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A B S T R A C T   

This study illustrates the successful application of near-infrared reflectance spectroscopy extended with che
mometric modeling to profile Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe in cultivated and fertilized Haplic Luvisol soils. 
The partial least-squares regression (PLSR) models were built to predict the elements present in the soil samples 
at very low contents. A total of 234 soil samples were investigated, and their reflectance spectra were recorded in 
the spectral range of 1100–2500 nm. The optimal spectral preprocessing was selected among 56 different sce
narios considering the root mean squared error of prediction (RMSEP). The partial robust M-regression method 
(PRM) was used to handle the outlying samples. The most promising models were obtained for estimating the 
amount of Cu (using PRM) and Pb (using the classic PLS), leading to RMSEP expressed as a percentage of the 
response range, equal to 9.63% and 11.5%, respectively. The respective coefficients of determination for vali
dation samples were equal to 0.86 and 0.58, respectively. Assuming similar variability of model residuals for the 
model and test set samples, coefficients of determination for validation samples were 0.94 and 0.89, respectively. 
Moreover, the favorable PLS models were also built for Zn, Mn, and Fe with coefficients of determinations equal 
to 0.87, 0.87, and 0.79.   

1. Introduction 

In recent years, there has been a growing interest in using different 
spectroscopic techniques to measure reflectance spectra. The develop
ment of instruments and technological progress has enabled reflectance 
spectra to be recorded in a relatively wide range of electromagnetic 
radiation (EMR) from the visible (Vis), near (NIR), short (SWIR), to the 
medium infrared (MIR) range, i.e., from about 350 nm to about 25,000 
nm. EMR interacts with matter differently depending on the spectral 
range, and these interactions propagate into the recorded spectrum and 
are manifested as specific bands. The relatively low cost of the mea
surements, their speed and the possibility to directly process samples 
without preparation have accelerated interest in reflectance spectra. 
Therefore, many applications of spectroscopic techniques have been 
described in the literature. 

Spectroscopic techniques are often used for proximity sensing. When 
combined with the chemometric modeling of spectra, they can replace 
the classic and time-consuming laboratory measurements and provide 
an innovative and automatic framework for high-throughput moni
toring [1,2] and for precision agriculture (an approach to farm man
agement that uses information technology, including spectroscopic and 
chemometric methods, to ensure that crops and soil receive what they 
need for optimal health and productivity) [3]. In addition, the most 
desired opportunity arises when remote sampling technologies are used 
[4–6]. Measuring devices can be installed on an aircraft, e.g., a drone, 
airplane, balloon or satellite, thus enabling remote or even orbital 
sampling. Flying over a specific area to collect spectral data and 
analyzing them in real-time is a tempting research trend that opens the 
possibility for efficient monitoring, which cannot be handled based 
solely on classic sampling and routine analytical procedures. These 
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solutions are desired when sampling large areas over a long period of 
time. 

Not surprisingly, spectroscopic techniques are frequently used to 
map the type of soil [7] and to study the properties and conditions of the 
soil at specific sites [8–15], large land fields, entire farmlands or are used 
to develop comprehensive spectral libraries [16]. Spectroscopy in the 
visible and NIR range can often be used with great success to assess 
many physicochemical properties that reflect the vital conditions of soil 
and its composition [17,18]. Soil is a medium of crucial importance for 
plants, animals and human beings. It acts as a natural water filter, 
provides nutrients to plants, delivers food products, stores carbon, re
duces greenhouse gas emissions, and contributes to climate change [16, 
19]. Therefore, one expects generations to protect this common natural 
resource and use it wisely. 

Soil is a porous and complex mixture containing inorganic elements 
and compounds formed in different biological and geological processes 
and anthropogenic pollutants. Its condition and properties result 
directly from its chemical composition. Furthermore, it significantly 
affects further soil usage, the optimal yield, and local and global econ
omies. Therefore, knowledge about the chemical content and moni
toring of the soil condition is of great importance not only for its 
sustainable and optimal maintenance but also for evaluating its health, 
the progress of degradation, the remediation of land, and post-industrial 
areas (see, e.g., Refs. [20–22]). 

In the mid-1960s, Bowers and Hanks published a pioneering work on 
systematic studies that illustrated the impact of moisture, organic matter 
and the size of particles on the reflectance spectra of soil samples [23]. 
Dalal and Henry modeled the moisture, organic carbon and total ni
trogen content in air-dried soil samples [24]. Ben-Dor and Banin further 
extended the scope of the NIR applications. They studied the relation
ship between the reflectance spectra and the clay content, specific sur
face area, cation exchange capacity, hygroscopic moisture and organic 
matter in soil [25]. Since then, many researchers have acknowledged 
reflectance spectroscopy and extensively explored the possibility of 
associating spectra with fundamental soil properties such as the content 
of many metals, their binding forms, and the soil type. These studies 
were primarily driven by the considerable sensitivity of the reflectance 
spectra to small variabilities in the concentration of organic matter, 
minerals and elements that are adsorbed on soil particles. As a result, the 
reflectance spectra are often regarded as spectroscopic fingerprints that 
have the potential to characterize soil samples uniquely. Moreover, the 
absorption feature in the spectrum can be attributed to specific binding 
forms. For instance, toxic elements such as Cd, Pb and Hg mainly bind to 
organic matter, while Cr, Cu and As are mostly retained by iron oxides, 
clays and organic matter [26]. 

On the other hand, the relevant information contained in the spectra 
is challenging to access. Thus, the spectral data and libraries are 
explored and modeled using chemometric techniques. These are, for 
instance, exploratory methods like principal components analysis and 
clustering techniques that help visualize multivariate data, assess simi
larities among spectral profiles, find groups of samples and outlying 
samples, simplify the data representation and improve interpretation of 
the results [27,28]. Another group includes supervised methods such as 
calibration, discriminant and classification techniques, for instance, 
multiple linear regression (MLR), partial least-squares regression (PLS), 
multivariate adaptive regression splines (MARS) and support vector 
machines (SVM). Their applications to model and interpret the diffuse 
reflectance spectra of soil samples have been discussed, e.g. Refs. 
[29–31]. Modeling concerns estimating a few fundamental properties 
directly related to spectral fingerprints, for instance, moisture, the total 
organic content, mineralogy and particle size distribution. In addition, it 
is also possible to model properties that correlate with the fundamental 
ones (an indirect relationship with the spectral fingerprints). These are, 
for instance, pH of the soil, the concentrations of different macronutri
ents (e.g., Ca, Mg, K, N, P, and S), micronutrients (e.g., Fe, Mn, Zn, Cu, 
and B), heavy metals and metalloids (e.g., As, Cd, Cu, Ni, Pb, Zn, Hg, and 

Cr) [32]. 
The relatively large number of parameters that can be monitored in 

the field, including potentially toxic elements, has considerably 
increased the interest in NIR and other spectroscopic techniques [33]. 
For instance, a long-term monitoring program of soils was initiated in 
2013 for the Saxon region in Germany with a long mining history (the 
Saxon Permanent Monitoring Soil Program) [34]. The aim was to 
evaluate the spatial and temporal changes in soil properties, assess the 
pollution levels and identify different pollution sources. This monitoring 
network focuses on tracing the content of metals and metalloids (Al, As, 
Ca, Cu, Fe, K, Mn, Na, Ni, Pb and Zn), the total organic carbon and soil 
pH using Vis-NIR (350–2500 nm) and MIR (2500–25,000 nm) tech
niques, while the chemometric techniques support the data modeling. 
Over time, similar studies have been published focused on monitoring 
selected elements, e.g. Refs. [35–38]. 

Our primary motivation was to monitor efficiently the long-term 
chemical changes of Haplic Luvisol soil induced by different fertiliza
tion schemes in the well-designed experimental system. Luvisols account 
for ca. five percent of the total continental land area (500–600 million ha 
of land). Luvisols are found in central Europe, west-central Russia, the 
United States, the Mediterranean basin, and southern Australia. In 
Poland, Luvisols represent about 40–44% of all soils. This type of soil 
offers optimal physical and chemical properties in favorable climate 
conditions. Therefore, it can be used to grow demanding plants (rape
seed, sugar beet, wheat) and less demanding ones (triticale, rye or plants 
from the faba family) and obtain a good harvest of potato, grass, and 
maize. Considering the potential of NIR reflectance spectroscopy, we 
took an advantage of the chemometric modeling of spectra by con
structing classic and robust PLS models (i.e., insensitive to outliers) for 
eight chemical elements present at relatively low concentrations in 
cultivated Haplic Luvisol soil. In addition, we intended to support the 
emerging field of precision agriculture. 

2. Materials and methods 

2.1. Experiment and sampling site 

The experimental field in Balcyny near Ostroda, Poland (53◦ 35′

34.045′′ N; 19◦ 50′ 54.671′′ E) has been cultivated since 1986. The 
experimental design considered randomly selected blocks with two 
stripes and four repetitions. The overall experimental plan is presented 
in Supplementary Table S1. The soil belts were fertilized with manure 
(40 t ha− 1) every two years for sugar beet and maize and combined with 
mineral fertilization, which was applied in the second year. Such 
fertilization schemes enable diversified mineral soil supplementation 
and lead to eight groups of samples (see Supplementary Table S2). The 
plants investigated during the experiment were sugar beet, spring 
barley, maize for green fodder and spring wheat. The plot area was 35 
m2. The experimental field contains Haplic Luvisol soil. According to the 
particle size distribution, the soil was classified as sandy loam. The 
proportions of nine fractions in the soil samples collected at four depths 
are presented in Supplementary Table S3. In 1986, the chemical content 
of the soil was examined. Then, a 1 kg sample of soil contained 100 mg 
of K, 53.2 mg of Mg, 41.3 mg of P, 7.9 g of total organic carbon (Corg) and 
0.79 g of total nitrogen (Ntot); pH (1 mol dm− 3 KCl) = 6.2. The chemical 
content of the manure was described in the refs. [39,40]. 

2.2. Sampling and sample preparation 

The soil samples were collected in 2017 and 2018 after the plant 
vegetation period (after the harvest). In August 2017, the samples were 
collected after the winter wheat harvest in the second year after the 
manure had been applied (the end of the 8th yield rotation) from two 
sampling horizons: 0–30 cm and 30–60 cm. In October 2018, the sam
ples were collected after the sugar beet harvest from a 0–30 cm horizon 
one year after the manure had been applied. The samples were collected 
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from each plot using an Egner soil cane, thus obtaining ca. 1 kg of an 
integrated sample from which 0.5 kg was used for further analysis. The 
samples were kept under air-dry conditions and then sieved (mesh 
diameter of 2 mm). 

The dry soil was mixed from each fertilizer combination in equal 
weight proportions 1:1. After the replicates were eliminated, there were 
48 samples (2018 – 16 samples with manure and without manure from a 
0–30 cm layer after the sugar beet harvest; 2017 – 32 samples with 
manure and without manure from 0 to 30 cm and 30–60 cm layers after 
the spring wheat harvest); in 2018, from the 64 samples that represented 
each sugar beet plot, five samples were collected from the belts sur
rounding the sampling field. Then, the soil samples were unified con
cerning the fraction size by grinding them in a planetary mill (Planetary 
Ball Mill PM 100 – Retsch). 

In this study, 234 samples (original and sieved) were used to confirm 
the feasibility of the NIR reflectance spectroscopy for monitoring the 
content of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol 
soils. 

2.3. Chemical analysis of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe 

The content of micronutrients (Zn, Mn, Cu and Fe), and potentially 
toxic heavy metals (Pb, Cd, Cr and Ni), were examined using a reference 
method. The bioavailable forms of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe 
were extracted from the soil using a 1 mol dm− 3 HCl solution. A 5 g 
sample of the sieved soil (a soil fraction with particles less than 2 mm in 
diameter) was flooded with 50 cm3 of 1 mol dm− 3 HCl, mixed on a ro
tary evaporator for 30 min and filtered through a hard filter. The eight 
elements were determined directly from the solution using atomic ab
sorption spectrometry (Shimadzu AA-6800). The precision of the 
determination (expressed in percentage), which was referred to certified 
material (Trace Metals-Sevage Sludge 4, Sigma-Aldrich RTC, Inc.), was 
as follows: Cd – 96.7%, Cu – 94.5%, Pb – 99.5%, Ni – 98.7%, Cr – 97.2%, 
Zn – 86.7%, Mn – 88.8% and Fe – 111.4%. 

2.4. Registering the NIR reflectance spectra 

The NIR spectra of the soil samples were recorded in the reflectance 
mode, log(1/R), within a spectral range of 1100–2500 nm at a 1 nm step 
using a SpectraStar XL RTW (Rotating Top Window) near-infrared (NIR) 
diffuse reflectance spectrometer equipped with a pre-dispersive scan
ning monochromator with a nominal bandwidth of 10 nm (Unity Sci
entific, Brookfield, CT, USA). Samples were analyzed in an air- 
conditioned room at 22 ◦C and relative humidity of 45%. The control 
of the instrument and the management of the spectral files were per
formed using InfoStar software (version 3.11.1, Unity Scientific, 
Brookfield, CT, USA). The NIR spectra of the soil samples (1 cm thick
ness) were measured in a closed powder cup (US-MPCP-0001, 3.5 cm 
diameter) equipped with compaction control. The cup was inserted 
(window facing down) in the rotating accessory. The NIR spectrum of 
each soil sample was averaged over 24 scans (two cup rotations). The 
instrument was calibrated automatically every 30 min using the internal 
standard (US-STDS-0001). 

2.5. Construction and validation of the calibration models 

The soil sample spectra were split into the model and test sets ac
cording to the uniform design of the response variable using the Kennard 
and Stone algorithm [41,42]. Eighty and thirty-seven soil sample spectra 
from each soil fraction (fine and coarse) were selected for the model 
(calibration) and test (validation) sets, respectively. The model set 
sample spectra were used to construct the multivariate calibration 
models, while the test set sample spectra served for their validation. 
Each response variable was modeled separately using the partial 
least-squares regression. 

Prior to constructing a model, different preprocessing methods and 

scenarios were evaluated, including detrending, standard normal 
variate (SNV), multiplicative scatter correction (MSC), extended multi
plicative scatter correction (EMSC), inverse scattering correction (ISC), 
extended inverse scattering correction (EISC) and normalization of the 
spectra to the unit standard deviation. In addition, the transformed 
spectra were further preprocessed using the first and second derivatives 
combined with the Savitzky-Golay smoothing. For each response vari
able, 56 models were constructed with one up to fifteen PLS factors (in 
total 448 models). The goodness of the model fit was judged by the root 
mean square error of calibration (RMS), which was calculated based on 
samples from the respective model set. The prediction power of each PLS 
model was expressed as the root mean square error of prediction 
(RMSEP) calculated for the test set samples. These two figures of merit 
were also expressed as the percentages of the observed calibration range 
of a given response variable. We have also calculated the coefficient of 
determination (R2) for calibration and test set samples. The optimal 
models were selected based on the prediction errors obtained for test set 
samples presented as a function of the number of PLS factors. A collec
tion of prediction error curves obtained for models describing the con
tent of Pb in soil samples for samples from the model test sets are shown 
in Fig. 1. 

Moreover, partial robust M-regression (PRM), i.e., insensitive to 
outlying samples, was used [43]. During the iterative model construc
tion process, samples are weighted according to their distances from the 
robust center of the multivariate data (computed in the space of the 
robust latent factors) and the response residuals from the PRM model. In 
this way, the impact of any outlying samples is reduced and the final 
model explains well the overall linear trend for data majority. Since the 
PRM model is robust in the statistical sense, the score distances 
computed in the space of the robust latent factors and model residuals, 
which are visualized in a so-called distance-distance plot, can reveal 
outlying samples depending on their location in the multivariate data 
space regardless of any swamping and masking effects. 

The authors programmed all spectral preprocessing methods and 
performed all necessary calculations in the MATLAB environment 
(version 9.0, R2016a) operating under Microsoft Windows 10 Pro 
Version 10.0. The classic and robust versions of PLS are included in the 
freely available toolbox for multivariate calibration techniques 
(TOMCAT) [44]. 

3. Results and discussion 

3.1. Exploratory analysis of the spectral data and eight response variables 

The major challenge in modeling diffuse reflectance spectra arises 
from the considerable heterogeneity of the soil samples. The shape and 
intensity of the spectra are mainly affected by the chemical composition, 
mineralogical content, soil structure and diameter of soil particles. The 
possible variations can be relatively large and blur the underlying re
lationships. In our study, the diameter of the soil particles was the 
greatest source of variability. The different components of the soil 
samples and the diameter of the soil particles increased the scattering, as 
shown in Fig. 1a (a systematic variation among the spectra of the orig
inal and sieved samples). Black spectra represent the original soil sam
ples, while the red ones the samples after sieving. The original samples 
absorbed more EMR, while the sieved ones, containing particles with a 
diameter below 2 mm, absorbed less EMR due to more extensive scat
tering (see Fig. 2a). Fig. 2b presents the projection of the soil samples 
onto the first two principal components obtained from the PCA. The 
black and red dots refer to the original and sieved soil samples. The 
scattering effect was modeled by the first principal component 
explaining above 99% of the total spectral variability. 

The differences related to the fertilization schemes are not readily 
visible on the projections of the first two principal components. How
ever, a sampling effect is revealed by the second principal component, 
explaining 0.30% of the data variability. The soil samples collected up to 
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a 30 cm depth had larger score values than those collected from a deeper 
depth (see Fig. 2c). Sample no. 229 (sieved soil collected from a depth of 
30–60 cm in 2017 only after the mineral fertilization according to 
scheme 8 - see Table S2) did not follow the discussed trend. Surprisingly, 
the same soil sample analyzed before sieving (sample no. 112) was close 

to the samples from the same group. 
Some basic statistical parameters for eight modeled elements, 

including their minimal and maximal values, ranges, means, medians 
and standard deviations, are presented in Table 1, and corresponding 
histograms are included in Supplementary Fig. S1. 

Fig. 1. Predictions, expressed as the root mean squared errors of prediction, obtained from the PLS models for the Pb content in the Haplic Luvisol model (RMS) and 
independent test (RMSEP) soil samples. Models were built with up to fifteen PLS factors using 56 differently preprocessed NIR spectra. 

Fig. 2. a) The original near-infrared reflectance spectra that were obtained from two fractions of 117 Haplic Luvisol soil samples before (black lines) and after sieving 
(red lines), b) projection of the soil samples before (black dots) and after sieving (red dots) on the space of the first two principal components that were obtained from 
the principal component analysis (PCA) and c) projection of the soil samples that had been collected at depths of 0–30 cm (black dots) and 30–60 cm (black circles) 
on the space of the first two principal components. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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It is also interesting to evaluate the colormap in which the colors of 
the pixels and their hues express the degree of the pairwise correlations 
among eight response variables (see Fig. 3). The cold colors indicate 
poor correlations, while the hot colors show higher correlation values 
then 0.6? A good relationship was observed between the concentrations 
of Pb and Mn (correlation coefficient was equal to 0.7938) and Zn and 
Ni, which had a relatively good correlation of 0.6904. Correlations be
tween Zn and Mn (0.6582) and Zn and Pb (0.6306) are also worth 
mentioning. 

3.2. Construction of the optimal PLS models 

Constructing any multivariate calibration model requires a set of 
representative samples that span the calibration domain. They express 
the variability sources, determine the potential calibration range and 
affect the quality of future predictions. Including various variability 
sources at the calibration stage is strongly recommended because the 
stability of the final model increases and its maintenance is much longer. 
On the other hand, certain factors can induce groups in data, e.g., 
different soil types, soil fractions, etc. Then, the local models will yield 
smaller prediction errors than the global ones. The choice between these 
two opposing modeling frameworks is problem- and data-dependent. 
However, from the perspective of model maintenance, global calibra
tion models are general, and their performance is more stable over time. 
These aspects are essential for developing effective calibration strategies 
and constructing calibration models for proximity or distant sampling 
and soil assessment applications. 

The Haplic Luvisol evaluated in this study belonged to a medium- 
sized soil category. The metals in the soil (cations) were retained 

mainly due to the exchangeable physicochemical sorption. The more 
floatable (colloidal) components the soil contains, the greater the ca
pacity of the sorption complex. Hence, heavy soils with a significant 
amount of silt and dust fractions contain more metals in the topsoil than 
light or organic soils with a relatively low sorption capacity. 

Considering these aspects, in our study, as many sources of vari
ability as possible were included in the modeling. The calibration 
(model) set contained two fractions of soil samples ‘before’ and ‘after’ 
sieving because when soil samples are analyzed outside the laboratory 
or for proximity or remote soil measurements, sample preparation is 
impossible. Additional variability was introduced by including samples 
collected at two horizon depths in the model set. The source of metals in 
the soil was mainly soil bedrock, whereas in the arable layer, they were 
released from the mineral fertilizers, fertilizing waste, plant protection 
products, dry exposure to the near industrial plants, transport, and air. 
The metal content also depended on the proportion of mineral, organic 
or organic-mineral colloids, soil pH, and the origin of the soil formation. 
Organic soils have a limited ability to accumulate metals. With an in
crease in soil acidification, the availability of metals for plants and their 
mobility increases significantly. Additional variability sources incorpo
rated in the modeling corresponded to fertilization type and sampling 
time. 

3.3. Performance of the classic PLS models 

The optimal PLS models that described the content of eight elements 
in the soil samples were built as described in section 3.2. The optimal 
preprocessing scenarios and figures of merit describing the optimal PLS 
model are presented in Table 2. Most of them involve derivatives and 
improve the models (see figures of merit). In addition to analyzing the 
figures of merit, it is also recommended to display the predictions ob
tained for model and test set samples as predicted response values ob
tained from the model versus the observed values (see Fig. 4). 

The first PLS model built for estimating Cd content had a narrow 
calibration range from 0.04 to 0.25 mg kg− 1 (up to 0.25 ppm). The 
optimal model included five factors and offered ca. 19.00% and 14.26% 
errors for the model and test set samples, respectively (see Table 2). The 
coefficients of determinations that described the model’s performance 
for the model set, R2m, and for the test set, R2t, were relatively low and 
below 0.3, indicating limited prediction accuracy. The distribution of 
predictions shown in Fig. 4a suggested a possible non-linear relation
ship. It was mainly observed for the soil samples with low concentra
tions of Cd (below approx. 0.1 ppm) because all model residuals were 
positive. 

The PLS model describing the Cu content was built for spectra after 
the ISC followed by the first derivative (see Table 2). The model worked 
in a calibration range of 1.12–6.14 mg kg− 1 (ca. 1–6 ppm) and had five 
factors. In this modeling example, it is worth noting that the distribution 
of Cu deviates most from the normal distribution compared to the 
remaining modeled responses (see Supplementary Fig. S1). The content 
of Cu was large for several samples. They can be easily spotted in Fig. 4b 
because their residuals from the classic PLS model were large, and 
samples were located far from the line with a slope that equals one 
(representing the ideal model with residuals equal to zero). Even though 

Table 1 
Basic statistics that describe the content of the eight elements (Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe) expressed as mg⋅kg− 1 in the Haplic Luvisol soil samples (minimal and 
maximal values, ranges, mean and median and standard deviation). The content distribution for each element is visualized in the histograms presented in Supple
mentary Fig. S1.  

No. Statistics Cd Cu Pb Ni Cr Zn Mn Fe 

1 Minimal value 0.040 1.120 6.980 0.050 0.180 5.650 92.600 778.200 
2 Maximal value 0.250 6.140 16.750 3.070 5.660 35.140 509.200 3995.200 
3 Range 0.210 5.020 9.770 3.020 5.480 29.490 416.600 3217.000 
4 Mean value 0.158 2.464 12.333 1.663 2.244 17.887 323.132 2681.541 
5 Median 0.170 2.070 12.860 1.750 2.120 17.550 348.900 2699.900 
6 Standard deviation 0.044 1.069 2.167 0.695 0.956 6.541 106.224 819.963  

Fig. 3. Color map visualizing the pairwise correlations between the eight pa
rameters that describe the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe 
in the Haplic Luvisol soil samples. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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predictions for the test set samples were promising (ca. 10% of error), in 
our opinion, its actual predictive capabilities were also distorted by the 
representativeness of the samples. The calibration range influenced the 
coefficient of determination. Thus, the possible discrepancy between the 
coefficients of determination could have been caused by different vari
abilities and the effective response range. The relationship between the 
NIR spectra and Cu concentration was linear, but the PLS model 
required improvement via robust modeling, resistant to outlying sam
ples (located either in the space of explanatory variables or in the space 
of response(s)). 

Concerning estimation of the Pb content, the PLS model included a 
calibration range between ca. 7 and 17 mg kg− 1 (i.e., 7–17 ppm). 
Modeling of the first derivative spectra led to the PLS model with six 
factors offering RMS and EMSEP equal to 11.96% and 11.50%, respec
tively. The respective coefficients of determinations were equal to 
0.7473 and 0.5831 (see Table 2). An analysis of the residuals from the 
model shown in Fig. 4c confirmed the good model performance in terms 
of the figures of merit with the exception of the coefficient of determi
nation calculated for test samples. Differences between R2m and R2t can 
be clarified by the effective range of the responses for the model and test 
set samples. Specifically, there were no samples with concentrations of 
Pb above 15 ppm in the test set. Similar prediction performance was also 
obtained for the NIR spectra transformed using the EISC method; how
ever, the optimal model required ten PLS factors (see Table 2). 

As was mentioned earlier, the concentration of Pb was correlated 
with Mn, Zn and Ni to a large extent. Thus, the prediction behavior of 
these three PLS models should be similar to the PLS model that described 
the content of Pb. For Ni, this tendency was reflected adequately by the 
model residuals. Based on the first derivative of the spectra, the optimal 
PLS model with six factors yielded ca. 13.32% of error for the model 
samples and its R2m was equal to 0.7255. However, the model per
formed worse for these set samples, especially when the concentrations 
of Ni in the samples were above 2.5 ppm. As is indicated in Fig. 4d, the 
linear relationship became weaker in the upper calibration range (i.e., 
above 2.25 ppm). In contrast to the modeling of the concentration of Cu 
in the soil samples, in this case, the samples that were included in the 
test set had relatively large response values. Therefore, it affected the 
calculation of the R2t value but not the RMSEP. For the discussed PLS 
model, the discrepancy between R2m and R2t values was the largest, i.e., 
0.7255 and − 0.1178, respectively. This tendency was not observed in 
Fig. 4d. In the calculation of R2t, the total variability of the test set was 
replaced by the total variability of the model set, after which the 
modified coefficient of determination (R2t*) improved and was equal to 
0.8536. Similar performance of the PLS model was obtained for the NIR 
spectra after the EISC transformation, but it was more complex (eleven 
factors). 

The PLS model constructed for estimating Cr concentration was the 
most surprising in terms of its predictive ability. The upper limit of the 

calibration was ca. 6 ppm. The optimal model, built for spectra after 
detrending and the second derivative, required one factor (see Table 2). 
While the prediction error for the test set samples was relatively low, ca. 
11.67%, the visual assessment of the model’s performance was disap
pointing (see Fig. 4e). Such an effect is typical for any regression model 
that minimizes the sum of squared residuals, including PLS, when the 
calibration data contain outlying samples. As a result, the model fits the 
outlying samples. Surprisingly, in the case of Cr, the considered figures 
of merit seemed to ignore the problem, but a disturbing prediction 
performance was revealed in Fig. 4e. In this situation, a robust PLS 
model was required. 

The optimal PLS model for calibrating the Zn content was con
structed for spectra after detrending and the second derivative. It 
covered a concentration range from approx. 5 ppm up to 35 ppm. When 
seven factors were used, it offered a good performance in terms of RMS 
and RMSEP, comparable to the Pb model. RMSEP was equal to 12.71%. 
This model had the largest R2m value compared to all of the remaining 
models (0.8437); however, the R2t value was much smaller and equaled 
0.4861, due to the narrower response range for the samples from the test 
set compared to the response range of the model set samples. A modified 
version of R2t* led to a value equal to 0.8683. In Fig. 4f, the model 
tended to underestimate the content of Zn for a few samples in the upper 
calibration range from ca. 30 ppm. Further verification if the linear 
relationship holds would require an extension of the calibration range 
by including samples with larger Zn content. 

The PLS model that described the Mn content was built for the first 
derivative spectra. Its range was from ca. 93 ppm to 509 ppm. The PLS 
model with five factors offered RMS and RMSEP equal to 17.44% and 
15.12%, respectively. However, it underestimated the predictions in the 
upper calibration range, i.e., above 475 ppm (see Fig. 4g). The presence 
of a few samples with relatively large residuals encourages the con
struction of a robust model. The Zn concentrations were correlated with 
the Pb concentrations (the correlation coefficient was equal to 0.7938), 
but the pattern of residuals obtained from the classic PLS model did not 
confirm the expected similar modeling behavior (cf. Fig. 4c and g). 

Regarding modeling the Fe content in the soil samples, the PLS model 
had the most extended calibration range from 778 ppm to 3995 ppm. At 
first glance, the predictions for the spectra after detrending, were un
satisfactory. RMSEP was the largest among all of the models and equaled 
18.81% (see Table 2). This can be explained by the scarce spectral in
formation reflecting the impact of increased Fe content on soil samples. 
Many similar studies have proven modeling potential when spectra 
include the visible region of EMR. Due to the instrument limitations, it 
was impossible in our study, but the model was eventually enhanced by 
removing influential samples. 

Table 2 
Overview of the optimal PLS models constructed to predict the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe in the Haplic Luvisol soil samples. Along with the 
optimal preprocessing method, the number of factors included in the PLS model (f), and several basic figures of merit are also reported. These are the root mean square 
error (RMS) that were calculated for the samples in the model set, the root mean square error of prediction (RMSEP) that was calculated for samples in the model set, 
which are also expressed as the percentage of the calibration range and the respective coefficients of determination (R2m and R2t). The modified coefficient of 
determination calculated for the samples from the test set, R2t*, took into account the range of the responses observed for the samples in the model set.  

Model Preprocessing method(s) used to transform the NIR spectra f RMS RMSEP RMS [%] RMSEP [%] R2m R2t R2t* 

Cd 1st derivative (window = 15, polynomial degree = 2) 5 0.0399 0.0299 19.00 14.26 0.2974 0.2641 0.8170 
Cu ISC + 1st derivative (window = 15, polynomial degree = 2) 5 0.8731 0.5032 17.39 10.02 0.4510 0.2948 0.9156 
Pb 1st derivative (window = 11, polynomial degree = 2) 

EISC 
6 
10 

1.1690 
1.1759 

1.1233 
1.0425 

11.96 
12.04 

11.50 
10.67 

0.7473 
0.7443 

0.5831 
0.6409 

0.8921 
0.9070 

Ni 1st derivative (window = 7, polynomial degree = 2) 
EISC 

6 
11 

0.4023 
0.4225 

0.4320 
0.4042 

13.32 
13.99 

14.31 
13.39 

0.7255 
0.6972 

− 0.1178 
0.0214 

0.8536 
0.8718 

Cr detrending + 2nd derivative (window = 7, polynomial degree = 2) 1 1.0313 0.6397 18.82 11.67 0.0681 − 0.0716 0.8341 
Zn detrending + 1st derivative (window = 7, polynomial degree = 2) 7 2.7777 3.7495 9.42 12.71 0.8437 0.4861 0.8683 
Mn 1st derivative (window = 11, polynomial degree = 2) 5 72.6538 62.9890 17.44 15.12 0.5604 0.4991 0.8472 
Fe Detrending 9 521.2990 605.0577 16.20 18.81 0.6133 0.3671 0.7591  
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Fig. 4. Partial least-squares models presented as the predicted versus the observed response values for the model set samples (black dots) and the test set samples 
(black circles), which were constructed to estimate the concentrations of a) Cd, b) Cu, c) Pb, d) Ni, e) Cr, f) Zn, g) Mn and h) Fe. A gray line with a slope equals to one 
illustrates the ideal situation when residuals from the model are zeros. The concentrations of the elements are expressed in mg⋅kg− 1. 
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3.4. Improving the calibration models for Cu, Cr, Mn, and Fe by handling 
outlying samples 

Four models estimating Cu, Cr, Mn, and Fe contents were improved 
by robust calibration using the partial robust M-regression (PRM). The 
number of PRM factors was selected based on the robust RMSECV esti
mates, which were obtained from the Monte-Carlo cross-validation (we 
assumed a maximal fraction of potential outliers equal to 10% of the 
number of samples in the model set, 40 samples were left out at each 
Monte-Carlo iteration and 320 iterations were run). Generally, 
depending on the location of the influential samples in the model space, 
they affected the performance of the classic PLS model differently. Their 
impact was revealed in the distance-distance plot illustrating the abso
lute standardized distances in the space of the PRM factors and the ab
solute residual distances computed for the samples from the model set. 
These two distances helped to divide the samples from the model set into 
four categories according to their influence on the classic least-squares 
model. The regular samples had small absolute distances in the space 
of the robust latent factors and low residuals from the model; thus, they 
did not harm the classic PLS model. The so-called good leverage samples 
were far from the data majority in the space of the robust factors, but 
they fit the model well (small residuals). Their presence in the calibra
tion data is beneficial for the model and its future maintenance. They 
extended the calibration range and increased the model’s stability. The 
high residual samples do not fit the model well; therefore, their residuals 
are large. Finally, the samples located far from data majority in the space 
of the PRM factors and with large residuals from the model were the 
most dominant. They are called bad leverage samples because they can 
easily distort the underlying relationship. Four categories of samples 
were detected using the distance-distance plots shown in Fig. 5. In our 
study, the influential samples were identified and then handled. 

In Table 3, a comparison between the classic PLS models and PLS 
models that were built after removing the most influential samples 
(identified using the PRM approach) is presented. Generally, one can 
observe an improved performance in terms of a few figures of merit for 
all of the robust PLS models presented in paragraph 3.4. 

Concerning the robust calibration of Cu, twenty influential samples 
were found in the model set. One was flagged as bad leverage, while the 
remaining were high residual samples. The final model offered a supe
rior performance over the classic PLS model. The RMS was nearly 3.5 
times, while the RMSEP was twice better. The coefficients of determi
nation computed for the model and test set samples were, in this case, 
above 0.86 (see Table 3 and Fig. 5a). 

For the most controversial PLS model that described the content of 
Cr, its robust variant fits the data nearly two-fold better in terms of the 
RMS. Therefore, the overall trend of the model shown in Fig. 5b is 
appropriate and describes the data well after the fourteen influential 
samples were removed. 

The final PLS model was built for Mn after removing the nineteen 
high residual samples from the model set. As a result, its fit and pre
diction abilities for the test samples were considerably improved. This 
observation was confirmed by all of the figures of merit that are pre
sented in Table 3 and in Fig. 5c. 

The same improvement trend was observed for the model that esti
mated the content of Fe. After removing the sixteen high residual sam
ples from the model set and five high residual samples from the test set, 
the final performance was better (see Table 3 and Fig. 5d). 

3.5. Comparison of the PLS models with the models described in the 
literature 

It is also worthwhile to confront the performance of our PLS models 
with similar models described in the literature, but it is not straight
forward. There are several explanations. Different instruments are used 
to collect spectra, and their spectral ranges vary. There is a considerable 
spectral variation due to soil sources and sample preparation. Modeled 

responses span very differently in calibration ranges. Calibration sam
ples were also selected differently, and the prediction abilities of models 
are not assessed consistently. Considering these limitations, we 
compared the models’ performance only for illustrative purposes. In 
Table 4, coefficients of determination are reported for the optimal PLS 
models constructed in this study (either classic or robust) and the models 
discussed in the literature (see Table 41.1 in Ref. [32]). 

An unsatisfactory calibration model was obtained for Cd; however, 
in the literature, similar models in terms of coefficient of determination 
were also reported (see Table 4). For contaminated soils, the linear 
relationship is reinforced. Therefore, monitoring the content of Cd in 
cultivated soils using the NIR spectroscopy is challenging. The most 
spectacular result, compared with those published in the literature, was 
obtained for Cu (a robust model). Its R2t considerably exceeds the 
average value and is larger than the one obtained from the best model 
(see Table 4). If we assume a comparable variation of residuals from the 
model observed for the calibration and test set samples, modified R2t* is 
equal to 0.94. Regarding the modeling of the content of Ni, our PLS 
model has average prediction performance considering the R2t* value. 
The robust model constructed for calibrating Cr content in terms of R2t* 
performs slightly better than most of the models reported in the litera
ture (see Table 4). Moreover, the models built for Zn, Mn, and Fe offered 
better predictions for validation samples than the average value of the 
coefficients of determination describing the reference models reported 
in Table 4. 

4. Conclusions 

The results of this study indicated that the spectra of Haplic Luvisol 
soil samples, collected between 1100 and 2500 nm, contained much 
relevant information which can be used for monitoring Cd, Cu, Pb, Ni, 
Cr, Zn, Mn, and Fe at low concentrations. Furthermore, considering the 
significant representation of Haplic Luvisol soils worldwide (ca. 5% of 
the total area) and in Poland (up to 44%) and their arable potential, the 
results are helpful in the international context. In particular, the dis
cussed methodology supports the development of precision agriculture. 
Modeling spectral data is challenging and requires a careful pre
processing and identifying the influential samples. This can be done 
automatically by building models for differently preprocessed spectra 
and evaluating figures of merit presented as a function of model 
complexity (e.g., Ref. [45]). The influential samples must be detected 
and handled correctly using robust in the statistical sense calibration 
method, for instance, PRM. The most promising models were obtained 
for Cu (using PRM) and Pb (using the classic PLS). Their RMSEP 
expressed as a percentage of the response range were equal to 9.63% and 
11.5%, while their coefficients of determination were 0.8615 and 
0.5831, respectively. Moreover, compared to most models reported in 
the literature, the satisfactory predictions were obtained for Zn, Mn, and 
Fe, with coefficients of determination over at least 0.79 for validation 
samples. 
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Fig. 5. The so-called distance-distance plots illustrating the influence of the samples from the model set on the model (residuals from the model versus Mahalanobis 
distance computed in the model space). The distance-distance plots were constructed based on the parameters obtained from the partial robust M-regression (PRM) 
model built with the optimal number of factors. After removing the samples that were flagged as influential from the model set, the final PLS models that described 
the concentrations of a) Cu, b) Cr, c) Mn and d) Fe in the Haplic Luvisol soil samples are visualized (the content of the elements is expressed in mg⋅kg− 1). 
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samples were eliminated using partial robust M-regression. Along with the optimal preprocessing method, the number of factors that were included in the PRM and the 
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and the corresponding coefficients of determination (R2m and R2t). The modified coefficient of determination that was calculated for samples from the test set, R2t*, 
took into account the range of the responses that were observed for the samples in the model set.  

Model Preprocessing method(s) used to transform the NIR spectra f RMS RMSEP RMS [%] RMSEP [%] R2m R2t R2t* 

Cu 
Cu* 

ISC + 1st derivative (window = 15, polynomial degree = 2) 5 
6(5) 

0.8731 
0.2458 

0.5032 
0.2205 

17.39 
10.74 

10.02 
9.63 

0.4510 
0.8645 

0.2948 
0.8615 

0.9156 
0.9455 

Cr 
Cr* 

detrending + 2nd derivative (window = 7, polynomial degree = 2) 1 
5(4) 

1.0313 
0.4862 

0.6397 
0.6170 

18.82 
13.07 

11.67 
16.59 

0.0681 
0.7166 

− 0.0716 
0.0032 

0.8341 
0.7686 

Mn 
Mn* 

1st derivative (window = 11, polynomial degree = 2) 5 
8(5) 

72.6538 
48.1998 

62.9890 
54.3216 

17.44 
11.57 

15.12 
13.04 

0.5604 
0.8030 

0.4991 
0.5922 

0.8472 
0.8722 

Fe 
Fe* 

Detrending 9 
12(9) 

521.2990 
400.3545 

605.0577 
536.7548 

16.20 
12.44 

18.81 
16.68 

0.6133 
0.7533 

0.3671 
0.4786 

0.7591 
0.7861  

Table 4 
Calibration models built for estimating the content of eight elements (Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe) in Haplic Luvisol soil samples and the corresponding co
efficients of determination for model (R2m) and test sets (R2t and R2t*). Figures of merit (FOM) are reported for two groups of models: (1) - PLS models obtained in this 
study and (2) models described in the literature (see Table 41.1 in Ref. [32]). Asterisks denote that a robust calibration model was constructed for a given element.  

Models FOM Cd Cu* Pb Ni Cr* Zn Mn* Fe* 

(1) R2m 0.30 0.86 0.74 0.72 0.72 0.84 0.80 0.75 
R2t 0.26 0.86 0.58 − 0.12 0.00 0.49 0.59 0.48 
R2t* – 0.94 0.89 0.85 0.77 0.87 0.87 0.79 

(2) R2 0.30 ÷ 0.97 0.01 ÷ 0.71 0.01 ÷ 0.74 0.50 ÷ 0.92 0.44 ÷ 0.98 0.09 ÷ 0.93 0.01 ÷ 0.70 0.19 ÷ 0.90 
mean 0.70 0.32 0.67 0.86 0.75 0.62 0.42 0.62  
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using the spectral range between 350 and 15,000nm: a case study based on the 
Permanent Soil Monitoring Program in Saxony, Germany, Geoderma 315 (2018) 
188–198, https://doi.org/10.1016/j.geoderma.2017.11.027. 

[35] T. Kemper, S. Sommer, Estimate of heavy metal contamination in soils after a 
mining accident using reflectance spectroscopy, Environ. Sci. Technol. 36 (2002) 
2742–2747, https://doi.org/10.1021/es015747j. 

[36] T. Chen, Q. Chang, J.G.P.W. Clevers, L. Kooistra, Rapid identification of soil 
cadmium pollution risk at regional scale based on visible and near-infrared 
spectroscopy, Environ. Pollut. 206 (2015) 217–226, https://doi.org/10.1016/j. 
envpol.2015.07.009. 

[37] T. Chen, Q. Chang, J. Liu, J.G.P.W. Clevers, L. Kooistra, Identification of soil heavy 
metal sources and improvement in spatial mapping based on soil spectral 
information: a case study in northwest China, Sci. Total Environ. 565 (2016) 
155–164, https://doi.org/10.1016/j.scitotenv.2016.04.163. 

[38] A.A. Paltseva, M. Deeb, E. Di Iorio, L. Circelli, Z. Cheng, C. Colombo, Prediction of 
bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance 
spectroscopy, Sci. Total Environ. 809 (2022), 151107, https://doi.org/10.1016/j. 
scitotenv.2021.151107. 

[39] S. Krzebietke, E. Mackiewicz-Walec, S. Sienkiewicz, D. Załuski, Effect of manure 
and mineral fertilisers on the content of light and heavy polycyclic aromatic 
hydrocarbons in soil, Sci. Rep. 10 (2020) 4573, https://doi.org/10.1038/s41598- 
020-61574-2. 

[40] E. Mackiewicz-Walec, S.J. Krzebietke, Content of polycyclic aromatic 
hydrocarbons in soil in a multi-annual fertilisation regime, Environ. Monit. Assess. 
192 (2020) 314, https://doi.org/10.1007/s10661-020-08252-y. 

[41] R.W. Kennard, L.A. Stone, Computer aided design of experiments, Technometrics 
11 (1969) 137–148. 

[42] M. Daszykowski, B. Walczak, D.L. Massart, Representative subset selection, Anal. 
Chim. Acta 468 (2002) 91–103, https://doi.org/10.1016/S0003-2670(02)00651- 
7. 

[43] S. Serneels, C. Croux, P. Filzmoser, P.J. Van Espen, Partial robust M-regression, 
Chemometr. Intell. Lab. Syst. 79 (2005) 55–64, https://doi.org/10.1016/j. 
chemolab.2005.04.007. 

[44] M. Daszykowski, S. Serneels, K. Kaczmarek, P. Van Espen, C. Croux, B. Walczak, 
TOMCAT: a MATLAB toolbox for multivariate calibration techniques, Chemometr. 
Intell. Lab. Syst. 85 (2007) 269–277, https://doi.org/10.1016/j. 
chemolab.2006.03.006. 

[45] B. Krakowska, D. Custers, E. Deconinck, M. Daszykowski, The Monte Carlo 
validation framework for the discriminant partial least squares model extended 
with variable selection methods applied to authenticity studies of Viagra® based 
on chromatographic impurity profiles, Analyst 141 (2016) 1060–1070, https://doi. 
org/10.1039/C5AN01656H. 

S. Krzebietke et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.earscirev.2016.01.012
https://doi.org/10.1016/j.earscirev.2016.01.012
https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1080/05704928.2013.811081
https://www.4p1000.org/
https://doi.org/10.1255/jnirs.716
https://doi.org/10.1255/jnirs.716
https://doi.org/10.2134/jeq2010.0183
https://doi.org/10.2134/jeq2010.0183
https://doi.org/10.1016/S0003-2670(01)01265-X
https://doi.org/10.1016/S0003-2670(01)01265-X
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref23
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref23
https://doi.org/10.2136/sssaj1986.03615995005000010023x
https://doi.org/10.2136/sssaj1986.03615995005000010023x
https://doi.org/10.2136/sssaj1995.03615995005900020014x
https://doi.org/10.2136/sssaj1995.03615995005900020014x
https://doi.org/10.1016/j.clay.2011.09.010
https://doi.org/10.1016/j.clay.2011.09.010
https://doi.org/10.1016/S0169-7439(02)00107-7
https://doi.org/10.1016/S0169-7439(02)00107-7
https://doi.org/10.5740/jaoacint.SGEDrab
https://doi.org/10.1016/j.trac.2020.116166
https://doi.org/10.1016/j.trac.2020.116166
https://doi.org/10.1016/j.geoderma.2017.11.006
https://doi.org/10.1016/j.geoderma.2009.12.025
https://doi.org/10.1016/j.geoderma.2009.12.025
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref32
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref32
https://doi.org/10.1080/05704928.2019.1608110
https://doi.org/10.1080/05704928.2019.1608110
https://doi.org/10.1016/j.geoderma.2017.11.027
https://doi.org/10.1021/es015747j
https://doi.org/10.1016/j.envpol.2015.07.009
https://doi.org/10.1016/j.envpol.2015.07.009
https://doi.org/10.1016/j.scitotenv.2016.04.163
https://doi.org/10.1016/j.scitotenv.2021.151107
https://doi.org/10.1016/j.scitotenv.2021.151107
https://doi.org/10.1038/s41598-020-61574-2
https://doi.org/10.1038/s41598-020-61574-2
https://doi.org/10.1007/s10661-020-08252-y
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref41
http://refhub.elsevier.com/S0039-9140(22)00545-8/sref41
https://doi.org/10.1016/S0003-2670(02)00651-7
https://doi.org/10.1016/S0003-2670(02)00651-7
https://doi.org/10.1016/j.chemolab.2005.04.007
https://doi.org/10.1016/j.chemolab.2005.04.007
https://doi.org/10.1016/j.chemolab.2006.03.006
https://doi.org/10.1016/j.chemolab.2006.03.006
https://doi.org/10.1039/C5AN01656H
https://doi.org/10.1039/C5AN01656H

	Monitoring the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol soils using near-infrared r ...
	1 Introduction
	2 Materials and methods
	2.1 Experiment and sampling site
	2.2 Sampling and sample preparation
	2.3 Chemical analysis of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe
	2.4 Registering the NIR reflectance spectra
	2.5 Construction and validation of the calibration models

	3 Results and discussion
	3.1 Exploratory analysis of the spectral data and eight response variables
	3.2 Construction of the optimal PLS models
	3.3 Performance of the classic PLS models
	3.4 Improving the calibration models for Cu, Cr, Mn, and Fe by handling outlying samples
	3.5 Comparison of the PLS models with the models described in the literature

	4 Conclusions
	Credit author statement
	Funding
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A Supplementary data
	References


