2 trajectories of side
stars, correspondingly, at the terminal points of the 0-th trajectory, 𝐻 is Hamiltonian of the model given
by equation (2.1), and 𝑍0 represents a partition function for a Gaussian case.

23302-2



Swelling of asymmetric pom-pom polymers

2.2. Direct renormalization scheme

Observables calculated within the frames of continuous chain model depend on the chain length 𝐿

and diverge in the limit of 𝐿 → ∞. These divergences should be removed in order to receive universal
values for the observables in question. In this work we use the des Cloiseaux’s direct renormalization
scheme [12], where a set of renormalization factors are introduced, that are directly connected to the
physical quantities for which the divergencies should be removed.

Different topologies are introduced into the model through partition function, and the Hamiltonian
of the model contains only interactions. Therefore, the fixed points of the renormalization scheme,
once calculated for a particular Hamiltonian, do not depend on the topology of the molecule under
consideration. Consequently, it suffices to evaluate the fixed points of the model for the simplest case.

Starting with the calculation of the partition function of two interacting polymers 𝑍 (𝐿, 𝐿), the method
then introduces the renormalization factors that are connected with the number of allowed trajectories (the
partition function of a single chain) [𝑍 (𝐿, 𝑢0)]−2, and with its characteristic size which is represented by
the end-to-end distance ⟨𝑅2

𝑒⟩ or, more precisely, a swelling factor 𝜒0(𝐿, {𝑥0}), defined as 𝜒0 = ⟨𝑅2
𝑒⟩/𝐿.

Those functions allow one to introduce a renormalized coupling constant:
𝑢𝑅 (𝑢0) = −[𝑍 (𝐿, 𝑢0)]−2𝑍 (𝐿, 𝐿) [2π𝜒0(𝐿, 𝑢0)]−2+𝜖 /2, (2.3)

with 𝜖 = 4 − 𝑑 being a deviation from the upper critical dimension for the coupling constant 𝑢0.
In the limit of infinitely long chains, the dimensionless coupling constant 𝑢0 = 𝑢(2π)−𝑑/2𝐿2−𝑑/2

diverges unlike the renormalized one 𝑢𝑅, which in the same limit reaches a fixed value:
lim
𝐿→∞

𝑢𝑅 (𝑢0) = 𝑢∗𝑅 . (2.4)

In practice, the value 𝑢∗
𝑅

is calculated from the equation:

𝛽𝑢𝑅 = 2𝐿
𝜕𝑢𝑅 (𝑢0)

𝜕𝐿
= 0. (2.5)

For the model under consideration, those solutions are well known, and in the first order of the 𝜖-expansion
read:[12]:

Gaussian : 𝑢∗𝑅 = 0, (2.6)
Pure : 𝑢∗𝑅 = 𝜖/8, (2.7)

where the first one describes a Gaussian case, and the second one is a coupling constant for the model
with excluded volume interaction.

2.3. Random-flight model

Within the formalism of the random flight model [16], every linear sub-chain of 𝑁 monomers within
a complex polymer structure is considered as a sequence of 𝑁 bond vectors 𝜎𝑘 , with 0 ⩽ 𝑘 ⩽ 𝑁 with
the origin denoted as 0. We assume it to coincide with the center of the central (backbone) chain. Let us
denote by Rcl𝑛 and Rcr𝑛 the position vectors of segments in the central chain to the right and to the left
from the reference point (considered as 0), correspondingly. They can be expressed as sums over the set
of corresponding bond vectors:

Rcl𝑛 =

𝑛∑︁
𝑘=1

𝝈cl𝑘 , Rcr𝑛 =

𝑛∑︁
𝑘=1

𝝈cr𝑘 , 0 ⩽ 𝑛 ⩽
𝑁

2
. (2.8)

Similarly, let R𝑖
pl𝑛

and R𝑖
pr𝑛 be the position vectors of monomers in the left and right side stars (poms),

correspondingly, so that

Rpl
𝑖
𝑛
=

𝑁/2∑︁
𝑘=1

𝝈cr𝑘 +
𝑛∑︁

𝑘=1
𝝈cr

𝑖
𝑘 , 𝑖 = 1, . . . , 𝑓1, (2.9)

Rpr
𝑖
𝑛
=

𝑁/2∑︁
𝑘=1

𝝈cr𝑘 +
𝑛∑︁

𝑘=1
𝝈cr

𝑖
𝑘 , 𝑖 = 1, . . . , 𝑓2,

𝑁

2
⩽ 𝑛 ⩽ 𝑁 + 𝑁

2
.
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Figure 1. (Colour online) Snapshots of the pom-pom conformations for different values of 𝑓1 and 𝑓2
after 2000 𝑓1 𝑓2 Monte Carlo steps using the pivot algorithm. On the left: 𝑓1 = 1 and 𝑓2 = 5; on the
right: 𝑓1 = 2 and 𝑓2 = 5.

All the bond vectors are assumed to have an equal length 𝑙 and are connected to each other by unrestricted
joints. The direction of each bond is random and independent of the directions of its neighbours. Thus,
performing the averaging over an ensemble of possible bond configurations, we have

⟨𝝈𝑘⟩ = 0, ⟨𝝈2
𝑘 ⟩ = 𝑙2, (2.10)

⟨𝝈𝑖
a 𝑘𝝈

𝑗

b 𝑚
⟩ = 𝑙2𝛿𝑖 𝑗𝛿𝑘𝑚𝛿𝑎𝑏, {a, b} ∈ {cl, cr, pl, pr}, (2.11)

with 𝛿 being the Kronecker delta symbol. In what follows, we take 𝑙 = 1.
Note that the polymer molecule in this model is assumed to capture Gaussian statistics, i.e., the

excluded volume (self-avoidance of segments) is neglected.

3. The methods: numerical approaches

3.1. Lattice model and the pivot algorithm

Numerical simulations for a pom-pom polymer are performed within the lattice model of self-avoiding
walk (SAW) on a simple cubic lattice via pivot algorithm [17, 18]. Each trajectory is forbidden to visit
the site occupied by itself or by the other trajectory. In total, we consider 𝑓1 + 𝑓2 + 1 walks, so that
𝑓1 + 1 of them start at the origin and 𝑓2 — at the end of the walk numbered as 0-th. We consider both
branching parameters 𝑓1 and 𝑓2 to vary from 1 to 13 with all walks being of the same length top bounded
by 𝑁 = 100 steps, making a total amount of steps in the pom-pom to be 𝑁 ( 𝑓1 + 𝑓2 + 1). Then, the pivot
algorithm is applied again to receive a new configuration. We start from the initial configuration as a
set of straight lines. Then, a randomly chosen transformation is applied to the part of a walk. If the new
trajectory is acceptable under the self-avoidance rules, the new conformation is accepted; if not — it is
rejected and the previous one is accounted for one more time. Then, another pivot operation is performed
at a new randomly chosen site. The first 20𝑁 ( 𝑓1 + 𝑓2 + 1) operations are rejected for the equilibration,
and the next 105 are used for calculation of the observables. All observables are evaluated as the mean
arithmetic average over the set of structures obtained by means of simulations. Numerical modelling is
performed for 𝑁 varying from 10 to 100 with the step of 10. Final values are received by application of
the finite size approximation 𝑔𝑥 = 𝑔𝑥,∞ + 𝐵/𝑁 , with 𝐵 being a constant. The snapshots of the obtained
conformations are illustrated in figure 1.

3.2. Dissipative particle dynamics simulations

Another numeric approach used in this study is the dissipative particle dynamics (DPD) [19]. In this
method, the polymer and solvent molecules are modelled as soft beads of equal size, each representing
a group of atoms. For this reason, the interaction potential between two beads are, in general, density
and temperature dependent. Different parametrization strategies are possible and in this paper we closely
followed the original parametrization by Groot and Warren based on matching the model compressibility
to that of water [19]. The length-scale is given by the diameter of a soft bead, and the energy unit is
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𝑘B𝑇 = 1, where 𝑘B is the Boltzmann constant and 𝑇 is the temperature. Monomers in a polymer chain
are bonded via harmonic springs resulting in a force:

F𝐵
𝑖 𝑗 = −𝑘x𝑖 𝑗 , (3.1)

where 𝑘 is the spring constant, and x𝑖 𝑗 = x𝑖 − x 𝑗 , x𝑖 and x 𝑗 are the coordinates of 𝑖-th and 𝑗-th bead,
respectively. The non-bonding force F𝑖 𝑗 acting on the 𝑖-th bead as a result of its interaction with its 𝑗-th
counterpart is expressed as a sum of three contributions

F𝑖 𝑗 = FC
𝑖 𝑗 + FD

𝑖 𝑗 + FR
𝑖 𝑗 , (3.2)

where FC
𝑖 𝑗

is the conservative force responsible for the repulsion between the beads, FD
𝑖 𝑗

is the dissipative
force mimicking the friction between them and the random force FR

𝑖 𝑗
works in pair with a dissipative

force to thermostat the system. The expression for all these three contributions are given below [19]

FC
𝑖 𝑗 =


𝑎(1 − 𝑥𝑖 𝑗 )

x𝑖 𝑗
𝑥𝑖 𝑗

, 𝑥𝑖 𝑗 < 1,

0, 𝑥𝑖 𝑗 ⩾ 1,
(3.3)

FD
𝑖 𝑗 = −𝛾𝑤D(𝑥𝑖 𝑗 ) (x𝑖 𝑗 · v𝑖 𝑗 )

x𝑖 𝑗
𝑥2
𝑖 𝑗

, (3.4)

FR
𝑖 𝑗 = 𝜎𝑤R(𝑥𝑖 𝑗 )𝜃𝑖 𝑗Δ𝑡−1/2 x𝑖 𝑗

𝑥𝑖 𝑗
, (3.5)

where 𝑎 is the amplitude for the conservative repulsive force, 𝑥𝑖 𝑗 = |x𝑖 𝑗 |, v𝑖 𝑗 = v𝑖 − v 𝑗 , v𝑖 is the velocity
of the 𝑖-th bead. The dissipative force has an amplitude 𝛾 and decays with distance according to the
weight function 𝑤D(𝑥𝑖 𝑗 ). The amplitude for the random force is 𝜎 and the respective weight function is
𝑤R(𝑥𝑖 𝑗 ). 𝜃𝑖 𝑗 is the Gaussian random variable. As was shown by Español and Warren [20], to satisfy the
detailed balance requirement, the amplitudes and weight functions for the dissipative and random forces
should be interrelated: 𝜎2 = 2𝛾 (we choose 𝛾 = 6.75, 𝜎 =

√︁
2𝛾 = 3.67 here) and 𝑤D(𝑥𝑖 𝑗 ) =

[
𝑤R(𝑥𝑖 𝑗 )

]2.
Here, we use the weight functions quadratically decaying with the distance:

𝑤D(𝑥𝑖 𝑗 ) =
[
𝑤R(𝑥𝑖 𝑗 )

]2
=

{
(1 − 𝑥𝑖 𝑗 )2, 𝑥𝑖 𝑗 < 1,
0, 𝑥𝑖 𝑗 ⩾ 1. (3.6)

Following parametrization of Groot and Warren [19], the reduced number density of the system is set
at 𝜌∗ = 𝑁/𝑉 = 3, where 𝑁 is the total number of beads (pom-pom polymer and a solvent) in a system
and 𝑉 is the volume of a simulated system. We consider the case of a single pom-pom polymer within a
simulation box, which reproduces the conditions of an infinite dilution. To avoid self-interaction between
periodic images of a pom-pom molecule, the linear dimension of a cubic simulation box 𝐿 was chosen
accordingly. In particular, we used the expression: 𝐿 ≈ 1.75𝑅∗

𝑔, where 𝑅∗
𝑔 = (3𝑁 𝑓 − 1)𝜈 estimates the

radius of gyration of the longest linear sub-chain of a pom-pom of length 3𝑁 𝑓 and bond length of 1 in a
good solvent regime. Here 𝑁 𝑓 is the number of beads in a single arm and 𝜈 = 0.59 is the Flory exponent.

The total number of branches was fixed at 𝐹 = 𝑓1 + 𝑓2 + 1 = 15 in all cases. This number of branches
was chosen to show the effect of asymmetry and to avoid the effect of crowdedness which has been
studied in our previous work [21]. Two cases of the arm length, 𝑁 𝑓 = 8 and 𝑁 𝑓 = 16 were examined,
similarly to the case of a symmetric pom-pom polymer [8], the results were found to agree well. In
work [19] it was shown that the reduced density is coupled to the amplitude 𝑎 of a repulsive force in
equation (3.3). Following this paper, we set time-step Δ𝑡 = 0.04 and 𝑎 = 25 for all combinations of the
interacting beads: polymer-polymer, solvent-solvent and polymer-solvent.

The first 2 · 106 steps are allowed for the system equilibration and are skipped from the analysis.
The productive runs span from the step 2 · 106 up to the maximal simulation step in each case (typically
8 · 106). The error estimates are made by splitting the whole productive run in four equal pieces and by
evaluating the partial averages 𝐴𝑖 , 𝑖 = 1 − 4 for a given property 𝐴 in each of them. The final average is
⟨𝐴⟩ = 1

4
∑4

𝑖=1 𝐴𝑖 , whereas the conservative estimate for the standard error is given by

𝑒(𝐴) =
[
1
4

4∑︁
𝑖=1

(𝐴𝑖 − ⟨𝐴⟩)2

]1/2

.

23302-5



K. Haydukivska, O. Kalyuzhnyi, V. Blavatska, J. Ilnytskyi

4. Results

4.1. Partition function calculation

We start with the evaluation of the expression for the partition function (2.2) as a series in a coupling
constant 𝑢, where the zero order term corresponds to the unperturbed Gaussian case. We restrict the
series to the linear term in 𝑢, the so-called one loop approximation:

𝑍
pom−pom
𝑓1 , 𝑓2

=
1
𝑍0

𝑓1∏
𝑖=1

𝑓2∏
𝑗=1

∫
𝐷r(𝑠) 𝛿(r𝑖 (0) − r0(0))

× 𝛿(r 𝑗 (0) − r0(𝐿))
exp

−
1
2

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠
(
dr𝑖 (𝑠)

d𝑠

)2−
− 𝑢

2

𝐹−1∑︁
𝑖, 𝑗=0

𝐿∫
0

d𝑠′
𝐿∫

0

d𝑠′′ 𝛿(r𝑖 (𝑠′) − r 𝑗 (𝑠′′)) exp
−

1
2

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠
(
dr𝑖 (𝑠)

d𝑠

)2
 , (4.1)

where

𝑍0 =

𝑓1∏
𝑖=1

𝑓2∏
𝑗=1

∫
𝐷r(𝑠) 𝛿(r𝑖 (0) − r0(0))𝛿(r 𝑗 (0) − r0(𝐿)) exp

−
1
2

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠
[
dr𝑖 (𝑠)

d𝑠

]2
is the Gaussian result for the partition function of a pom-pom polymer, in which case the excluded volume
interactions are neglected. In order to calculate the contribution from the second term in (4.1), we consider
a set of diagrams presented in figure 2. It is important to note that the diagram 𝑍1 describes the excluded
volume interaction within a single trajectory and needs to be taken into account with the pre-factor
𝑓1 + 𝑓2 + 1, diagram 𝑍2 corresponds to the contributions from all the interactions between two chains that
are separated by one branching point, and contains a pre-factor 𝑓1 + 𝑓2 + [ 𝑓1( 𝑓1 − 1) + 𝑓2( 𝑓2 − 1)]/2, and
the last diagram corresponds to the interactions between the chains separated by both branching points
and has a pre-factor 𝑓1 𝑓2.

Using a Fourier transform presentation of 𝛿-function:

𝛿(r𝑖 (𝑠′) − r 𝑗 (𝑠′′)) =
1

(2π)𝑑

∫
dp𝑢 exp{−ipu [ri(s′) − rj(s′′)]}, (4.2)

and calculating the contributions of all diagrams, we obtain the following expressions:

𝑍1 = 𝑍4 =
𝑢(2π)−𝑑/2𝐿2−𝑑/2

(1 − 𝑑/2) (2 − 𝑑/2) , (4.3)

Z
1

Z
2 Z

3

Z
4

Z
5

Figure 2. (Colour online) Diagrammatic representation of the partition function terms in the one-loop
approximation. The solid lines represent schematically a polymer path of the length 𝐿 each, and a dash
line represents the two monomer excluded volume interaction. The diagrams are enumerated by a label
𝑍𝑖 , 𝑖 = 1, . . . , 5.
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Rg1
Rg2 Rg3

Rg4
Rg5

Figure 3. (Colour online) Diagrammatic representation of the 𝜉 (k) terms in the Gaussian approximation.
The solid lines schematically represent polymer paths of the lengths 𝐿, and arrows represent the so-called
restriction points 𝑠1 and 𝑠2. The diagrams are enumerated by a label Rg𝑖 , 𝑖 = 1, . . . , 5.

𝑍2 = 𝑍5 =
𝑢(2π)−𝑑/2𝐿2−𝑑/2(22−𝑑/2 − 2)

(1 − 𝑑/2) (2 − 𝑑/2) , (4.4)

𝑍3 =
𝑢(2π)−𝑑/2𝐿2−𝑑/2(32−𝑑/2 − 2 22−𝑑/2 + 1)

(1 − 𝑑/2) (2 − 𝑑/2) . (4.5)

As already mentioned in the previous section, we consider all the observables in the first order of the
𝜖-expansion. Therefore, the expressions for the diagrams read:

𝑍1 = −2/𝜖 − 1, (4.6)
𝑍2 = −2/𝜖 − 1 − ln 2, (4.7)
𝑍3 = 2 ln 2 − ln 3. (4.8)

Getting all terms together, we obtain the expression for the partition function of a pom-pom molecule in
one-loop approximation

𝑍 = 1 − 𝑢0

{
𝑓1( 𝑓1 − 1) + 𝑓2( 𝑓2 − 1) − 2

𝜖
+

[
𝑓1 + 𝑓2 +

𝑓1( 𝑓1 − 1) + 𝑓2( 𝑓2 − 1)
2

]
[1 − ln 2]

+ 𝑓1 𝑓2 [2 ln 2 − ln 3] − 𝑓1 − 𝑓2 − 1
}
, (4.9)

where 𝑢0 = 𝑢(2π)−𝑑/2𝐿2−𝑑/2 is a dimensionless coupling constant.
All the observables calculated below are averaged over an ensemble of all possible conformations

with the partition function (4.9):

⟨(. . .)⟩ = 1
𝑍

pom−pom
𝑓1 , 𝑓2

𝑓1∏
𝑖=1

𝑓2∏
𝑗=1

∫
𝐷r(𝑠)𝛿(r𝑖 (0) − r0(0))𝛿(r 𝑗 (0) − r0(𝐿)) e−𝐻 (. . .). (4.10)

4.2. Size characteristics

A set of specific size characteristics can be defined for the pom-pom polymer. Some of them were
introduced for a symmetric case in our previous study [8]. Here, we add a number of new characteristics
that allow us to describe the asymmetry of pom-pom molecule when 𝑓1 ≠ 𝑓2. The gyration radius of the
structure is defined as:

⟨𝑅2
𝑔⟩ =

1
2𝐿2(𝐹)2

𝐹−1∑︁
𝑖, 𝑗=0

𝐿∫
0

𝐿∫
0

d𝑠1 d𝑠2⟨(r𝑖 (𝑠2) − r 𝑗 (𝑠1))2⟩, (4.11)
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where 𝑠2 and 𝑠1 are the “monomer numbers” along the chain, such that the average square distance is
calculated between them. They are often called restriction points. In order to calculate this quantity we
use the identity:

⟨(r𝑖 (𝑠2) − r 𝑗 (𝑠1))2⟩ = −2
d

d|k|2
𝜉 (k)k=0,

𝜉 (k) ≡ ⟨exp{−ik[r𝑖 (𝑠2) − r 𝑗 (𝑠1)]}⟩, (4.12)

and evaluate 𝜉 (k) in the path integration approach. In calculations of the contributions into 𝜉 (k), it is
convenient to use the diagrammatic presentation, as given in figure 3 for the Gaussian chain.

It is interesting to note that diagrams in figures 2 and 3 look similar with the only difference: in the
former we consider them with interactions and in the latter one with the restriction points, though the
pre-factor will be the same and the expression for the gyration radius in the Gaussian approximation
reads:

⟨𝑅2
𝑔,pom−pom⟩0 =

𝑑𝐿

6𝐹2

(
3 𝑓 2

1 + 3 𝑓 2
2 + 4 𝑓1 + +4 𝑓2 + 12 𝑓1 𝑓2 + 1

)
.

Considering all possible combinations for diagrams in figures 2 and 3, a contribution to 𝜉 (k) the one-loop
approximation is obtained:

⟨𝑅2
𝑔,pom−pom⟩ = ⟨𝑅2

𝑔,pom−pom⟩0
[
1 + 𝑢0𝐶𝑔( 𝑓1, 𝑓2, 𝑑)

]
. (4.13)

An expression for 𝐶𝑔 is provided in the Appendix in expression A.1. In the case of 𝑓1 = 𝑓2 we recover
our previous result for the symmetric case [8].

We introduce two other characteristics that quantify the asymmetry of the molecular conformation:
the average squared distances from a monomer to the first and to the second branching point, respectively:

⟨𝑟2
1⟩ =

1
𝐹𝐿

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠⟨(r𝑖 (𝑠) − r0(0))2⟩, (4.14)

⟨𝑟2
2⟩ =

1
𝐹𝐿

𝐹−1∑︁
𝑖=0

𝐿∫
0

d𝑠⟨(r𝑖 (𝑠) − r0(𝐿))2⟩. (4.15)

In the process of evaluating these parameters, we again use the diagrammatic technique and consider
a set of diagrams similar to those for the gyration radius but with an additional restriction: points are
permanently fixed at the branching point. The expressions in the Gaussian approximation read:

⟨𝑟2
1⟩ =

𝑑𝐿 ( 𝑓1 + 1 + 3 𝑓2)
2𝐹

, (4.16)

⟨𝑟2
2⟩ =

𝑑𝐿 ( 𝑓2 + 1 + 3 𝑓1)
2𝐹

. (4.17)

Similarly, the expressions in the one loop approximation can be presented in a general form:

⟨𝑟2
1⟩ =

𝑑𝐿 ( 𝑓1 + 1 + 3 𝑓2)
2𝐹

[1 + 𝑢0𝐶1( 𝑓1, 𝑓2, 𝑑)] , (4.18)

⟨𝑟2
2⟩ =

𝑑𝐿 ( 𝑓2 + 1 + 3 𝑓1)
2𝐹

[1 + 𝑢0𝐶2( 𝑓1, 𝑓2, 𝑑)] , (4.19)

with𝐶1( 𝑓1, 𝑓2, 𝑑) and𝐶2( 𝑓1, 𝑓2, 𝑑) being the functions of the space dimension and topology. 𝜖-expansions
for ⟨𝑟2

1⟩ and ⟨𝑟2
2⟩ are provided in the Appendix in expressions (A.3) and (A.4), respectively.
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4.3. Universal size ratios

To describe the impact of the effects of asymmetry on the size and shape of pom-pom structure, we
consider a set of size ratios. We start by considering the ratios that compare the size of the asymmetric
pom-pom to the other molecular topologies: a linear polymer chain, a star, and a symmetric pom-pom of
the same total molecular weight, defined as:

𝑔𝑐 =
⟨𝑅2

𝑔,pom−pom⟩
⟨𝑅2

𝑔,chain⟩
, (4.20)

𝑔𝑠 =
⟨𝑅2

𝑔,star⟩
⟨𝑅2

𝑔,pom−pom⟩
, (4.21)

𝑔𝑝 =
⟨𝑅2

𝑔,pom−pom⟩
⟨𝑅2

𝑔,pom−pom,sym⟩
, (4.22)

respectively. Within the renormalization group approach, these quantities are presented as the series in
𝜖 = 4 − 𝑑

⟨𝑅2
𝑔,chain⟩ =

𝐿𝑑𝐹

6

[
1 + 2𝑢0

𝜖
+ 𝑢0𝐴𝑔(0, 0)

]
, (4.23)

⟨𝑅2
𝑔,star⟩ =

𝐿𝑑 (3𝐹 − 2)
6𝐹

[
1 + 2𝑢0

𝜖
+ 𝑢0𝐴𝑔(𝐹 − 1, 0)

]
, (4.24)

⟨𝑅2
𝑔,pom−pom,sym⟩ =

𝐿𝑑 (18 𝑓 2 + 8 𝑓 + 1)
6𝐹2

[
1 + 2𝑢0

𝜖
+ 𝑢0𝐴𝑔( 𝑓 , 𝑓 )

]
, (4.25)

⟨𝑅2
𝑔,pom−pom⟩ = ⟨𝑅2

𝑔,pom−pom⟩0
[
1 + 2𝑢0

𝜖
+ 𝑢0𝐴𝑔( 𝑓1, 𝑓2)

]
, (4.26)

with the expressions for 𝐴𝑔(0, 0), 𝐴𝑔( 𝑓 , 𝑓 ), 𝐴𝑔( 𝑓1, 𝑓2) provided in the Appendix [expression (A.2)]. Note
that the first two expressions above reproduce the well known results for the gyration radius of a linear
chain [12] and of a star [14].

Thus, the final expressions for the size ratios (4.20, 4.21) and (4.22) read:

𝑔𝑐 =
6⟨𝑅2

𝑔,pom−pom⟩
𝐿𝑑𝐹

{
1 + 𝜖

8
[𝐴𝑔( 𝑓1, 𝑓2) − 𝐴𝑔(0, 0)]

}
, (4.27)

𝑔𝑠 =
𝐿𝑑 (3𝐹 − 2)

6𝐹⟨𝑅2
𝑔,pom−pom⟩

{
1 + 𝜖

8
[𝐴𝑔(𝐹 − 1, 0) − 𝐴𝑔( 𝑓1, 𝑓2)]

}
, (4.28)

𝑔𝑝 =
6𝐹2⟨𝑅2

𝑔,pom−pom⟩
𝐿𝑑 (18 𝑓 2 + 8 𝑓 + 1)

{
1 + 𝜖

8
[𝐴𝑔( 𝑓1, 𝑓2) − 𝐴𝑔( 𝑓 , 𝑓 )]

}
, (4.29)

where 𝑢0 is replaced by the fixed point (2.7).
Let us note that the expressions (4.27, 4.28) and (4.29) contain the first order terms of the perturbation

theory only and, therefore, provide rather qualitative than the quantitative information. It is, however,
known that the renormalization group approach requires at least the second order terms in 𝜖 to get
the quantitatively sound values. This requires the evaluation of the terms up to 𝑢2

0, since 𝑢0 ∼ 𝜖 .
These calculations for the case of branched structures are very challenging, in particular, since the total
number of diagrams grows exponentially and leads to cumbersome expressions that are difficult to handle
analytically. Because of this, it is practical to use the approximation proposed in reference [22], based on
a general idea of presenting the gyration radius in a form:

⟨𝑅2
𝑔⟩ = ⟨𝑅2

𝑔⟩0 (2π𝑁/Λ)2𝜈 (𝜂)−1 𝑓𝑝 (𝜂), (4.30)

with 𝑁 being the number of monomers, Λ is a coarse-grained length scale. Parameter 𝜂 here defines the
transition from the Gaussian case at 𝜂 = 0 [𝜈(𝜂) = 1/2 and 𝑓𝑝 (𝜂) = 1] to the case of a polymer with an
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excluded volume interaction at 𝜂 → ∞ [𝜈(𝜂) = 𝜈 and 𝑓𝑝 (𝜂) = 1 + 𝑎]. Since only the factors ⟨𝑅2
𝑔⟩0 and

𝑓𝑝 (𝜂) depend on the polymer topology, the size ratio can be presented as:

𝑔𝑥 =
⟨𝑅2

𝑔,1⟩0
⟨𝑅2

𝑔,2⟩0
1 + 𝑎1
1 + 𝑎2

, (4.31)

with ⟨𝑅2
𝑔,1⟩0/⟨𝑅

2
𝑔,2⟩0 being the ratio between topologies “1” and “2” in Gaussian approximation. And the

parameters 𝑎1, 𝑎2 are calculated for these topologies using an expression:

𝑎 =
3
32

𝐶𝑔( 𝑓1, 𝑓2, 𝑑 = 3)
𝐹 (4−𝑑)/2 − 1

4
. (4.32)

This approximation allows us to partially account for the higher orders in 𝜖 in the 𝐶𝑔 expansion, resulting
in such terms to be added to equations (4.27, 4.28) and (4.29).

The ratios (4.20, 4.21) and (4.22) allow us to examine how the asymmetricity of a pom-pom structure
affects its overall shape as compared to the cases of a linear chain, star-polymer and a symmetric pom-
pom structure. It would also be informative to introduce some specific characteristic, which addresses
the shape asymmetry explicitly. For that purpose, we suggest the following combination, which can be
termed as the asymmetry factor:

𝑔asym =

����� ⟨𝑟2
1⟩

⟨𝑟2
2⟩

−
⟨𝑟2

2⟩
⟨𝑟2

1⟩

����� , (4.33)

with ⟨𝑟2
1⟩ and ⟨𝑟2

2⟩ given by equations (4.14) and (4.15). It is strictly zero for the symmetric case, 𝑓1 = 𝑓2,
and its maximum value is reached for the most asymmetric cases, 𝑓1 = 1 and 𝑓2 = 𝐹 − 2, or vice versa.
In the Gaussian approximation, the corresponding expression reads:

𝑔asym =

���� [4(2 𝑓1 + 1 + 2 𝑓2)] ( 𝑓2 − 𝑓1)
( 𝑓2 + 1 + 3 𝑓1) ( 𝑓1 + 1 + 3 𝑓2)

���� . (4.34)

4.4. Center of mass

Hydrodynamic properties of the polymer solutions are often studied by replacing each polymer
molecule by an effective soft convex body (e.g., the sphere or equivalent ellipsoid), and, consequently,
the center-center effective interactions between such bodies are examined [23–25]. Thus, the center of
mass (CM) of each polymer appears in a natural way, as well as the distribution of monomers around
it [26, 27]. For the evaluation of the quantities presented in this subsection, the random-flight model
(section 2.3) approach is the most convenient. The CM of a molecule is defined, therefore, as:

R𝐶𝑀 =
1

𝑁 ( 𝑓1 + 𝑓2 + 1)


𝑁/2∑︁
𝑛=1

(Rcl𝑛 + Rcr𝑛) +
𝑁+𝑁/2∑︁
𝑛=𝑁/2

(
𝑓1∑︁
𝑖=1

R𝑖
pl𝑛 +

𝑓2∑︁
𝑖=1

R𝑖
pr𝑛

) . (4.35)

Expressing the position vectors as sums of bond vectors [equations (2.8)–(2.10)], we have

R𝐶𝑀 =
1

𝑁 ( 𝑓1 + 𝑓2 + 1)

[
𝑁/2∑︁
𝑛=1

(
𝑛∑︁

𝑘=1
𝝈cl𝑘 +

𝑛∑︁
𝑘=1

𝝈cr𝑘

)
+

𝑁+𝑁/2∑︁
𝑛=𝑁/2

𝑓1∑︁
𝑖=1

(
𝑁/2∑︁
𝑘=1

𝝈cl𝑘 +
𝑛∑︁

𝑘=1
𝝈𝑖

pl𝑘

)

+
𝑁+𝑁/2∑︁
𝑛=𝑁/2

𝑓2∑︁
𝑖=1

(
𝑁/2∑︁
𝑘=1

𝝈cr𝑘 +
𝑛∑︁

𝑘=1
𝝈𝑖

pr𝑘

) =
1

𝑁 ( 𝑓1 + 𝑓2 + 1)

{
𝑁/2∑︁
𝑛=1

(𝝈cl𝑛 + 𝝈cr𝑛)
(
𝑁

2
− 𝑛

)
+

𝑓1∑︁
𝑖=1

[
𝑁

𝑁/2∑︁
𝑛=1

𝝈cl𝑛 +
𝑁∑︁
𝑛=1

𝝈𝑖
pl𝑛 (𝑁 − 𝑛)

]
+

𝑓2∑︁
𝑖=1

[
𝑁

𝑁/2∑︁
𝑛=1

𝝈cr𝑛 +
𝑁∑︁
𝑛=1

𝝈𝑖
pr𝑛 (𝑁 − 𝑛)

]}
. (4.36)
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Figure 4. (Colour online) Universal ratio 𝑔𝐶𝑀 (4.39), that characterizes the average shift of the center
of mass of the pom-pom structure from the position of its central monomer, evaluated with respect to
such deviation for a linear chain with the equivalent molecular mass. Analytic result in the Gaussian
approximation is shown via dashed cyan line, Monte Carlo results using the pivot algorithm — via green
squares.

Taking into account relations (2.10) and (2.11), we obtain an expression for the mean-squared location
of the center of mass:

⟨R2
𝐶𝑀⟩pom−pom =

𝑁
[
1 + 7( 𝑓1 + 𝑓2) + 6( 𝑓 2

1 + 𝑓 2
2 )

]
12( 𝑓1 + 𝑓2 + 1)2 . (4.37)

For the center of mass of a single chain of the same total length with a reference point in the middle of a
chain, we have:

⟨R2
𝐶𝑀⟩chain =

𝑁 (1 + 𝑓1 + 𝑓2)
12

. (4.38)

Thus, we can introduce the ratio:

𝑔𝐶𝑀 =
⟨R2

𝐶𝑀
⟩chain

⟨R2
𝐶𝑀

⟩pom−pom
, (4.39)

which describes the impact of the presence of side stars (see figure 4) on the shift of the CM position
of complex polymer structure as compared with that of linear chain as given by equation (4.38). This
quantity may serve as yet another characteristic of the asymmetry of the pom-pom structure. In the
Gaussian approximation, we have:

𝑔𝐶𝑀 =
( 𝑓1 + 𝑓2 + 1)3

1 + 7( 𝑓1 + 𝑓2) + 6( 𝑓 2
1 + 𝑓 2

2 )
. (4.40)

Let us introduce the distance of each 𝑛-th monomer from the CM

R𝑛𝐶𝑀 = R𝑛 − R𝐶𝑀 . (4.41)
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Figure 5. (Colour online) Size ratios 𝑔𝑐 (4.20) (top) and 𝑔𝑠 (4.21) (bottom) vs branching parameter 𝑓1.
The total number of side chains is fixed at 𝐹 = 𝑓1 + 𝑓2 + 1 = 15. Red open disks and magenta squares
are the results of the DPD simulations at 𝑁 𝑓 = 8 and 𝑁 𝑓 = 16, respectively, green squares — the results
of the MC simulations using the pivot algorithm. Blue curves marked “RG” represent expressions (4.27)
and (4.28) evaluated at fixed point (2.7) for 𝜖 = 1(𝑑 = 3). Yellow dash line shows the results of the
Douglas–Freed approximation and a black dot-dash line represents the Gaussian model.

Applying the scheme introduced above, we obtain the analytic expressions for these distances for the
monomers belonging to a central chain and these from the left and right branches, respectively:

⟨R2
𝑛cl𝐶𝑀⟩ = 𝑛

[
1 − (2 𝑓1 + 1)

𝑓1 + 𝑓2 + 1
+ 𝑛

( 𝑓1 + 𝑓2 + 1)𝑁

]
+ ⟨R2

𝐶𝑀⟩, (4.42)

⟨R2
𝑛cr𝐶𝑀⟩ = 𝑛

[
1 − (2 𝑓2 + 1)

𝑓1 + 𝑓2 + 1
+ 𝑛

( 𝑓1 + 𝑓2 + 1)𝑁

]
+ ⟨R2

𝐶𝑀⟩, (4.43)

⟨R2
𝑛pl𝐶𝑀⟩ = 𝑛

[
1 − 3

( 𝑓1 + 𝑓2 + 1) +
𝑛

( 𝑓1 + 𝑓2 + 1)𝑁

]
+ 𝑁 (1 − 𝑓1)
( 𝑓1 + 𝑓2 + 1) + ⟨R2

𝐶𝑀⟩, (4.44)

⟨R2
𝑛pr𝐶𝑀⟩ = 𝑛

[
1 − 3

( 𝑓1 + 𝑓2 + 1) +
𝑛

( 𝑓1 + 𝑓2 + 1)𝑁

]
+ 𝑁 (1 − 𝑓2)
( 𝑓1 + 𝑓2 + 1) + ⟨R2

𝐶𝑀⟩. (4.45)

4.5. Numeric results and discussion

The main focus of this study are the theoretic results for the shape characteristics of asymmetric
pom-pom polymers, whereas the numeric studies, performed by means of the DPD and MC simulations,
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Figure 6. (Colour online) The same as in figure 5 but for size ratio 𝑔𝑝 (4.22) (top) and asymmetry
factor 𝑔asym (4.33) (bottom).

were conducted to support these theoretical findings. To this end, a set of size ratios, defined above, were
obtained by means of the above mentioned numeric approaches. This set includes: the ratio between the
gyration radius of asymmetrical pom-pom to that of a linear chain 𝑔𝑐 (4.20), of a star-like polymer (4.21)
and of a symmetrical pom-pom polymer (4.22). These results, alongside with the theoretical findings, are
shown in figures 5 and 6. Red open discs and magenta squares represent the DPD simulations with 𝑁 𝑓 = 8
and 𝑁 𝑓 = 16, respectively, green squares represent the MC study using a pivot algorithm. Yellow dash
line displays the Douglas–Freed approximation, blue dash line: the first order (one loop) renormalization
group results, and a black dot-dash line: these obtained within the Gaussian model.

The results for the 𝑔𝑐 ratio (4.20) are shown in the top frame of figure 5. First observation is that 𝑔𝑐 is
always below 1. This is a natural consequence of the pom-pom connectivity, which organizes monomers
into two star-like bunches, which cannot stretch as much as a single linear chain of the same molecular
weight. Hence, the gyration radius of a pom-pom is always smaller than that of a linear chain. Second
observation is that the 𝑔𝑐 curve has a convex shape and 𝑔𝑐 is minimal for the highly asymmetric pom-pom
structures, 𝑓1 = 1 and 𝑓1 = 13, since in this case one of the branching points holds a maximum possible
number of arms and thus maximizes the spatial confinement effect. Third observation is that there is
a reasonable agreement between the results of the DPD and MC simulations, despite great difference
between soft potential and off-lattice nature of the former and hard potentials and lattice arrangement
of monomers in the latter. The Douglas–Freed approximation is found to be in a good agreement with
the simulation data, coinciding perfectly with the DPD results obtained at the arms length of 𝑁 𝑓 = 16.
This shows that such arms length is long enough to mimic the “long arms limit” assumed in the theory,
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and that 𝑔𝑐 clearly demonstrates a strong universality feature. Fourth observation is about the Gaussian
result for 𝑔𝑐, which is found below both simulation results. Switching off the excluded volume effects
(the case of the Gaussian model), reduces the denominator of 𝑔𝑐: 𝑅2

𝑔,chain ∼ 𝑁0.5 as compared to its
value 𝑅2

𝑔,chain ∼ 𝑁0.59 for the case with excluded volume effects (as it is in both simulations here). As far
as the ratio 𝑔𝑐 decreases in the case of the Gaussian model, the nominator 𝑅2

𝑔,pom−pom in the Gaussian
approximation must decrease even more compared to the case of simulations, indicating a stronger
effect of “compactization” of a pom-pom structure compared to the linear chain when the excluded
volume effects are switched off. Finally, the fifth observation is that the first order renormalization group
result overestimates 𝑔𝑐 essentially in the whole interval of 𝑓1. This situation is somewhat typical of the
renormalization group findings for other properties of interest, and a much better qualitative agreement
is typically expected when the second order terms are included.

Similar analysis can be conducted for other ratios. Namely, for the ratio 𝑔𝑠 (4.21), shown in the bottom
frame of figure 5, one sees that 𝑔𝑠 < 1, indicating that a star polymer is always more compact than a
pom-pom polymer, which is obvious, because the latter contains two starts separated by a backbone and
spreads wider in space. In limit cases of 𝑓1 = 1 and 𝑓1 = 13, a pom-pom structure reduces to a single star
with one of its arms of a length 2𝑁 𝑓 and, therefore, 𝑔𝑠 ≈ 1. The difference in the 𝑔𝑠 values obtained for
these two molecular structures is the most pronounced for a symmetric case, 𝑓1 = 𝑓2 = 7, leading to a
concave shape for the 𝑔𝑠 curve. The third and fourth observations made for 𝑔𝑐 (see above) also hold for
the case of 𝑔𝑠. However, the first order renormalization group results, albeit being closer to the Gaussian
results than in the case of 𝑔𝑐, are shifted away from the simulation data.

Top frame of figure 5 shows the 𝑔𝑝 ratio, which characterizes the effect of asymmetry on the squared
gyration radius of a pom-pom structure. According to the definition (4.22), 𝑔𝑝 = 1 for the symmetric
case of 𝑓1 = 𝑓2 = 7. In the case of a maximum asymmetry, 𝑓1 = 1 and 𝑓1 = 13, 𝑔𝑝 drops down to
about 0.7, reflecting reduction of a pom-pom structure to that of a single star, which is a much more
compact structure. The third, fourth and fifth observations made for 𝑔𝑐 also hold here.

As a direct convenient measure of the asymmetry of a pom-pom structure, we introduced the asym-
metry factor 𝑔asym (4.33). This is shown in the bottom frame of figure 5. One can see that it grows almost
linearly when 𝑓1 moves from the 𝑓1 = 7 value towards both sides of the plot, and the results of the
Douglas–Freed approximation agree reasonably well with all the simulation data, supporting the same
trend that was observed for 𝑔𝑐, 𝑔𝑠 and 𝑔𝑝 ratios.

5. Conclusions

In the present paper, we combined analytical studies and two types of computer simulations to evaluate
the set of universal characteristics of the asymmetric pom-pom polymers. Such polymers are characterized
by the functionality of their branching points, 𝑓1 and 𝑓2 = 𝐹−1− 𝑓1, where 𝐹 = 𝑓1+1+ 𝑓2 = 15 is the total
number of arms, each of the length 𝑁 𝑓 . Theoretical approach is based on direct polymer renormalization
of the Edwards continuous chain model and a random-flight model. Computer simulations employ both
the off-lattice dissipative particle dynamics approach with explicit good solvent, and the Monte Carlo
approach using a pivot algorithm on a lattice model of polymer assuming an implicit solvent.

As expected from its molecular architecture, characteristic size of a pom-pom structure generally fits
in between that for a linear chain and of a star. To characterize these findings quantitatively at various
levels of the pom-pom asymmetry, we introduced a set of universal dimensionless ratios. These are: 𝑔𝑐
(size ratio of a pom-pom relative to that of a linear chain), 𝑔𝑠 (the same relative to a star polymer) and 𝑔𝑝
(the same relative to a symmetric pom-pom). The molecular mass of all polymer molecules is set the
same. The asymmetry of a pom-pom polymer is proposed to be characterised also by the factor 𝑔asym,
which is a combination of the average squared distances ⟨𝑟2

1⟩ and ⟨𝑟2
2⟩ of the monomers from the first

and second branching points, respectively. It is defined in such a way that it is equal to 0 for a symmetric
case ( 𝑓1 = 𝑓2) and reaches its maximum value for the most asymmetric cases, e.g., when 𝑓1 = 1 and
𝑓2 = 𝐹 − 2. We also introduced the ratio 𝑔𝐶𝑀 , which provides a quantitative estimate of the shift of the
center of mass of the central backbone caused by the presence of side stars, and serves as an additional
characteristic of the asymmetry of a pom-pom structure.
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Various simulation approaches applied by us, despite their differences in a description of both a
polymer and a solvent, provide very close results for all size ratios as functions of 𝑓1 and 𝑓2. This is
indicative of universality features for all ratios in a broad sense, meaning that they depend solely on the
details of molecular architecture rather than on the chemical particulars. We also found a clear deviation
of the numeric results from those obtained within the Gaussian approximation, showing the nontrivial
role of excluded volume effects. The first order (one loop approximation) renormalization group results
provide a nice correction to the Gaussian case, but in most cases it would be worthwhile to proceed
to higher orders of perturbation theory terms as well. The latter is, however, quite complicated and
cumbersome and is extremely time consuming. Instead, a good practical solution is to use the so-called
Douglas–Freed approximation [22] which accounts for a relevant subset of the second order contributions.
The effectiveness of this approximation is once again shown in this work, since both simulation results
agree well with it, especially the DPD simulations with longer arms, 𝑁 𝑓 = 16, indicating that the model
reaches a “long chain limit” in this case.

It is important to point out that some marked differences between the simulations and theory are
observed within this study. Those differences may be related to limitations of both analytical and numerical
methods. For example, lower values for some ratios obtained by means of the MC simulation as compared
with analytical ones may be caused by more limited conformational space of a lattice model, whereas
higher values in the case of the DPD simulations at 𝑁 𝑓 = 8 are side-products of considering chains,
which are too short.

Results provided in this study may be of use for further research of the pecularities of complex
polymers in solution. Numerical studies may be extended to deal with semi-dilute or dense solutions,
micelles formation, etc.
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Appendix

A list of expressions

An expression for 𝐶𝑔( 𝑓1, 𝑓2, 𝑑) from the expression (4.13):

−𝐶𝑔( 𝑓1, 𝑓2, 𝑑) =
2

3 𝑓 2
1 + 12 𝑓1 𝑓2 + 3 𝑓 2

2 + 4 𝑓1 + 4 𝑓2 + 1

{
12 𝑓 2

1 𝑓 2
2 (2

2−𝑑/2 − 31−𝑑/2 − 1)
(𝑑 − 2)𝑑

+ 23−𝑑/2 𝑓1 𝑓2 [4𝑑 (14 − 𝑑) (𝑑2 − 14𝑑 + 184) − 38400]
(𝑑 − 10) (𝑑 − 6)𝑑 (𝑑 − 8) (𝑑 − 2) (𝑑 − 4)

+ 24( 𝑓1 + 𝑓2) (𝑑3 − 18𝑑2 + 40𝑑 − 448) 𝑓2 𝑓12−𝑑/2

(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 4) (𝑑 − 8)

− 72( 𝑓1 + 𝑓2) (𝑑3 − 18𝑑2 − 4𝑑 − 192) 𝑓2 𝑓13−𝑑/2

(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 4) (𝑑 − 8)

− 9 𝑓1 𝑓23−𝑑/2(7𝑑4 − 196𝑑3 + 1124𝑑2 + 16𝑑 − 38400)
(𝑑 − 10) (𝑑 − 6)𝑑 (𝑑 − 8) (𝑑 − 2) (𝑑 − 4)

+
4(𝑑 − 12) (𝑑2 − 6𝑑 + 32) ( 𝑓1 + 𝑓2) ( 𝑓 2

1 − 𝑓1 𝑓2 + 𝑓 2
2 − 1)

(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 4) (𝑑 − 8)

+
(𝑑2 − 26𝑑 + 136) ( 𝑓 2

1 + 𝑓 2
2 )

(𝑑 − 4) (𝑑 − 10) (𝑑 − 6) (𝑑 − 8) +
[12( 𝑓1 + 𝑓2)] (𝑑2 − 10𝑑 + 32) 𝑓1 𝑓2

𝑑 (𝑑 − 2) (𝑑 − 4) (𝑑 − 6)

− 𝑓1 𝑓2(13𝑑4 − 364𝑑3 + 3788𝑑2 − 18512𝑑 + 38400)
(𝑑 − 10) (𝑑 − 6)𝑑 (𝑑 − 8) (𝑑 − 2) (𝑑 − 4)

+ −𝑑5 + 32𝑑4 − 300𝑑3 + 1024𝑑2 − 1088𝑑
(𝑑 − 10) (𝑑 − 4)2(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 8)

− 29−𝑑/2 𝑓1( 𝑓1 + 1) (47𝑑𝑓1 − 13𝑑 − 120 𝑓1 + 120)
(𝑑 − 10) (𝑑 − 4)2(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 8)

+ 29−𝑑/2 𝑓2( 𝑓2 + 1) (47𝑑𝑓2 − 13𝑑 − 120 𝑓2 + 120)
(𝑑 − 10) (𝑑 − 4)2(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 8)

+ [23−𝑑/2𝑑2 𝑓2( 𝑓2 + 1)2 + 𝑓1( 𝑓1 + 1)2]
(𝑑 − 10) (𝑑 − 4)2(𝑑 − 2)𝑑 (𝑑 − 6) (𝑑 − 8)

(𝑑3 − 32𝑑2 + 300𝑑 − 1024)
}
. (A.1)

An expression for 𝐴𝑔( 𝑓1, 𝑓2) from the expression (4.23–4.26):

𝐴𝑔( 𝑓1, 𝑓2) = −13
12

−
(
3 𝑓 2

1 + 12 𝑓1 𝑓2 + 3 𝑓 2
2 + 4 𝑓1 + 4 𝑓2 + 1

)−1

×
{
𝑓1 𝑓2
2

(2 𝑓1 𝑓2 − 41 𝑓1 − 41 𝑓2 + 28) + 13
6

− 13( 𝑓2 + 1)
6

(3 𝑓 2
2 + 1)

−13( 𝑓1 + 1)
6

(3 𝑓 2
1 + 1) + 4 ln 2 [ 𝑓2( 𝑓2 + 1) (3 𝑓2 − 2) + 𝑓1( 𝑓1 + 1) (3 𝑓1 − 2)]

−16 ln 2 𝑓1 𝑓2(3 𝑓2 + 3 𝑓1 − 5) + 27 ln 3 𝑓1 𝑓2(2 𝑓2 + 2 𝑓1 − 3)
}
. (A.2)

An 𝜖-expressions for ⟨𝑟2
1⟩ and ⟨𝑟2

2⟩ introduced in (4.18) and (4.19):

⟨𝑟2
1⟩ =

𝑑𝐿 ( 𝑓1 + 1 + 3 𝑓2)
2𝐹

{
1 + 𝑢0

[
2
𝜖
+ 1

12( 𝑓1 + 1 + 3 𝑓2)
(12 ln 2(2 𝑓 2

1 − 20 𝑓1 𝑓2 + 2 𝑓1 + 7 𝑓2)

+216 ln 3 𝑓1 𝑓2 − 13 𝑓 2
1 − 40 𝑓1 𝑓2 − 27 𝑓1 − 52 𝑓2 − 14 − 12 𝑓1 𝑓 2

2 )
]}
, (A.3)
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⟨𝑟2
2⟩ =

𝑑𝐿 ( 𝑓2 + 1 + 3 𝑓1)
2𝐹

{
1 + 𝑢0

[
2
𝜖
+ 1

12( 𝑓2 + 1 + 3 𝑓1)
(12 ln 2(2 𝑓 2

2 − 20 𝑓1 𝑓2 + 2 𝑓2 + 7 𝑓1)

+216 ln 3 𝑓1 𝑓2 − 13 𝑓 2
2 − 40 𝑓1 𝑓2 − 27 𝑓2 − 52 𝑓1 − 14 − 12 𝑓2 𝑓 2

1 )
]}
. (A.4)
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Властивостi форми асиметричних пом-пом полiмерiв у
хорошому розчиннику
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Ця стаття є продовженням нашого попереднього дослiдження [K. Haydukivska et al., J. Mol. Liq., 2021, 328,
115456] складних молекул з двома центрами галуження на кiнцях ланцюжка основи з 𝑓1 та 𝑓2 боковими
ланцюжками прикрiпленими до них, якi вiдомi як пом-пом полiмери. Тут ми аналiзуємо асиметричний ви-
падок, 𝑓1 ≠ 𝑓2, використовуючи як аналiтичний пiдхiд на основi прямого полiмерного перенормування,
так i числьне моделювання з використанням методiв дисипативної динамiки та Монте-Карло. Ми дослi-
джуємо вплив молекулярної асиметрiї на усереднену конформацiю, розглядаючи випадок безмежного
розведення в хорошому розчиннику. Були отриманi кiлькiснi оцiнки для низки унiверсальних характери-
стик розмiру та форми для дослiжуваних молекул та їх складових гiлок, як функцiї 𝑓1 та 𝑓2. До прикладу,
ми оцiнюємо розмiрне спiввiдношення для радiусiв гiрацiї симетричної та асиметричої топологiй пом-пом
однакової молекулярної маси, та кiлькiсно показуємо ефект зросту ефективного розмiру молекули, спри-
чиненого ассиметрiєю. Ми також вводимо i аналiзуємо фактор асиметрiї та оцiнюємо змiщення центру
мас через присутнiсть бокових зiрок, що може слугувати ще однiєю характеристикою асиметричностi по-
лiмерної структури.

Ключовi слова: полiмери, характеристики форми, модель неперервного ланцюжка, дисипативна
динамiка

23302-18


	Introduction
	The methods: analytical approach
	Continuous chain model
	Direct renormalization scheme
	Random-flight model

	The methods: numerical approaches
	Lattice model and the pivot algorithm
	Dissipative particle dynamics simulations

	Results
	Partition function calculation
	Size characteristics
	Universal size ratios
	Center of mass
	Numeric results and discussion

	Conclusions

