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Geometry of the neutrino mixing space
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We study the geometric structure of the physical region of neutrino mixing matrices as part of the unit
ball of the spectral norm. Each matrix from the geometric region is a convex combination of unitary PMNS
matrices. The disjoint subsets corresponding to a different minimal number of additional neutrinos are
described as relative interiors of faces of the unit ball. We determined the Carathéodory’s number showing
that at most four unitary matrices of dimension three are necessary to represent any matrix from the
neutrino geometric region. For matrices which correspond to scenarios with one and two additional
neutrino states, the Carathéodory’s number is two and three, respectively. Further, we discuss the volume
associated with different mathematical structures, particularly with unitary and orthogonal groups, and the
unit ball of the spectral norm. We compare the obtained volumes to the volume of the region of physically
admissible mixing matrices for both the CP-conserving and CP-violating cases in the present scenario with
three neutrino families and scenarios with the neutrino mixing matrix of dimension higher than three.
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I. INTRODUCTION

Over the years neutrino oscillation experiments have
provided in-depth information about the structure of the
neutrino standard 3 x 3 unitary mixing matrix Upys [1,2].
We know already that the 6,3 mixing angle is nonzero,
and as a consequence, the (1,3) element of Upyns 1S also
nonzero [3-5]. In that way, the tri-bimaximal mixing
structure has been excluded [6]. Recently a lot of attention
is given to the study of the value of the neutrino CP
complex phase. If it is nonzero it could shed a new light on
the matter-antimatter problem [7]. On top of that, there is a
possibility that more than three known neutrinos exist. In
this case new neutrino states, commonly known as sterile
neutrinos, can mix with active Standard Model neutrinos.
This implies that the 3 x 3 neutrino mixing matrix is no
longer unitary. There are various approaches to deal with
the non-unitarity problem, for instance a decomposition of
a general matrix into a product with a unitary matrix are
considered. The two often used approaches are known as
the a and # parametrizations [8—13]. In the a parametriza-
tion’s framework a small deviation from unitarity is
encoded into a lower triangular matrix, whereas in the 7
framework, possible deviations from unitarity are encoded
in a Hermitian matrix. In Ref. [14] a different approach was
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proposed based on matrix theory where the experimentally
established interval neutrino mixing matrix U;, is studied
using matrix theory methods, and its connections to the
non-standard neutrino physics have been established by
exploring singular values and contractions. In [15] the
matrix theory has been applied to phenomenological
studies and new limits on light-heavy neutrino mixings
in the 3 + 1 model (three light, known neutrinos with one
additional sterile neutrino) have been obtained. In another
work where the matrix theory methods have been explored
in the context of neutrino physics, conditions for the
existence of the gap in the seesaw mass spectrum have
been established and justified [16,17]. We should also
mention that an interesting mathematical connection
between eigenvalues and eigenvectors has been rediscov-
ered in the context of neutrino oscillations in matter
[18,19]. There has been also attempts to predict neutrino
masses by geometric and topological methods. In [20] the
neutrino mass spectrum is explored through the model of
cosmological evolution based on exotic smooth structures.
In this work we focus on further geometrically based
studies toward the understanding of the class of physically
admissible neutrino mixing matrices where the 3 x 3
mixing matrix could be a part of a higher dimensional
unitary mixing matrix. Our aim is to study the structure of a
geometric region Q that corresponds to physically admis-
sible mixing matrices, which has been introduced in [14].

In the next chapter we give a general setting for our
discussion introducing a neutrino mixing matrix and
current experimental limits for the mixing parameters.
In the third chapter, we define the region of physically
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admissible mixing matrices and its subsets corresponding
to a different minimal number of additional neutrinos. In
the fourth chapter, we recognize the geometric region as a
subset of the unit ball of a spectral norm and describe its
facial structure. Next, we will connect the facial structure of
Q to the minimal number of additional sterile neutrinos and
we will determine the so-called Carathéodory number
which informs us about a minimal number of unitary
3 x 3 matrices which are needed to span the whole € space
for a given number of sterile neutrinos. This allows for an
optimal construction of physical mixing matrices that can
be used for further analysis of scenarios involving sterile
neutrinos. Finally, we determine the volume of this region
for CP conserving and violating cases. The article is
finished with a summary and outlook. The main text is
supported by the Appendix containing auxiliary definitions
and theorems.

II. SETTING: NEUTRINO MIXING MATRIX
AND EXPERIMENTAL DATA

Neutrino flavor fields are (linear) combinations of the
massive fields

v = U, (1)
i=1

This property of neutrino fields is called the neutrino
mixing mechanism. The mixing of neutrinos occurs regard-
less if they are Dirac or Majorana particles [21,22]. As the
massive and flavor fields form two orthogonal bases in the
state space, the transition from one base to another can
be done by a unitary matrix. This restricts coefficients of
the linear combination, the sum of squares of their absolute
values must equal one

v = Z U™ with Z U * = 1. (2)
i= i=

For n = 3 in (1), the 3 x 3 unitary matrix U corresponding
to three light known neutrino mixing is known as the
PMNS mixing matrix [23,24]. The general n x n complex
matrix has n”> complex parameters or equivalently 2n?
real parameters. The unitarity condition UU' = I imposes
additional n* constraints on the elements. It can be seen
from UU' which is a Hermitian matrix and has n
independent diagonal elements and n> —n independent
off-diagonal elements which together give n? independent
elements or conditions imposed on the unitary matrix.
Thus, the n x n unitary matrix has 2n> — n?> = n? inde-
pendent real parameters. An alternative way to see this is
by writing a unitary matrix as the matrix exponent of the
Hermitian matrix, i.e., U = ¢/, where the H matrix is
Hermitian and thus has n? independent real parameters
which implies that U also has n?> independent real

parameters. These parameters can be split into two cat-
egories: rotation angles and complex phases. The number
of angles corresponds to the number of parameters of

%=1 independent real

the orthogonal matrix which has =5
parameters. The remaining parameters correspond to
phases. Thus, the n” independent real parameters of the

unitary matrix split into

nn—1)
2 9

n(n+1)

angles:

phases: (3)
However, not all phases are physical observables. The
charged leptons and neutrino fields can be redefined as

v; — ey, and [ — el (4)
The a; and f; phases can be chosen in such a way that they
eliminate 2n — 1 phases from the mixing matrix leaving the
Lagrangian invariant. This reduces the number of phases of
the mixing matrix. The number of remaining free param-
eters is (n — 1)? which divides into

angles: w
phases: (n = 1)2(n 2 (5)

These are the numbers under consideration when neutrinos
are of the Dirac type. However, neutrinos can also be
particles of the Majorana type. Then the Majorana con-
dition 1§ = v; where C is the charge conjugate operator,
fixes phases of the neutrino fields, which no longer can be
chosen to eliminate phases in the mixing matrix. On the
other hand, the phases of charged leptons are still arbitrary
and can be chosen in such a way as to eliminate phases
from the mixing matrix. Thus, from all @ phases of the
unitary matrix, n phases can be eliminated. Finally, for
the Majorana neutrinos, the number of free parameters of

the mixing matrix is as follows

g (©)

Knowing the number of parameters necessary to
describe the mixing matrix, we can find its explicit form
by invoking a particular parametrization. In the minimal
scenario, the mixing matrix is a 3 x 3 matrix and thus
for the Dirac case we have three mixing angles and one
complex phase. The standard way of parametrizing the
PMNS mixing matrix is as the product of three rotation

035005-2



GEOMETRY OF THE NEUTRINO MIXING SPACE

PHYS. REV. D 106, 035005 (2022)

matrices with additional complex phase in one of them, i.e.,
in terms of Euler angles 6,, 0,3, 6,3 and complex phase &

1 0 0 ci3 0 sze7

Upmns = | 0 o3 523 0 1 0
0 =533 3 —s13¢® 0 13
cp sp 0
X | =sp ¢ O
0 0 1
Un Un Ugs
Un Up Us |. ()

Un Un Ugs

In the case of Majorana neutrinos we must include
additional phases, which is done typically by multiplying
the PMNS mixing matrix from the right-hand side by a
diagonal matrix of phases P™. For the 3 x 3 mixing matrix,
we must add two more complex phases. The Majorana
neutrino mixing matrix is then given by
UM ins = Upnns P, where PY = diag(e”',e2,1).  (8)

Oscillation experiments provide the major information
about the structure of the neutrino mixing matrix. The
current data gives the following limits for the mixing
parameters [1,2]

0, € [31.27°,35.867.
0,5 € [8.20°,8.93,

0y € [40.1°,51.7°,
6 € [120°,369°. 9)
The global fits to oscillation experiments give the

following allowed ranges for the absolute values of mixing
matrix elements [2] (at the 36 confidence level)

0.801,0.845] [0.513,0.579] [0.143,0.155]
Uy, = | [0.243,0.500] [0.471,0.689] [0.637.0.776]
0.271,0.525] [0.477,0.694] [0.613,0.756]

(10)

To get exact values of the allowed ranges we imputed
the allowed ranges of parameters (9) into the parametriza-
tion (7), which in the CP invariant case give the following
interval matrix

Oint
(0.801,0.845]  [0.513,0.579] [0.143,0.155]
= | [-0.529,-0.417] [0.431,0.606] [0.637.0.776] |,
0.233,0.388]  [~0.721,-0.586] [0.613,0.756]
(

11)

whereas when the nonzero CP phase ¢ is included, the
elements of the U,, are within the following ranges
U, €[0.801,0.845],
U, €[0.513,0.579],
U, € [-0.155 - 0.155i,0.155 + 0.1344],
U, € [-0.528 —0.0901i, —0.218 + 0.104i],
U, €[0.432 -0.0616i,0.707 + 0.0711i],
U, €[0.637,0.776],
U, €1[0.233 —0.0878,0.538 + 0.1011],
[-0.721 — 0.060i, —0.453 + 0.0693i],
[

U, € [0.613,0.756]. (12)

126

Though the experimental results given in (11) and (12) are
based on the Upyng matrix (7), we can reverse the problem
and ask the following question: What can we learn about a
geometrical structure of a region of physical mixing
matrices, not restricted to Upyns, given basic mixings
between light known neutrinos in (11) or (12)?

We will answer this question in the following sections.

III. REGION OF PHYSICALLY ADMISSIBLE
MIXING MATRICES

We are interested in a special class of matrices encom-
passing unitary matrices or matrices which can be a
submatrix of a unitary matrix. These are known as con-
tractions and are defined by the following formula ||A|| < 1
(for necessary definitions see Appendix A). The impor-
tance of contractions in neutrino mixing studies and their
properties have been discussed in [14,15].

We will show that a matrix constructed as a finite
convex combination of unitary matrices is a contraction.
Let U;,, i=1,...,n, be a unitary matrix, and let A =
>, U, with

a;>0and ) ", a =1, then

A =11 Uil <Y aillUil =) ai=1=||A] <1.
Py py i=
(13)

The converse is also true [25], thus we have

Theorem III.1: A matrix A is a contraction if and only
if A is a finite convex combination of unitary matrices.

This characterization of contractions has physical con-
sequences. It allows to gather physically meaningful
mixing matrices into a geometric region.

Definition 1: The region of all physically admissible
mixing matrices, denoted €, is the set of all finite convex
combinations of 3 x 3 unitary matrices with parameters
restricted by experiments

035005-3
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Q == conv(Upmns)
= {ZaiUi|Ui (S U(3),a1, e Oy > O,Zai = 1,
i=1 i=1

015,013,053 and 6 given by experimental values}.
(14)

There is another equivalent definition of the Q region,
which reflects its geometric nature, namely as the convex
hull spanned on the unitary PMNS matrices.

The Corollary 1 given in Appendix B restricts the
minimal dimension of the unitary extension of the con-
tractions. This allows us to divide the Q region into four
disjoint subsets according to the minimal dimension of the
unitary dilation

Q,:3+1scenario: Z={0,=1,00=1,05<1}, (15)
Q,:3+42scenario: X={o;=1,00 <l,03<1}, (16)
Q;:3+3scenario: X={o;<1l,0,<l,05<1}, (17)

Q,: PMNSscenario: 2={c,=1,0,=1,05=1}. (18)

This division allows to analyze individually scenarios
with a different number of sterile neutrinos. Thus, the study
of geometric features of this region gives a possibility for a
better understanding of neutrino physics, especially regard-
ing the number of additional sterile neutrinos and the
structure of the complete mixing matrix.

It is important to notice that matrices from the €, subset
can be extended to unitary matrices of arbitrary dimension,
starting from the dimension four. The same is true for
contractions from the subset Q, which can produce any
unitary matrices of dimension five or higher. It may look
that there is an overlapping between matrices from different
subsets of the Q region and some of them may be
redundant. This is however not true, as unitary matrices
produced by the contraction from each subset are not
overlapping. It is so because contractions must end up in
the 3 x 3 top diagonal block of a complete unitary matrix
and as the subsets are disjoint, we cannot reproduce the
same unitary matrices using contractions from different
subsets. Thus, instead of overlapping, we should treat
dilations of a given dimension of contractions from differ-
ent subsets as complementary to each other.

IV. GEOMETRY OF THE REGION OF
PHYSICALLY ADMISSIBLE MIXING MATRICES

The Q region is a subset of the unit ball of the spectral
norm

Bn)={AcC™ :|A| <1}

3+3
Uinr

ff//(3)—f

FIG. 1. Schematic visualization of the region of physically
admissible mixing matrices as an intersection of B(3) and Uj,.
The double pyramid shape corresponds to the unit ball of a
spectral norm. Its middle circumference, in red, represents its
extreme points, i.e., U(3) group. Its edges and sides represent
contractions with a minimal unitary extension, 4 x 4 and 5 x 5,
respectively. Whereas the interior of B(3) corresponds to the
contraction that minimally can be extended to 6 x 6 unitary
matrices. The cuboid represents a hypercube of the interval
matrix U,,. At the intersection of these two structures is the Q
region, in blue, and the set of PMNS mixing matrices is
highlighted in green.

B(n) = {A € C™":||A| < 1}. (19)

This fact allows us to give another characterization of the
Q region as the intersection of the B(3) with the interval
matrix U, in Egs. (11)—(12), i.e.,

Q= B(3) N Uy, (20)

The relation between € and other involved geometric
structures is visualized in Fig. 1.

The geometry of 5(n) is strictly connected to the
geometry of symmetric gauge functions [26].

Definition 2: A function ®:R"” — R is a symmetric
gauge function if it satisfies the following conditions

(1) @ is a vector norm,

(2) For any permutation matrix P we have ®(Px) = ®(x),

3) @(|x]) = ®(x).

Von Neumann proved that symmetric gauge functions
and unitarily invariant norms (A2) are connected to each
other [27], namely

Theorem IV.1: | - | is a unitary invariant norm if and
only if there exists a symmetric gauge function @ such that
|A]| = ®(S(A)) for all A € C™", where S(A) is the set of
singular values of A.

The spectral norm is a unitarily invariant norm and its
corresponding symmetric gauge function is an infinite
norm, i.e.,

035005-4
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X} (21)

The unit ball of the infinite norm is a hypercube

Do (x) =

205 eees

Beo(n) ={xeR":® (x) <1} =[-1,1]". (22)
The connection between spectral norm and infinity norm is
used in the proof of Proposition V.1.

The Von Neuman’s relation between unitary invariant
norms and symmetric gauge functions is also reflected in
the geometry of the corresponding unit balls. The charac-
terization of the extreme points and facial structure of unit
balls of unitarily invariant norms by the corresponding
structure of unit balls of symmetric gauge functions have
been studied in [28-32]. Faces and extreme points are
defined as follows [33,34]

Definition 3: Let C € R" be a convex set. A convex set
F C C is called a face of C if for every x € F and every
v,z € C such that x € (y,z), we have y,z € F.

Definition 4: The zero dimensional faces of a convex
set C are called extreme points of C. Thus a point x € C is
an extreme point of C if and only if there is no way to
express x as a convex combination (1 — 1)y + Az such that
v,z€ Cand 0 < 1 < 1, except by taking x =y = z.

It appears that the extreme points of the B(n) are exactly
unitary matrices. This result has also been obtained in a
more general setting by Stoer [35]. The facial structure of
the B(n) is given in the following theorem [29,32]

Theorem IV.2: F is a face of B(n) if and only if there
exist 0 < r < n and unitary matrices U and V such that

I,

F=qU
0
As the Q region in Eq. (20) is a subset of B(3), its
geometric structure is inherited from 5(3). Thus, the facial
structure of the Q region is the same as for B(3) with
restriction of parameters of unitary matrices U and V to

experimental results in Eq. (9) and with established ranges
of singular values

g)V:A eB(n—r)}. (23)

CP invariant scenario:

{61 =0.95954, 6, = 0.88186, 05 = 0.84189},

General scenario:

{61 =0.95592,6, = 0.84112, 65 = 0.70275}. (24)

The faces of B(3) defined in Eq. (23) do not correspond
entirely to physically interesting subsets in Egs. (15)—(17)
of Q. Namely, higher-dimensional faces contain lower-
dimensional faces, e.g., for » = 1 the face contains not only
matrices with two singular values strictly less than one,
but also unitary matrices and contractions with only one
singular value strictly less than one. In other words faces
of B(3) comprise matrices from different subsets of Q.

To restrict faces to subsets containing only matrices with
the specific number of singular values strictly less than one,
we can use the notion of the relative interior [33].

Definition 5.: The relative interior of a convex set
C Cc R", which is denoted by ri(C), is defined as the
interior which results when C is regarded as a subset of its
affine hull aff(C).

In this definition by the affine hull of the set C we
understand the set of all finite affine combinations of
elements of C [36], ie., aff(C)={>*, aux;:x; €C,

k| a; = 1}.In that way, the subsets of B(n) correspond-
ing to different minimal unitary extensions are the relative
interiors of F, i.e., subsets of faces for which singular
values of the A submatrix are strictly smaller than one.

Definition 6: The subsets Q, ..., Q4 of the Q region are
relative interiors of the faces F of B(3) for r =2, 1, 0, 3,
respectively, with parameters of unitary matrices U and V
restricted by experimental data and with allowed ranges of
singular values.

There is another way to characterize subsets of the Q
region, namely in terms of Ky-Fan k-norms.

Definition 7: For a given matrix A € C"™" the Ky-Fan
k-norm is defined as the sum of k largest singular values

=~

Il =S o(A), fork=1...n (25

i=1

In particular for matrices in C**3 the three possible
Ky-Fan norms are

lA]l; = 1(A) (spectral norm),

1All; = 01(A) + 62(A),

|All; = 61(A) + 65(A) + 03(A) (nuclear norm). (26)

Let us define for k = 1, ..., 3 the following sets

Si(r) ={A e C™":[|A[[y = r}.

Ap(riom) ={AeC™ir <Al <}, (27)
i.e., we defined the sphere of radius r and the annulus with
radii 7y and r, for Ky-Fan norms centered at the origin.
Then, the subsets of the Q can be defined as
Q; = 8,(1) N $2(2) N A3(2 + 03min- 3).
Q, = 8(1) N Ay (1 + 62min, 2) N A3(1 + G2 min + O3 mins 3)
Q; = A (01min: 1) N A2(61 min + 62min- 2)

N A3(¢1 min + C2min + 3 min» 3)s

Q= 51(1)n5(2) n§5(3). (28)

where o;,;, for i =1, 2, 3 are lower limits of singular
values allowed by current experimental data (24).
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We have described the subsets of the Q region corre-
sponding to a different number of additional neutrinos as
relative interiors of the unit ball of the spectral norm with
restricted range of parameters. In this way we established a
correspondence between the geometry of Q and 5(3). This
will allow us to study the further properties of the region of
physically admissible mixing matrices by geometric tools
used for unit balls of matrix norms and gauge symmetric
functions.

V. PHYSICALLY ADMISSIBLE MIXING
MATRICES AS CONVEX COMBINATIONS
OF PMNS MATRICES

The Q region (14) is defined as the convex hull of unitary
PMNS mixing matrices or equivalently as the set of a finite
convex combination of PMNS mixing matrices. In this
way, we claim that every physically admissible mixing
matrix can be represented as a finite convex combination
of unitary PMNS matrices. This agrees with the Krein-
Milman theorem which states [36,37]

Theorem V.1: Let C C R" be a nonempty compact
convex set, and let ext(C) be the set of extreme points
of C, then

C = conv(ext(C)), (29)

where bar over conv means a closure. As we have
discussed, the extreme points of the unit ball of the spectral
norm are unitary matrices and as the  is a subset of the
B(3), the above theorem justifies our definition. However,
this theorem does not put any restriction on the number
of extreme points necessary to construct any point of a
convex set as a convex combination of its extreme points.
The upper bound for this number has been given by
Carathéodory [36,38].

Theorem V.2: If K C R”, then each point of conv(K) is
a convex combination of at most n 4 1 points of K.

The natural question arises: What is the Carathéodory
number for the B(n) and Q which are embedded in
C” ~R>"? In the physically interesting case where n = 3
according to the Carathéodory theorem we would need 19
unitary matrices. However, we will prove that for 5(3) this
number can be significantly reduced.

Proposition V.1: The Carathéodory’s number for the
conv(U(3)) = B(3) is 4.

Proof—Let By, = {x € R®:||x||, < 1} be the unit ball
of the infinite norm in R?, i.e., the cube [—1,1]°. The
extreme points of the B, are vertices of the cube, i.e.,
vectors v; = (£1,£1,+1)" for j =1,...,8 Lety: B, —
Ms,; be a mapping which sends a vector from the unit ball
B, to a diagonal matrix. Then, the y sends the extreme
points of the B, to the diagonal unitary matrices U; =
diag(£+1,+1,+1) for j=1,...,8. The Carathéodory’s
number for the cube is 4. Thus, every point in B, can

be written as the convex combination of at most 4 extreme
points v;. In particular every point of the positive octant
can be written in this way. This means that every diagonal
matrix D € Mj,; with diagonal elements in [0, 1] can
be written as convex combination of at most 4 diagonal
unitary matrices U;, i.e., D = Y ¢, a;U;, with a; > 0 and

4 ,a; = 1. Now, let A be a contraction with a singular
value decomposition A = WDVT, where W and V are
unitary matrices. This gives

4
A=WDV' =) " a;WUV". (30)
i=1

As the conv(U(3)) = B(3) is the set of all 3 x 3 contrac-
tions, this completes the proof. L

As an immediate consequence of this proposition and the
construction used in the proof, matrices from the Q, subset,
i.e., with two singular values strictly less than one, can
be constructed as the convex combination of 3 unitary
matrices. Whereas, matrices from the €, subset, i.e., with
only one singular value strictly less than one, can be
constructed as the convex combination of two unitary
matrices.

Following the idea of Stoer [35], we will show how to
construct contractions with two and one singular values
strictly less than one as a convex combination of three and
two unitary matrices, respectively. Let us take the following
diagonal matrix

D, - (31)

oS O =
S 2 O
S O O

where a, b < 1. It can be written as the following sum

10 0 10 0
01:1;“ 0o -1 0 |+22%[0 1 o
0 0 -1 00 -1
10 0
#010. (32)
00 1

Now let us take another diagonal matrix. This time with
only one diagonal element strictly less than one

1 0
0 0

QX O O

where a < 1. The D, matrix can be written as
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l1—a
D2: 2

0 1
“+a
0
+2

10 10
0 1 0 1 (34)
00 0 0

- O O

-1

Multiplying D, and D, matrices from left- and right-hand
side by unitary matrices, we end up with a singular value
decomposition of a given matrix with singular values
gathered in D; and D,, respectively. Moreover a similar
construction, where singular values are encoded in the
coefficients of the convex combination, can be done for
contractions with all three singular values strictly smaller
than one. This goes as follows, let
0
D3 - O ) (35 )

S O 2

0
b
0 ¢

where a, b, ¢ < 1. The D5 matrix can be written as the
following sum

1 0 0 1 0 o0

D3:1;“ 0 -1 o |+%=b1o 21 o

0 0 -1 0 0 -l
, 10 VAR

—C C
+2(010 1o 1o
00 -1 00 1
(36)

Multiplying D5 by unitary matrices from both sides we get
a contraction with singular values a, b, and c.

As aresult contractions with three, two and one singular
values strictly smaller than one can be written as convex
combinations of unitary matrices with singular values
encoded in coefficients of the combination. We would
also like to highlight that when we multiply the convex
combinations Dy, D,, and D; by unitary matrices from
both sides we reproduce the relative interiors of the faces of
the unit ball in the spectral norm B(3) introduced in the
Theorem IV.2. Thus we have equivalence between these
two representations.

These results will be used for extending phenomeno-
logical studies on the light-heavy neutrino mixings under-
taken in [15] to the 3 4+ 2 and 3 + 3 scenarios.

A. Simple example

Let us demonstrate how the above construction can be
used for the study of the mixing between active and sterile
neutrinos. We will present this for a matrix from the Q
subset, i.e., with two singular values strictly smaller than
one, and for the CP invariant scenario. Let us choose the
following set of singular values

{61 ES 1, 0y = 098, 03 = 097}, (37)

which lies within (24). Thus, according to the (31), we can
construct the following convex combination

1 10 0
p_1-098( 09850.97 01 o
00 -1 00 -1
100
1+§'97 01 0|. (38)
00 1

To get a physical mixing matrix we have to multiply
it by PMNS matrices. For simplicity we will multiply it
only from the left-hand side by the following orthogonal
matrix

0.831045 0.534751 0.152986
—0.48083 0.552457 0.680877 |, (39)
0.279582 —-0.6394 0.716242

0=

which has been obtained from (7) with the following values
of parameters 0, = 32.76°, 0,5 = 8.8°, 0,3 = 43.55°. The
resulting mixing matrix is

0.831045  0.524056  0.148396
T=0D,=| —048083 0.541408 0.660451 |,
0.279582 —0.626612 0.694754

(40)

which clearly lies within (7). Alternatively, we can use the
equivalence between the relative interiors of the faces of the
unit ball B(3) and the construction in Proposition V.1. In
other words the D matrix can be written as a diagonal
matrix

1 0 0
p=|0 09 o0 [, (41)
0 0 097

Multiplying it from the left-hand side by the matrix O
results in the same matrix 7. Thus, we have two equivalent
approaches to constructing physical matrices with pre-
scribed singular values.

Information about mixing between active and two sterile
neutrinos can be retrieved from the CS decomposition of
the 5 X 5 unitary matrix
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<UPMNS Ulh)
U  Upp

1 0 0 0
0 ¢, O -5, 0 .
:<W1 0> 0 0 ¢3| 0 -—s5 (Ql 0).
O W /105 0 & 0 |V0 &
0 0 s3 | 0 5

(42)

From which the submatrix corresponding to the active-
sterile mixing reads

U = WiS1,05. (43)
where W, € C¥3, Q, € C>? are unitary matrices
(orthogonal matrices in the CP invariant case) and

0 0
S12 = —S8 0 . (44)
0 —S3

Thus, in the 3 + 2 scenario bounds for active-sterile mixing
are given by the following formula

|(Uin)ajl = Wa25191; + Wa3S242]
/1 — o2 4/1 — o2
Waa {1 05 + Wa3(a; 03

where w3 are second and third columns of the left
singular matrix from the singular value decomposition of
the 7 matrix, which in our case are just columns of the O
matrix, and q,;, q,; are elements of the 2 x 2 orthogonal
matrix which is treated as a free parameter. Applying this
formula to our case gives

. (45)

|(Uin)eal = [(Un)es| < 0.112726,
|(Uin)yal = [(U) 15| < 0.198707,
|(Uin) gl = [(Usn),s] < 0.215658. (46)

The reason that the value of mixing between a given flavor
neutrino and the 4th and 5th massive states is the same lies in
the fact that in our simplified analysis we focused on the
largest possible value which can be obtained and this is the
case when g, ; and g, ; are equal to one. In this way we ignore
the fact that sine and cosine in the 2 x 2 orthogonal matrix Q,
cannot be simultaneously equal to one. The complete
phenomenological analysis of scenarios with 2 and 3 addi-
tional sterile neutrinos is much more involving and is beyond
the scope of this article. Such complete analysis will be
presented in our future work which is still in progress.

In general numerical computations with matrices are very
sensitive, especially when one is interested in functions of
matrix elements such as singular values. The construction of
matrices with prescribed singular values is the first step in the
simplification of numerical analysis.

We presented two equivalent approaches to the con-
struction of mixing matrices with prescribed singular
values, so a cross-check of numerical results in future
studies will be possible. The sum representation in Eq. (38)
has an advantage over starting directly from Eq. (39) in
establishing an entry-wise representation of physical mix-
ing matrices as the singular values are factored out which
should simplify relations obtained by the unitary multi-
plications (work in progress).

VI. VOLUME

Lie groups are also manifolds [39], i.e., they pose
geometric structures. Thus, we can associate with them
geometrical properties such as the surface area, also called
the volume. Two very important groups in physics fall into
this category, namely an orthogonal group, and its complex
counterpart: a unitary group. These groups are also very
important in neutrino physics as the mixing matrix is either
orthogonal or, if the CP phase is non-zero, unitary. In Tab. I
we gathered the list of structures for which we will calculate
the volume in this chapter. The table is split into purely
mathematical objects and those restricted by experiments.

A. CP-conserving case

The set of all orthogonal matrices of dimension n x n,
ie, O(n) ={0 € R™":00" =1}, is an example of a
Stiefel manifold [40]. As the orthogonal matrices have

n(n—1)
2

the orthogonal group is a @ dimensional manifold
embedded in n” space. We can associate to it a volume

which is expressed as the Haar measure over the orthogonal
group [40-44]

vol(O(n)) = /

O(n)

independent parameters, the Stiefel manifold of

[0Tdo)", (47)

where [0TdO]" denotes the wedge product of the matrix
07dO and dO is the matrix of the differentials of the

TABLE 1. Total and experimentally restricted volumes for
different structures considered in this work and their mutual
relations.

CP-conserving CP-violating

Total volumes

S0O(3) c O(3) c B(3) SU3) cU(3) c B(3)

Experimentally restricted volumes
OPMNS C Q = 8(3) N Oint UPMNS cQ= 8(3) N Uint
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orthogonal matrix O. This volume can be expressed in the
following compact form [44,45]

2 1
2T on g

1—‘n %) B HZ:I F(%) '
n(n=1)

where I, (x) = 7=+ T'(x)I'(x —)...I'(x — %51). In the case
interesting from the neutrino physics perspective, i.e., for

n = 3, this gives

vol(O(n)) =

(48)

However, as the determinant of the PMNS mixing matrix is
equal to 1, it belongs to even a smaller subset, namely the
special orthogonal group SO(3). The special orthogonal
group is a subgroup of O(3) and its volume is half of the
volume of the orthogonal group, i.e.,

vol(SO(3)) = 82, (50)

Moreover, the PMNS matrix does not cover the entire range
of parameters and hence we must start from O7dO in order
to calculate the volume of this submanifold. Taking the

vol(O(3)) = 167°. (49)  standard PMNS parametrization (7) we get
|
0 db; + s13d0>3 c12db3 — c13812d03
OTdO = —d912 - S13d923 O C13C12d023 + S12d913 . (51)
—C12d013 + c13812d0y;  —c13¢12d0p3 — 512d013 0
I

The wedge product of the independent elements of this on gn’ on

matrix is equal to vol(U(n)) (56)

[OTdO]A = COS(913)d912d913d923. (52)

Thus, the volume of PMNS matrices is given by

01 013 03
VOI(PMNS):/ U/ U/ U:COS(913)d912d913d923,
O, JOi, JOy,
(53)

which with the current experimental limits on 6y,, 63,
and 0,3 (9) gives

vol(PMNS) = 2.2667 x 107, (54)

As we can see the PMNS matrices contribute only in a
small portion to the entire O(3).

B. CP-violating case

The unitary group U(n), i.e., the group of all unitary
matrices U(n) = {U € C™":UU" = I}, is another exam-
ple of a Stiefel manifold. Similarly, as for the orthogonal
group, the volume of the unitary group is given by the Haar
measure over the group

vol(U(n)) = / [UidU]", (55)

U(n)

where [U'dU]" denotes the exterior product of the matrix
U'dU and dU is the matrix of the differentials of the
unitary matrix U. The volume of the unitary group can be
expressed in a compact form as [41-45]

T 12l (-1

where T,(x) = ﬂn(”z_l)F(x)F(x —1)..'(x =n+1). Thus,

the volume of the 3 x 3 unitary matrices equals

vol(U(3)) = 4x°. (57)

Moreover, the determinant of the PMNS matrix is equal to
one, which means it belongs to the special unitary group
SU(n). The volume of the SU(n) written in the compact
form is [41-43]

(n=1)  (n=1)(n+2)
ZTﬂ'—

vol(SU(n)) = IS

(58)

For the physically interesting dimension, i.e., n = 3 this
volume is equal to

vol(SU(3)) = V37’ (59)

The PMNS mixing matrix with nonzero CP phase,
however, has a restricted set of parameters (5), (6) and
ranges of these parameters are confined by experiments (9).
Hence, in order to calculate its volume, it is necessary
to start from a specific parametrization of the mixing
matrix (7). It can be done in the same way as for its real
counterpart, i.e., by calculating the wedge product of the
matrix UTdU. However, for the complex matrices, it is
much more complicated. Alternatively, it can be calculated
by determining the Jacobian matrix of the PMNS matrix in
the parametrization (7)
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ou;;
=(=2), ij=1,...n (60)
<0)’k>

and the y, are parameters (for the PMNS matrix
k=1,...,4). Then, the volume element is multiplied by

the Jacobian [J| = y/det(3J"J).

The volume of complex PMNS matrices can be calcu-
lated in one more way, namely by using the Cartan-Killing
metric [46-48]

ds® = (V, V)d, (61)

where (A, B) =31Tr(A"B) is the inner product induced
by the Frobenius norm and V = U'dU. The V is anti-
Hermitian and thus (V, V) =1Tr(VIV) = =1 Tr(V?).

The Hermitian product of the Jacobian matrix for the
PMNS matrix is given by

1 0 sin(0;3)cos(d) 0
1 0 1 0 0
—_Jij= _
2 sin(6;3)cos(6) 0 1 0

0 0 0 sin’(6,3)

Let us look also at the expression for the Cartan-Killing
metric

ds® = db3; + dO3, + d63, + 2 sin(6,3) cos(d)
+ sin?(0,3)ds* (63)

which as expected gives the same matrix as (62). Finally,
the Jacobian for the PMNS matrices is equal to

U] = \fsin2(8)5) — cos2(8) sin*(6y).  (64)

Thus, the volume of the complex PMNS matrices is
given by

vol(PMNS) = / |J|dV
MNS

= / \/sin2(6?13) — cos?(8)sin*(6,3)
X d923d913d912d5. (65)
Taking into account current experimental limits for mixing
parameters (9) the numerical value for the volume of the

complex PMNS mixing matrices is

vol(PMNS) = 1.4777 x 1074, (66)

As in the CP conserving case we see that PMINS matrices
constitute only a small portion of all unitary matrices.

This and CP invariant result (54) show already the
quality of the neutrino studies. However, comparing these
results with the volume of quark mixing matrix which is
equal to

vol(CKM) = 8.81 x 10714, (67)

we can see that the quark mixing parameters are much more
precise. The CKM mixing matrix can be parametrized in
the same way as PMNS in Eq. (7), the exact values of the
CKM parameters are taken from [1].

C. Scenarios with extra neutrino states

So far we have established the volume of the neutrino
mixing matrices only for the scenario with three known types
of neutrinos. However, for scenarios with extra neutrino
states, it is required to consider the entire Q region and not
only its extreme points represented by Upyns. In order to do
this, we will use the fact that the region of all physically
admissible mixing matrices is a subset of the unit ball in the
spectral norm B(n) = {A € C"":||A|| < 1} and for the CP
conserving case it is restricted to the real matrices
B(n) = {A € R™":||A|| < 1}. Volumes of the B(n) and
B(n) can be calculated from the singular value decomposi-
tion. The differential of the singular value decomposition of a
given matrix A = UZV" is equal to

dA = dUZV' + UdZV' + UZdV'. (68)

By multiplying this from the left-hand side by U™ and from
the right-hand side by V we get

dX =U'dAV = UTdUL + d + =dV'V,  (69)

which can be rewritten using dV'V = —V'dV in the
following form

dX = U'dAV = U'dUE + d= - =V'av.  (70)

The Haar measure is left- and right-invariant, thus
[dA]" = [UTdAV]" = [dX]". The entrywise analysis of
the dX in the CP invariant scenario gives

=[[le? - o3l AL, do;[07dO]"[QTdQ)".  (71)

i<j

Hence, the volume of the unit ball of the spectral norm in a
real case is given by

2 / 11 —02|Hd0k

l<]

vol(B(n)) =

(72)
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The inclusion of the factor zi assures the uniqueness of the
singular value decomposition. For the physically interesting
dimension n = 3, we have

B 8"

vol(B(3)) = 45

(73)

Similar entrywise analysis of the (70) provides the
volume element for the singular value decomposition of
complex matrices

[dX)" = [[ o] [Io? = 0?1 ALy doy[UTdUM Vi)™

i=1 i<j

(74)

Thus, the volume of the unit ball of the spectral norm is
given by

vol(B(n)) = mvol(?/{(n))z

X /1 ﬁaknbjz» - Uf|2ﬁd0k. (75)
0 k=1 k=1

i<j
The factor @ ensures the uniqueness of the singular value
decomposition. In the case interesting from the neutrino
physics perspective, i.e., n = 3, this gives

Pt

vol(B(3)) = s

(76)

We can use the formulas for the volumes of B(3) and B(3)
as the basis in the calculation of the volume of the € region.
As the Q region is defined as the convex hull of the PMNS
matrices, to find its volume we need to replace in the
formulas (72) and (75) vol(U(n)) and vol(O(n)) by vol
(PMNS) in the general and CP conserving case, respec-
tively. Moreover, it is also necessary to restrict ranges of
singular values for those allowed by current experimental
data (24). As the result, for the CP invariant scenario, we
have the following formula

~ 1 1 n
vol(Q) = - vol (PMNS)* [Tle? = o [ dow
: k=1

Omin j< j
(77)
Taking into account current experimental bounds (9) and
allowed ranges for singular values (24), the numerical value

is equal

vol(Q) = 6.45 x 10716, (78)

Thus, the € region in the CP invariant case constitutes only
3.72 x 107!7 of the unit ball (72).

For the general case including the CP phase, the formula
for the volume of the Q region is given by

vol(Q) = vol(PMNS)?

(27)"n!

x/l ﬁakHb?—Gﬂzﬁde’ (79)
k=1

Omin k=1 l<]

and its numerical value is
vol(Q) = 1.12 x 10718, (80)

In the complex case, the contribution of the Q region is
even smaller than in the CP invariant scenario and it
constitutes only 3.24 x 10~'? of the respective unit ball in
the spectral norm (75). It may look like that vol(Q) is larger
than the vol(Q), however, we must keep in mind that Q and
Q are structures of different dimensions, and thus cannot be
compared directly. Let us also calculate the volume of the
physical region for the quark sector. It is given by the same
formula as for vol(Q), but lower limit of singular values
are now much closer to one {o; = 0.99997, 6, = 99965,
o3 = 0.99890}

vol(Qcim) = 1.95 x 107%. (81)

This once again emphasizes the difference of precision in
data between neutrino and quark sectors.

We have established earlier the characterization of the Q
region as the intersection of the 3(3) and Uy, (20). The Uiy,
can be treated as a hyperrectangle in R° or C° ~R!8
respectively for the CP invariant case and the general case.
As such, they also are geometric structures with associated
volume. This volume is simply the product of the length of
its sides, i.e., given intervals. Thus for the CP conserving
case, it gives

vol(Oy) = 2.84 x 10710, (82)

Whereas when the CP phase is taken into account it is
equal to

vol(Ujy,) = 2.27 x 10711, (83)

In [14] statistical analysis was performed concerning the
amount of physically admissible mixing matrices contained
within the interval matrix U;,.. The analysis establishes that
for the CP invariant scenario only about 4% of matrices
within the interval matrix are contractions. Comparison of
volumes gives a similar qualitative result, namely contrac-
tions make a small part of the U;,. The exact calculation
reveals that the volume of the Q region constitutes 2.3 x 107*
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percent of Oy, in the CP conserving case and 8.12 x 107°
percent of Uj,, for the general complex scenario.

We can check how vol(Q) and vol(PMNS) are sensitive
to the precision of neutrino parameters. For example, if
the range of the CP phase shrinks twice, i.e., we assume
5 € [182.5°,306°] then we get

vol(PMNS) = 7.345 x 105,
vol(Q) = 2.759 x 10717, (84)

We can see that vol (PMNS) decreased twice, however,
its value is still a few orders of magnitudes higher than for
vol (CKM), while vol(Q) decreased almost by order of
magnitude.

Using the notion of the volume we can try to quantify the
difference between unitary (SM) and nonunitary (BSM)
mixing matrices. First, we take the ratio of the volume
of unitary PMNS mixing matrices vol (PMNS) and the
volume of the region of physical mixing matrices vol(Q)

vol(Q)

= FoPMNS) R € [0, 1]. (85)

We get for general and CP invariant neutrino scenarios as
well as for the quark sector the following estimates

vol(Q) 1.12x 107'8
= = =7.57935x 1071,
Vol(PMNS)  1.4777 x 10~ *
vol(Q)  645x107!°

R= = =12.84555x 10712,
VoI(PMNS) _ 2.2667 x 10~ *

. VO](QCKM) . 1.95 x 10_59

- - — 221339 x 1074,
CKM = 001(CKM) 881 x 101 x

(80)

The above R ratios go to zero when we approach unitarity
(vol(Q) tends to zero in this case).

Second, we use a properly normalized difference of
vol(€2) and vol (PMNS). The volume of unitary matrices
will be normalized to one whereas the volume of the Q will be

normalized by a * vol(PMNS)? « I3), where a = W

or a—= % in the CP invariant case and Ig;3) =
2"n! ()

Jo Ili=i o [Ti; |5,2' —oi [ [1}, doy or I3
Jo i< lo7 = o} TTi, doy in the case of CP invariance.
Hence we use the ratio of respective integrals of vol(Q) and
vol(B(3)), respectively. This ensures that both quantities
are dimensionless and we can subtract them. Thus, we are
interested in the following quantity

Ig
Iz

vol(Q) -

D=1- —
a * vol(PMNS)? x I3

(87)

In this way we measure deviation from the SM in terms of
volumes. The results are

D=1-2.19x 10™* = 0.999781,
D=1-1.8x10"5=0.999982,
Dexm = 1 — 1.077 x 10726, (88)

These results show that the quark mixing matrix is almost
unitary, whereas in the case of neutrinos the mixing matrix
is much closer to being unitary in the CP invariant scenario
than for the general case, which shows that the experimental
determination of the CP phase J still requires much
improvement.

VII. SUMMARY AND OUTLOOK

Neutrino mixings between the three known active
neutrino states can be described by a 3 x 3 matrix which
is unitary. In the case of hypothetical extra neutrino species
the 3 x 3 mixing matrix must be extended to a larger
unitary matrix.

In general, the physical space of neutrino mixings
determined experimentally constitutes a geometric region
of finite convex combinations of unitary 3 x 3 PMNS
mixing matrices. We studied the structure of this region,
which is a part of a unit ball of a spectral norm.

We have described subsets corresponding to a different
minimal number of additional neutrinos as relative interiors
of faces of this unit ball. This feature of the geometric region
allows for the independent phenomenological analysis of
3 + n neutrino mixing models. We also gave an alternative
characteristic of these subsets in terms of Ky-Fan k-norms.

We showed that the Carathéodory’s number for the Q
region equals maximally four. In 3 + 1 and 3 + 2 scenarios,
the Carathéodory’s number is 2 and 3, respectively. This
result allows constructing all matrices from the region as
the convex combination in an optimal way. We demonstrated
a particular construction of contractions with one, two and
three singular values strictly less than one, and with singular
values encoded in the coefficients. Knowing the basis with a
minimal number of generating matrices, we will be able to
make concrete phenomenological studies of light-heavy
neutrino mixings independentlyin 3 4+ 2 and 3 + 3 scenarios.
It will extend our previous studies using the dilation procedure
and obtained limits on active-sterile mixings in the 3 4 1
scenario where one extra neutrino state is present [15].

We established the size of the region of the physically
admissible mixing matrices by calculating its volume. As
zero volume would mean that neutrino parameters are
determined experimentally without errors, its size informs
us in some way about the fidelity of experimental data
extraction. In the case of three neutrino mixing scenario this
volume shows that in neutrino physics, compared to the
whole space of the mixing parameters, a space of possible
neutrino mixing parameters is already restricted considerably,
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though when comparing with quark mixings and correspond-
ing volume, the neutrino volume is many orders of magnitude
larger. When additional neutrinos are under consideration the
region narrows down comparing to 3(3) and U;,, where B(3)
describes all 3 x 3 contractions whereas U, contains exper-
imentally established ranges for neutrino mixing matrices and
Q is the intersection of these two structures. The size of this
region will be further squeezed by the increasing precision
(via increasing statistics) of future neutrino physics experi-
ments, especially for CP-violating scenarios when the Dirac
CP-phase will be determined.

As an outlook, apart from studying unitary extensions of
admissible matrices from the Q region and the light-heavy
neutrino mixings, we also plan to apply methods of
semidefinite programming and find information about
the position of the Q region within the unit ball of the
spectral norm. This study will help determine the prefered
parameter space for future searches for sterile neutrinos in
models with different number of extra neutrino states.
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APPENDIX A: NORMS

Definition 8: A matrix norm is a function || - || from the
set of all matrices M,,,,, into R that satisfies the following
properties

|A]| >0 and |A|| =0 A =0,

laAll = |al Al

|A + Bl < [|A[| + [|B]|.

|AB]| < [|A[l[|B]. (Al)

In other words, the matrix norm is a vector norm with the
additional condition of submultiplicativity.

There exists an important class of matrix norms con-
sisting of matrix norms which do not change by the unitary
multiplication.

Definition 9: A matrix norm | -|| is called unitarily
invariant if for every unitary matrices U, V and a given
matrix A it satisfies

I[UAV| = ||A]. (A2)

Another important class of matrix norms, called the
induced matrix norms, contains matrix norms that are
obtained from the vector norms in the following way

1Al = max [|Ax]],.

llxll..=

(A3)

where | - ||, stands for the corresponding vector norm.
In our case, of particular interest is the matrix norm

induced from the Euclidean 2-norm ||x||, = /> ", x7 =
V/ (x,x) = Vx'x for x = (xy,...,x,)". From the Rayleigh

quotient A,y (A) = max,,_; x"Ax [49], we have

IA]3 = max |Ax||3 = max (Ax)"Ax = max x'ATAx

xfl,=1 [ x[l,=1 [[x[l,=1
= Amax (ATA) = 6}(A). (A4)
Thus, the matrix norm || - ||, can be defined as the largest

singular value of a given matrix. This matrix norm is called
an operator norm or spectral norm and will be denoted
as || - ||. Thus,

Definition 10: A spectral norm of a matrix A € M,,,,,, is
the matrix norm defined as

4]l = max [[Ax]l, = &1 (4). (AS)

[Ix[l>
Moreover, the spectral norm is also a unitary invariant
norm (A2).
APPENDIX B: COSINE-SINE (CS)
DECOMPOSITION

Theorem B.1: Let the unitary matrix U € M, n)x(n4+m)
be partitioned as

n m
U= (UPMNS Um) n., (B1)
Uw U m

If m > n, then there are unitary matrices W, Q; € M,
and unitary matrices W5, Q, € M,,,, such that

< UPMNS Ulh >
Uhl Uhh

C
:(W1 0) S
0 w,

0 0

=S

0 F o
)@ o) w
0 o

Iﬂ’l—l’l

where C >0 and S > 0 are diagonal matrices satisfying
C?+8*=1,.

There exists another form of the CS decomposition
which is more important from the neutrino physics per-
spective. Let Upyns have the singular value decomposition
Upyins = Widiag(l,, C)Q], where I, denotes r singular
values equal to one, and C contains singular values that are
strictly less than one. The structure of the CS decom-
position reveals the intriguing fact, namely the minimal
dimension of the unitary dilation of a given contraction is
not arbitrary, but is encoded in the number of singular
values strictly less than one.

Corollary 1: The parametrization of the unitary dilation
of the smallest size is given by
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. I, 0 0

U U w

< ;]MNS Ulh> _ ( 01 W > 0 C -S
hl hh 2 0 S C

(B3)

(%)
X s
0 0}

where r = n — m is the number of singular values equal
to 1 and C = diag(cos®y,...,cos6,,) with |cosO;| <1
fori=1,...,m.

This is crucial from the physical point of view, since it
tells that the minimal number of sterile neutrinos is not
arbitrary, but depends on the singular values of the PMNS
mixing matrix.
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