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Abstract This paper presents a detailed study of the dis-
crete particle swarm optimization algorithm (DPSO) applied
to solve the dynamic traveling salesman problem which has
many practical applications in planning, logistics and chip
manufacturing. The dynamic version is especially important
in practical applications in which new circumstances, e.g., a
traffic jam or a machine failure, could force changes to the
problem specification. The DPSO algorithm was enriched
with a pheromone memory which is used to guide the search
process similarly to the ant colony optimization algorithm.
The paper extends our previous work on the DPSO algorithm
in various ways. Firstly, the performance of the algorithm is
thoroughly tested on a set of newly generatedDTSP instances
which differ in the number and the size of the changes.
Secondly, the impact of the pheromone memory on the con-
vergence of the DPSO is investigated and compared with
the version without a pheromone memory. Moreover, the
results are compared with two ant colony optimization algo-
rithms, namely theMAX–MIN ant system (MMAS) and
the population-based ant colony optimization (PACO). The
results show that the DPSO is able to find high-quality solu-
tions to the DTSP and its performance is competitive with
the performance of the MMAS and the PACO algorithms.
Moreover, the pheromone memory has a positive impact on
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the convergence of the algorithm, especially in the face of
dynamic changes to the problem’s definition.

Keywords Discrete particle swarm optimization ·
Pheromonememory ·Dynamic traveling salesman problem ·
Population-based ant colony optimization

1 Introduction

A problem in which input data are variable (i.e., time depen-
dent) is called a dynamic optimization problem (DOP). The
aim of optimization in the DOP is to continuously track and
adapt to changes and quickly find the best solution (Li 2011).
DOPs can be divided into two groups (Mori and Kita 2000):
online (direct adaptation) and offline (indirect adaptation). In
thefirst case, the changes are hard to predict and could happen
at any moment during the algorithm runtime. In the sec-
ond case, the changes happen at specified intervals between
which the problem definition does not change. Many other
DOPs classification criteria were described by Yang and Yao
(2013), including

– time linkage— is the change affected by the current solu-
tion;

– cyclicity—is the change to the problem cyclic or not;
– factors—do the changes affect the number or values of
variables, constraints, etc.

DOPs were investigated mostly in the context of the continu-
ous optimization. In this work, we focus on the discrete DOP
that is the DTSP in the offline version.

Computational intelligence methods are a set of tech-
niques that are used to solve optimization problems. They
include algorithms thatwere inspired by the collective behav-
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ior of animals which are able to solve complex problems in
their natural environment by cooperating with one another.
It is often beyond the capabilities of a single individual to
solve these problems, i.e., to accomplish tasks such as forag-
ing and nest building, yet this is not problematic for a group
of animals. When a combination of relatively simple behav-
iors of particular individuals produces complex interactions,
then we can talk about swarm or collective intelligence.

The PSO is a good example of a computational intelli-
gence algorithm inspired by the natural behavior of animal
herds, e.g., a school of fish or a flock of birds. Both fish and
birds are able to coordinate the movement of the flock with-
out the need to communicate directly. The PSOwas proposed
by Kennedy and Eberhart (1995) in order to solve the func-
tion optimization problem. In the PSO, a swarm (population)
of particles moves around in the solution search space. Each
particle has a position that corresponds to a solution to the
problem being solved and velocity that shows the direction
and velocity of the movement. A movement of a particle is
also influenced by its local best known position, typically
denoted by pBest , and the best position found by the swarm
(usually denoted by gBest). This indirect interaction of the
particles is intended to guide the swarm toward solutions of
good quality. The relative simplicity and efficiency of the
PSO was a key to its many successful applications, also in
solving the discrete combinatorial optimization problems.

The behavior of certain species of ants that forage for
food provided inspiration for creating ant colony algo-
rithms (Dorigo and Stützle 2010). While searching for food,
these ants lay a certain amount of pheromone as they move.
At the beginning, they randomly choose the direction of the
search process. With each subsequent trip from the nest to a
food source and back, over time ants will deposit the largest
amount of pheromone on the shortest path because much of
the pheromone that has been laid on longer paths will evapo-
rate before being reinforced by returning ants. After a while,
a given pheromone trail will be reinforced to such an extent
that when beginning its trip, each subsequent ant will follow
that pheromone trail that has been laid down on the shortest
path from the nest to a food source. In this case, pheromone
acts as a means of indirect communication and in a way as
collectivememory.Ant colony algorithms andparticle swarm
optimization are themost popularmethods that were inspired
by natural collective animals behavior.

It is easy to compare two algorithms based on compu-
tational experiments if these algorithms can be run on the
same input data. As for the traveling salesman problem, the
TSPLIB library facilitates such comparisons (Reinelt 1995).
Apart from data themselves, this library also provides opti-
mal solutions for most problems. However, there is no such
library for the dynamic traveling salesman problem. One of
the aims of this paper is to create a new approach for test-
ing the quality of results that are obtained for the DTSP.

A library of the DTSP instances that have been generated
contains information about optimal solutions for every sub-
problem which allows for a simple and precise evaluation of
the performance of the algorithms. This library was used to
compare the swarm intelligence algorithms investigated in
this paper, i.e., the DPSO, the MMAS and the PACO.

1.1 Contributions

Compared to our previous articles on the DPSO for the
DTSP (described briefly in Sect. 2), the research has been
extended in a few directions. Firstly, we closely compare
the convergence and efficiency of the two DPSO versions:
the DPSOR−, in which the pheromone values are preserved
between the subsequentmodifications of the input data (prob-
lem) changes, and the DPSOR+, in which the pheromone is
reset after each change. Secondly, we introduce a systematic
way of generating new DTSP instances (a DTSP instances
generator), which allows to precisely control the number and
range of the changes. Thirdly, based on the newly gener-
ated DTSP instances, we investigate how the performance
of the DPSOR+ and DPSOR− changes depending on the
number of dynamic changes to the problem being solved.
Lastly, based on statistical analysis, we compare the perfor-
mance of the DPSO algorithms with the MMAS and PACO
algorithms that were proven to perform competitively when
solving many static and dynamic combinatorial optimization
problems, including the TSP and DTSP.

The structure of this paper is as follows: The second sec-
tion presents a review of literature on the dynamic traveling
salesman problem and discrete particle swarm optimization
algorithm. The third section describes the DTSP, whereas the
fourth section contains a description of the tested algorithms
that solve the DTSP. The tests that were carried out are pre-
sented in the fifth section, and the final section presents a
summary and conclusions.

2 Related work

The dynamic traveling salesman problem was first described
by Psaraftis (1988). This problem is based on a change in
both the number of vertices and a distance matrix that occurs
over time. Each change can modify the optimal route, and
the knowledge of the optimum is useful to be able to mon-
itor the quality of the results that are being produced by an
algorithm. Younes et al. (2003) proposed a procedure in
which the optimal route does not have to be known for each
subproblem. A modification is carried out for half the num-
ber of subproblems (adding, removing or changing a given
distance), and each of these changes is undone in the sec-
ond half of the procedure. Data are the same in the first and
the last subproblem. The algorithm is run for each subprob-
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lem, but distances are only compared against the optimum
for the last subproblem. Another approach combines static
data with data obtained from satellites orbiting the Earth.
Satellite orbits are given by a formula and the optimal route
only changes within these orbits (Kang et al. 2004). Unfor-
tunately, the dynamics of this problem is low; for example,
the CHN146 + 3 problem contains 146 cities and 3 variable
points. Yet another approach involves estimating the optimal
value. In order to do this, one can use the Held–Karp algo-
rithm that is based on the concept of 1-tree. This approach
was adapted in Boryczka and Strąk (2013). An advantage of
taking this approach is that one can quickly estimate the opti-
mal value, whereas its greatest drawback is that there is no
approximation error margin. However, an improved method
which was proposed by Helsgaun (2000) allows one to esti-
mate the optimum length with an error of less than 1%, but
cannot predict what the results will be for other instances.
Anothermethodwas proposed byGuntsch et al. (2001) when
solving the DTSPwith the ACO. The approach involves sim-
ulating dynamic changes to the problem by exchanging a
number of cities between the current problem instance and
a spare pool of cities. As the method affects the optimum,
Guntsch et al. (2001) evaluated their algorithms based on the
relative differences in the length of the successive solutions.
A more general method for generating dynamic versions of
combinatorial optimization problems (COPs), including the
TSP, was proposed by Younes et al. (2005). The basic idea,
in the context of genetic algorithms, exploits the fact that
most optimization methods involve some form of mapping
from the problem solution space to the individuals used in the
algorithm, e.g., a permutation of nodes. To simulate dynamic
changes to the problem, the mapping function is modified
by exchanging labels (indices) of some nodes; thus, the
individuals represent different solutions, but the fitness land-
scape, and so the optimum, of the problem instance does not
change. Mavrovouniotis et al. (2012) proposed a more flexi-
ble approach in which the encoding of the problem instance
is modified, instead of the encoding of the individuals. In
the case of the TSP and VRP, it involves swapping the loca-
tions of pairs of nodes. The method keeps the optimum intact
and allows for precise control over the number of dynamic
changes to the problem instance. However, this approach
does not necessarily reflect each real-world scenario.

ThePSOalgorithmhas been adapted several times to solve
the TSP. The first version of the DPSO was proposed by Hu
et al. (2004). All particles were coded as binary strings. The
predefined velocity was interpreted as the probability of a bit
state transition from zero to one and from one to zero, but a
sigmoid function could be used to restrict the values to 0 and
1. Zhong et al. (1997) proposed a new algorithm for the TSP
in which the position of the particle was not a permutation of
numbers but a set of edges. It used the parameter c3, named
by the authors a mutation factor, which allowed control the

balance between the exploration and the exploration in a dis-
crete search space. Descriptions of the most PSO algorithms
for solving the TSP can be found, together with the results,
in Goldbarg et al. (2008). A hybrid of the PSO algorithm
and pheromone was used in Kalivarapu et al. (2009). This
approach was implemented to deal with the problem of opti-
mizing a function in a continuous space. The survey of the
PSO approaches to the dynamic continuous optimization can
be found in Blackwell et al. (2008).

There are relatively few applications of the DPSO in the
realm of dynamic COPs. Okulewicz and Mańdziuk (2013)
proposed a two-phase PSO to solve the dynamic VRP. In
the first phase, the PSO was responsible for the assignment
of the customers to vehicles, while in the second phase sep-
arate instances of the PSO were used to find the order in
which the customers should have to be visited (static TSP).
A similar approach was proposed in Demirtaş et al. (2015).
Khouadjia et al. (2010) proposed an adaptive PSO for solv-
ing the VRP with dynamic requests. The algorithm stored
previous solutions in the form of a memory continuously
updated during the algorithm runtime. The old solutions in
the memory were used as starting points when a change to
the problem definition was detected, as the changes could
result in a new optimum being in the vicinity of the old one.
A recent thorough survey on swarm intelligence methods for
solving the dynamic COPs (continuous and discrete) can be
found in Mavrovouniotis et al. (2017).

The literature on the DPSO algorithm for the DTSP is
very limited. This paper constitutes an extension of our ear-
lier work on the DPSO algorithm. The initial version of the
DPSOalgorithmwas presented inBoryczka andStrąk (2012)
and Boryczka and Strąk (2013). That version differed from
the one presented in this article in the pheromone update
formula and the solution construction process. In Boryczka
and Strąk (2015a), a new version of the DPSO algorithm
was presented, in which the computations were reset based
on the generated solutions entropy. The most recent work
of Boryczka and Strąk (2015b) concerned the problem of the
automatic algorithm parameter values adaptation. In this arti-
cle, we extend the previous work on the DTSP algorithm, as
presented in Boryczka and Strąk (2015a, b), in several ways.

Various solutions were proposed to adapt the ant colony
algorithms, including the ACO and PACO, to solving the
DTSP. One of the simplest ways of dealing with dynamic
changes is to reset the pheromone memory after a change
was detected; unfortunately, this strategy is not very effec-
tive because it leads to the loss of all the information about the
previous version of the problem that has been collected in the
pheromone memory. Guntsch et al. compared a strategy that
involves resetting the entire pheromone memory with two
strategies of modifying the pheromone only in the neighbor-
hood of a pointwhere a change in the problem’s configuration
has been detected; this modification involves adding or
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removing aTSPnode (Guntsch andMiddendorf 2001).How-
ever, strategies that involved resetting only a selected part
of the pheromone matrix did not produce significantly bet-
ter results than those obtained in the case of resetting the
entire memory. The authors of the PACO algorithm tested
its usefulness in solving the DTSP and QAP (Guntsch and
Middendorf 2002). Another idea proposed in the literature
was to diversify the ants population (Eyckelhof et al. 2002;
Mavrovouniotis and Yang 2010; Boryczka and Strąk 2015a).
After each change to the problem’s definition, the diversity of
the ants populationwas increased to allow for a faster adapta-
tion to the new version of the problem. In the recent years, the
ACO algorithms were successfully applied to other dynamic
combinatorial optimization problems. A good example is the
dynamic generalized traveling salesman problem (DGTSP)
for which Pintea et al. (2007) proposed an algorithm based
on the ant colony system (ACS). The computational experi-
ments on a set of the DGTSP instances, created based on the
TSPLIB repository, confirmed efficiency of the suggested
algorithm. A similar approach was also confirmed to be use-
ful when solving the generalized vehicle routing problem
(Pop et al. 2009). Time is a scarce resource when solving the
dynamic combinatorial optimization problems; thus, paral-
lel computations are very useful to accelerate the process of
finding solutions to a new version of a problem, i.e., after
a dynamic change. A parallel ACO was proposed in Pintea
et al. (2012) in order to solve the Euclidean DTSP instances
with a few thousand nodes. A recent survey of the parallel
ACO algorithms can be found in Pedemonte et al. (2011).

3 Dynamic TSP

The classical TSP problem is typically modeled using a com-
plete, weighted graph G defined as follows:

G = 〈V, E, w〉,

where:

V is a set of vertices representing cities,
V × V ⊂ E is a set of edges representing roads between
cities; |E | = (n

2

)
, n = |V | (a complete graph),

w is a function of weights: E → R, ∀e ∈ E , w(e) is
the weight of an edge.

The problem involves finding the minimum Hamiltonian
cycle in graph G, i.e., the shortest closed path that goes
through all vertices exactly once. The problem that is ana-
lyzed in this paper is symmetric: dab = dba (where di j
denotes the distance between cities i, j) and Euclidean—
any set of three cities, {a, b, c} ⊆ V , satisfies the triangle
inequality: dac ≤ dab + dbc.

The DTSP formulation is an answer to many real-world
scenarios, in which the external conditions alter the origi-
nal definition of the static TSP. For example, the travel time
between a pair of nodes may increase due to a higher traffic
or a car accident. In another scenario, new customers (nodes)
have to be accounted for or some of the current ones become
unavailable. In our work, we assume that the changes to the
problem definition are not very frequent.

Themodel of theDTSP consists of a sequence ofmodified
static TSP subproblems, and every change in these subprob-
lemsmeans amodification of the distances and/or the number
of vertices (Psaraftis 1988). In formal terms, this problem can
be defined in the following way (Li et al. 2006):

D(t) = {di j (t)}n(t)×n(t), (1)

where:

t denotes the parameter of time or the subproblem num-
ber,
i , j denote the ends of an edge,
n(t) denotes the number of vertices as a function of time.

A change ismade randomly and onlywith regard to a selected
subset of vertices. Only the variant that involves a change in
a distance matrix is analyzed in this paper.

3.1 DTSP Instances Generator

In the context of the DTSP, different algorithms are usu-
ally compared in such a way that the coordinates of vertices
(cities) are randomly modified for each execution of an algo-
rithm; therefore, each time, the search space changes in
a slightly different manner. The tests that were presented
in Bilu and Linial (2012) show that each change in the con-
figuration of the problem entails a change in the location
of the global optimum which is difficult to predict. It also
has other consequences, such as a change in the problem’s
difficulty level. The difficulty of the TSP can be analyzed
in the context of, for example, the distances between local
minima as well as between local minima and the global opti-
mum. If the distance between the global optimum and the
other optima is large, the search process can easily get stuck
in a local optimum (Bilu and Linial 2012). Thus, the prob-
lem’s difficulty increases in a way that is hard to predict. In
order to facilitate a comparison between the analyzed algo-
rithms in terms of efficiency in the context of the DTSP, the
following strategy was adapted. A set of TSP instances was
selected from the TSPLIB library (Reinelt 1995), on the basis
of which instances of the DTSP were created (the TSPLIB
format was maintained) by randomly changing the location
of a predetermined number of vertices in accordance with
Algorithm 1. The resulting DTSP instance consisted of 11
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Fig. 1 On the left-hand side is
a visualization of the optimal
route for the problem (ch130),
whereas on the right-hand side,
the edges that differentiate the
optimal solution that had been
created before the changes were
made from the one that was
created after those changes are
marked in red (color figure
online)

consecutive subproblems; the first subproblem was identical
to the TSP instance from the TSPLIB library, whereas each
subsequent subproblem was created by changing the loca-
tion of a predetermined proportion of vertices. New values
of coordinates (p′

x , p
′
y) of a given vertex (city) were calcu-

lated in accordance with the formula:

r = fin f · rand(0, davg)

φ = rand(0, 2π)

p′
x = px + r · cos(φ)

p′
y = py + r · sin(φ),

(2)

where (px , py) denote the previous location of that vertex,
davg represents the average distance between all points and
φ stands for the angle at which the point will be shifted.
Parameter fin f is a scaling parameter that controls the extent
of changes; in this paper, a value of 0.3 was adapted.

Compared to some of the more advanced methods men-
tioned in Sect. 2, the location changes in the proposed gen-
erator influence the optima of the subproblems. Although it
is clearly a disadvantage compared to the optima-preserving
methods, it may be closer to many real-world scenarios in
which weights of the TSP edges are modified (Tinós et al.
2014). For each subsequent subproblem, an optimal solution
was determined by using the Concorde algorithm (Applegate
et al. 2006).

Equation 2 enables a precise control over the extent of
changes to the DTSP definition. Moreover, it preserves the
triangle inequality of the distances between the nodes; thus,
the problem after a change should not be more difficult to
solve than the original version. This makes it easier to focus
on the behavior of the studied algorithms.

Figure 1 shows the optimal solutions for two consecu-
tive subproblems for the berlin52 instance. The edges that
differentiate the new solution from the previous one have
been highlighted. The current library1 contains 64 problems
which are based on eight problems from the TSPLIB library:
berlin52, kroA100, ch130, kroA200, gil262, gr202, pcb442
and gr666; for each of them, a total of eight DTSP instances

1 The library also contains charts presenting optimal solutions, and it
can be made available upon request to the authors.

Algorithm 1: DTSP instances generator

1 Init the first subproblem I0 using TSP instance; // from
TSPLIB

2 Set pm ; // number of changes
3 Set psub; // number of subproblems
4 while t = 0 ≤ psub do
5 Solve It using an exact algorithm;
6 Save It definition (coordinates and optimum);
7 It+1 = copy(It );
8 Select randomly p unique coordinates from It+1;
9 forall the pi ∈ p do

10 Modify coordinates according to Formula (2);

Fig. 2 Mean difference between consecutive DTSP subproblems’
global optima as measured by the number of different (new) edges ver-
sus the differences between consecutive subproblems (which is equal to
the percent of the total number of vertices whose locations underwent
a change)

have been generated, which differ in terms of the percent-
age of vertices that undergo modifications. The following
percentages were assumed: 3, 5, 10, 20, 30, 40, 50, 60 and
70%. For example, for a value of 5%, consecutive subprob-
lems differ in terms of the coordinates �0.05 · n� of vertices,
where n denotes the total number of vertices (problem size).
Figure 2 shows how much the consecutive optima differ
from one another in terms of the number of vertices that
undergo changes. As can be seen, the greater the number
of coordinates that undergo changes, the larger the differ-
ences between the consecutive optima, and these differences
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increase with the size of the problem. For example, if subse-
quent subproblems are created for the problem kroA200 by
changing the location of 30% of vertices, then subsequent
optimal solutions contain approximately 50% of new edges
relative to the previous solution.

4 Particle Swarm Optimization

A pheromone is a characteristic component of ant colony
algorithms, in which a set of ants lay virtual pheromone trails
on elements of the search space (solution space). The clas-
sical PSO algorithm does not use pheromone, but there are
hybrid versions of this algorithm that do. This is true for both
continuous and discrete optimization algorithms.

4.1 DPSO

Many concepts had to be redefined in order to adapt PSO
algorithm to a discrete search space. The algorithm that was
proposed in Zhong et al. (1997) is based on sets of edges. A
single edge e is an ordered 3-tuple (a, x, y), where a ∈ [0, 1]
denotes the probability of choosing this edgewhenmoving to
the next position and x, y ∈ V,∀x,y x = y denote the ends of
that edge. In this algorithm, the solution to the TSP: {(1, 2);
(2, 3); (3, 4); (4, 1)} takes the following form: {(1, 1, 2),
(1, 2, 3), (1, 3, 4), (1, 4, 1)}. The position of particle X is rep-
resented by a set of edges that constitute a Hamiltonian cycle.
Velocity V represents the search direction. It is a set of edges
that can contain a partial solution to the problem (it does
not contain all the edges that are needed to create a Hamil-
tonian cycle) or redundant edges. The common feature of
all particle swarm optimization algorithms is that they work
based on an equation that describes a particle’s movement in
the search space. The original DPSO algorithm (Zhong et al.
1997) does not use pheromone which provides an adaptation
mechanism for the DTSP. Formulas (3) and (4) present the
authors’ own discrete version of these equations that take
into account pheromone (firstly described in Boryczka and
Strąk (2012)).

V k+1
i = c2rand() · (gBest − Xk

i )

+ c1rand() · (pBesti − Xk
i )

+ ω · V k
i (3)

Xk+1
i = �τ k(V k+1

i )
︸ ︷︷ ︸

step a

⊕ c3rand() · Xk
i︸ ︷︷ ︸

step b

(4)

where i denotes the particle number, k—the iteration number
and rand()—a random variable within the range [0, 1]. The
sets of edges pBest and gBest represent particle i’s best posi-
tion and the best solution that has been found, the addition

and subtraction operators denote the sum and difference of
the sets, and coefficientω is called the inertia weight. Param-
eters c1 and c2 are cognitive and social scaling coefficients,
respectively; they assign the appropriate values to parame-
ter a for each element of the pBest and gBest sets. Operator
⊕ adds the missing edges to the next position; these edges
are necessary for creating the correct route for the TSP. For
this purpose, the operator uses the edges that were used to
calculate the previous position. The way in which the opera-
tor works will be explained later in this paper. The function
�τ k increases the probability of going to the next position
by using pheromone which has already been employed in
ant colony algorithms. The function is used in row 10. Algo-
rithm 2 for calculating a particle’s next velocity as well as
at the stage of edge filtering. The reinforcement function is
given by formula:

�τ k(V k+1
i ) = a + [(τxy − 0.5) · k

pit
],

∀(a, x, y) ∈ V k+1
i ⊆ E

(5)

where (a, x, y) denotes an edge that belongs to the set of
velocities, τxy represents the value of pheromone that has
been read from the pheromone matrix, k stands for the algo-
rithm iteration number and pit denotes the number of all
iterations of the algorithm. Coefficient k

pit
is a scaling coef-

ficient that controls the strength of (positive or negative)
reinforcement based on the number of iterations of the algo-
rithm that have been carried out. As a result of executing
function (5), a set of edges is created with coefficient a (i.e.,
the probability of using a given edge to go to the next position)
which has been positively or negatively reinforced. The value
of the reinforcement is within the range [−0.5, 0.5]. The
pheromone that has been assigned a negative value (repel-
lent) is interpreted as a penalty function which repels those
edges that do not improve the quality of the obtained solution.
In this way, the algorithm only chooses those edges that have
a high chance of being a part of good quality solutions as rep-
resenting a given particle’s next position. Uncertainty about
the quality of edges is reflected in the pheromone value. The
higher the value, themore probable it is that a given edge will
improve the solution. In subsequent iterations of the algo-
rithm, this value is modified as a result of evaporating and
reinforcing the pheromone. Those edges that often constitute
a part of the best solution have a high pheromone value, and
therefore, they also receive positive pheromone reinforce-
ment (Formula 5). The ability to self-adapt is an important
characteristic of pheromone in the context of the DTSP. If in
the initial iterations of the algorithm a certain edge is often
a part of the best solution, then it will be assigned a high
value in the pheromone matrix. If, however, that edge ceases
to be a part of the best solution at some point, its value in
the pheromone matrix will begin to decrease, until it finally
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Fig. 3 Calculation of a new position in the DPSO algorithm. This
operation is carried out for all particles in the swarm. All variables are
sets

reaches the minimum value τmin . Figure 3 shows a graphical
representation of the DPSO algorithm.

The process of updating the pheromone matrix is as fol-
lows: In thefirst iterationof the algorithm, each element of the
matrix is assigned a default value, i.e., τmax , which is also the
initial value. After each subsequent iteration, the pheromone
is evaporated by multiplying the pheromone matrix by coef-
ficient ρ < 1, and then, the edges that are a part of the best
solution that has been found are reinforced. The values that
are stored in thematrix are within the range [τmin, τmax ]. The
pheromone updating process is identical to theworking of the
MAX–MIN Ant System algorithm which was developed
by Stützle and Hoos (2000).

Algorithm 2 shows how the DPSO algorithm uses for-
mulas (3) and (4). The first steps involve creating a random
particle swarm, based on which the best position is selected,
i.e., gBest . Then, the next velocity of each particle is calcu-
lated in accordance with formula (3) (line 5. Algorithm 2).
The operation of multiplying a given number by a set is car-
ried out as amultiplication of that number by each coefficient
a for elements of that set (edges). The probability of choosing
a given edge for a particle to go to the next position depends
on coefficients c1, c2, c3 and a random variable, i.e., rand().

Algorithm 2: DPSO Algorithm

1 Create an initial swarm;
2 Calculate neighborhood;
3 for k = 0 → pit do
4 for i = 0 → ppop do
5 Calculate velocity V k+1

i // Eq. (3);
6 Edges filtering stage;
7 Xk+1

i = ∅;
8 forall the (a, x, y) ∈ V k+1

i do // Formula (4),
step a

9 Select random r ∈ [0, 1];
10 Increase a according to Eq. (5);
11 if r ≤ a then
12 Xk+1

i ∪ (1, x, y);

13 forall the (a, x, y) ∈ Xk
i do // Eq. (4), step b

14 Select random r ∈ [0, 1];
15 ā = r · c3;
16 Select random r ∈ [0, 1];
17 if r ≤ ā then
18 Xk+1

i ∪ (1, x, y);

19 Completion stage;
20 if k mod 50 = 0 then
21 forall the v ∈ V (G) do
22 if deg(v) < 2 then
23 forall the m ∈ Nv do // Neighborhood

v

24 if deg(m) < 2 then
25 Xk+1

i ∪ m;

26 else
27 Complete Xk+1

i using MMAS algorithm;

28 Update pBesti ant gBest ;

This process is responsible for a random selection of edges.
In this way, a particle’s next velocity is computed, based on
which its next position is established. A new solution is cre-
ated in two stages, i.e., filtering and completion. At the first
stage, each edge belonging to the set of velocities is copied
to a particle’s next position if the value of coefficient a for
that edge is higher than the value of random variable r (rows
11. and 17.).

The filtering stage is followed by the completion stage,
which is aimed at adding the missing edges so as to cre-
ate a complete Hamiltonian cycle. The algorithm that was
proposed by Zhong et al. (1997) uses the nearest neigh-
bor heuristic for this purpose. The solution that is proposed
in this paper employs two techniques: the nearest neighbor
heuristic that is based on the α-measure (Helsgaun 2000)
and the transition function, which has already been used
in ant colony algorithms (Stützle and Hoos 2000). The lat-
ter makes use of this feature: Each vertex in a Hamiltonian
cycle is a vertex with degree two. After the filtering stage,
a list of missing vertices and their degrees is made. Then,
by manipulating this list, the algorithm connects vertices by
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using the transition function. This modification intensifies
the exploration of the search space, which translates the qual-
ity of solutions into the amount of pheromone and therefore
increases the proposed algorithm’s adaptability. Both meth-
ods of completing the set of edges are used according to the
principle: For every 50 completion operations that have been
conducted by using the transition function, one iteration of
the nearest neighbor heuristic is carried out. After creating
a complete Hamiltonian cycle, all values representing the
probability of selecting edge a are reset to an initial value of
one.

The dominant operation in the DPSO algorithm is the
intersection of a pair of solutions, e.g., the current position
of a particle and gBest (Eq. 3). The time complexity of this
operation is critical for the performance of the DPSO algo-
rithm. We adopted the following encoding. The Hamiltonian
cycle is stored in an array of natural numbers in which the
value at index i denotes the end node of the edge starting at
node i . This encoding allows to calculate the intersection of
a pair of Hamiltonian cycles in O(n) time, where n denotes
the size of the problem (the number of nodes). The set of
velocities and partial solutions is stored as lists of 3-tuples
(a, x, y), where a ∈ [0, 1] denotes the probability of select-
ing the edge (x, y), x, y ∈ V, ∀x,yx = y.

5 Results

This section consists of two parts. The first part describes
the process of creating a library DTSP instances (tests). The
secondpart presents the results of the experiments conducted.
Each calculation was repeated 30 times.

5.1 Parameters of the algorithms

In order to objectively compare the algorithms, a constant
fixed number of generated (and evaluated) solutions was
adapted as the stopping criterion. On this basis, the values of
the remaining parameters of the algorithmswere determined,
for example, the population size and the number of iterations
of an algorithm. Table 1 contains list of the parameters of the
investigated algorithms.

The number of solution evaluations, pev , for each DTSP
instance equals:

pev = pmu · n · pit · pps

where pit and pps are the number of iterations of the algo-
rithm and the swarm size, respectively, and pmu is a preset
multiplier. The computations were carried out for a few
increasing values of pmu and, hence, for a few different num-
bers of allowed solution evaluations. The total number of
executed iterations (ptev) was 11 · pev because each of the

Table 1 Parameters of the algorithms

Name Description

pit Number of algorithm iterations

ppop Size of the population

psub Number of DTSP subproblems

pev Number of solution evaluations

ptev Total number of sol. evaluations

pmu Solution evaluations multiplier

n Size of the problem

DTSP instances consisted of 11 subproblems (psub, constant
number in article). The specific values of these parameters
that were used in the experiments are shown in Table 2.

The parameter values of theMMASand PACOalgorithms
were chosen based on suggestions in the literature Stützle and
Hoos (2000); Oliveira et al. (2011) and preliminary computa-
tions. The parameter values for the MMAS were as follows:
number of ants—m = n, where n is the size of the prob-
lem, β = 3, q0 = 0.0, size of the candidate set cl = 30
and ρ = 0.9—pheromone update coefficient. For the PACO,
a fixed number of ants, i.e., ppop = 10, was adapted, as a
result of which the number of iterations for each subprob-
lem of the DTSP equaled �0.1 · pev�. This is consistent with
the observations that were presented in Cáceres et al. (2014),
in which the ACO algorithms were tested for a small com-
putational budget. The values of the other parameters for
the PACO were: β = 3, q0 = 0.8, cl = 30, α = 0.1
and ψ = 0.1—pheromone evaporation coefficients for local
and global pheromone trail updates, respectively. Also the
age-based strategy for updating the pheromone trail from an
archive of solutions of size 5 was used.

As for the DPSO algorithms, the following parameters
were determined (based on Table 2): the number of iterations
(pit ) and the population size (ppop), which are presented in
Table 3. Table 4 shows the values of the remaining DPSO
parameters.

5.2 DPSO with and without pheromone

During the first phase of the experiments, the DPSO algo-
rithms with and without pheromone memory were compared
using the static TSP. The aim was to evaluate how the
pheromone memory affects the performance of the DPSO. If
the implementation of the DPSO algorithm with pheromone
allows one to obtain better results than the version without
pheromone in the case of the TSP, then this implementa-
tion may also allow one to achieve better results for the
DTSP. This idea can be justified by the fact that the DTSP
can be seen as a sequence of static TSP instances and the
information gathered about one instance in the pheromone
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Table 2 Number of solution
evaluations for a single DTSP
subproblem for the DPSO
algorithm

Problem Evaluations (pev)

Name n pmu = 32 pmu = 64 pmu = 128 pmu = 256 pmu = 512 pmu = 1024

berlin52 52 1664 3328 6656 13,312 26,624 53,248

kroA100 100 3200 6400 12,800 25,600 51,200 10,2400

kroA200 200 6400 12,800 25,600 51,200 102,400 204,800

gr202 202 6464 12,928 25,856 51,712 103,424 206,848

gr666 666 21,312 42,624 85,248 170,496 1,875,456 681,984

The values were calculated according to the formula: pmu · n

Table 3 Parameters of the
DPSO algorithm for all problem
instances

Problem pmu = 32 pmu = 64 pmu = 128 pmu = 256 pmu = 512 pmu = 1024

pit ppop pit ppop pit ppop pit ppop pit ppop pit ppop

berlin52 52 32 104 32 208 32 416 32 832 32 1664 32

kroA100 50 64 100 64 200 64 400 64 800 64 1600 64

kroA200 80 80 160 80 320 80 640 80 1280 80 2560 80

gr202 64 101 128 101 256 101 512 101 1024 101 2048 101

gr666 192 111 384 111 768 111 1536 111 3072 111 6144 111

Table 4 Parameters of the
DPSO algorithm with and
without pheromone

Problem Zhong et al. (1997) DPSO DPSO with pheromone

Paper settings Original setting Paper settings

c1 c2 c3 ω c1 c2 c3 ω c1 c2 c3 ω

berlin52 1.5 2 2 0.6 0.5 0.5 0.5 0.2 0.5 0.5 0.5 0.2

kroA100 1.5 2 2 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

kroA200 1.5 2 2 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

gr202 1.5 2 2 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

gr666 1.5 2 2 0.6 0.5 1 1.5 0.6 0.5 1 1.5 0.6

memory may be useful in the context of a modified (next)
instance.

Figure 4 presents the convergence of the two versions of
the DPSO algorithm (with and without pheromone) to the
optimum for five selected instances of the TSP. In the con-
text of a given instance, calculations were repeated with an
increasing number of iterations (in accordance with Table 3);
they were repeated 30 times.

The sets of parameter values are marked with Roman
numerals. The numeral “I” denotes values that were adapted
for the calculations carried out for the purpose of this paper.
These values were determined based on the results of pre-
liminary experiments. The values of the parameters of the
DPSO (marked as II) that were proposed in Zhong et al.
(1997) are also presented here for comparison. In the ver-
sion without pheromone, the settings that were proposed
in Zhong et al. (1997) (Zhg(II)) allow one to obtain bet-
ter results than the settings for the version with pheromone
(Zhg(I)). This is because the algorithm with pheromone
complements the probability of choosing a given edge with
pheromone reinforcement. The values of scaling parame-

ters c1, c2, c3, ω should be lower, unlike in the algorithm
version without pheromone, where this reinforcement does
not occur. Nonetheless, this comparison was necessary as
these settings were contrasted with those that were used in
the version with pheromone. The two versions of this algo-
rithm have different convergence characteristics. The version
with pheromone returns better results for a larger number of
iterations, which is due to the pheromone matrix’s demand
for learning. This is disadvantageous when the size of the
search space and the number of iterations are small. As for
the gr666 problem, i.e., when the search space is larger, the
algorithm without pheromone allowed one to obtain better
results only for the smallest number of iterations (192). In
any other case, the algorithm version with pheromone pro-
duced better results. It was this algorithm that found the best
solution for each problem (without taking the number of iter-
ations into account). The influence of the growing number
of iterations on the quality of the obtained solutions (the
distance from the optimum) is also important. This is par-
ticularly visible for larger search spaces (from the kroA100
problem). As for the implementation of the DPSO algorithm
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(a) (b) (c) (d) (e)

Fig. 4 Convergence of the DPSO algorithms to the optimum relative to the number of iterations. “Pher” and “Zhg” denote the implementation of
the algorithm with and without pheromone, respectively. Roman numerals (I and II) refer to the values in Table 4

with pheromone, there is a large improvement (the line of
convergence is almost vertical). The improvement is not vis-
ible for the implementation of the DPSO algorithm without
pheromone.

5.3 Comparison of the variants of the DPSO

The next series of experiments entailed a comparison of two
variants of the DPSO algorithm with pheromone in terms
of convergence: one that involves resetting the pheromone
matrix (DPSOR+) after each change of the input data and
the other one that does not involve resetting the matrix
(DPSOR−), in the context of the kroA200 instance from the
DTSP repository for two different values of changes in the
coordinates of vertices (3 and 50%). In the former case, the
DPSOR+ algorithm produced results that were 1.95% bet-
ter (Fig. 5) than those obtained by the version that involves
resetting the pheromone matrix (kroA200, 3% of changes in
each subproblem). In the latter case (Fig. 5), the difference
was −0.23%, in favor of the variant that involves resetting
the pheromone value after each change of the input data
(kroA200, 50% of changes in each subproblem). In the last
iteration of the algorithm (before the change of the data),
the best solution is marked and information is provided on
the variant of the algorithm’s implementation that produced
that solution. The two charts show different characteristics of
convergence to the optimum, except for the first subproblem,
for which the pheromonematrix in both these algorithmswas
initialized with the same (initial) values.

It can be seen from Fig. 5 that the variant that does not
involve resetting the matrix in the first iterations of the algo-

rithm has better convergence and that it found a solution that
was not much different from the final result. Since the new
optimum differs from the previous one in terms of only 10%
of edges, the “knowledge about the problem” that has been
gathered in the form of pheromone is mostly up to date and it
improves the convergence of the algorithm, especially at the
initial stage. In subsequent iterations, the pheromone matrix
slowly adapts to the new data. After half of all iterations are
executed, the convergence rate increases again. As conver-
gence is fast at the beginning, the algorithm has more time
to find edges that are elements of the optimal solution. This
is why the R− version (which did not involve resetting the
pheromone value) achieved better results for 9 out of 11 sub-
problems.

As shown in Fig. 6, pheromone did not accumulate on
good quality edges due to a large number of changes (50%)
(there was a large number of changes in the optimum relative
to the previous optimum, i.e., from before the changes took
place). Therefore, both variants of the algorithm had to adapt
the pheromone for new data, and therefore, they explored
the best edges that had been found previously to a lesser
extent. This does not have an impact on how many better
solutions are found (a total of 8 per 11 subproblems), but it
does influence a difference that is expressed in percentage
points, which is negative and whose absolute value is small
(0.23). Therefore, the profit from copying the pheromone
matrix (transferring knowledge about the previous solution)
was negative. Given that the value of themean differencewas
negative and the absolute value was small, it can be stated
that the benefit of retaining previous pheromone values was
negligible in this case.
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Fig. 5 Convergence of the DPSO algorithms to the optimum for the
problem kroA200 with 3% of changes. R+ and R− denote the version
that involves resetting the pheromone value and the version that does

not, respectively. X-axis tick marks denote the moments at which the
location of some of the coordinates of vertices (cities) changes

Fig. 6 Convergence of the DPSO algorithm to the optimum for the problem kroA200 with 50% of changes. R+ and R− denote the version that
involves resetting the pheromone value and the version that does not, respectively

5.3.1 Influence of the number of iterations on the
convergence of algorithms

The quality of the solutions that are generated by heuristic
algorithms significantly depends on the number of generated
solutions. In order to test the convergence of the analyzed
variants of the DPSO algorithm, i.e., those that involve reset-
ting pheromone memory and those that do not, a range
of calculations were carried out for different numbers of
iterations of the algorithm which had been determined in

accordance with Table 3. Figures 7 and 8 present charts
showing average quality of the solutions that were obtained
for versions of the DPSO algorithm that did and did not
involve resetting pheromone memory, respectively. As can
be seen, together with an increase in the number of iterations
of the algorithm, the quality of solutions that are generated
improves significantly, and the largest relative improvement
in convergence can be observed for smaller values of the iter-
ationmultiplier (pmu). If the number of iterations was further
increased, this would certainly improve the quality of solu-
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Fig. 7 A comparison of mean relative errors of solutions for the tests
berlin52, kroA100, kroA200 and gr202 in terms of the percentage of
the number of vertices that underwent changes for the DPSOR+ algo-
rithm (i.e., the DPSO algorithm that involves resetting the pheromone
value). The consecutive series of data on the charts denote the results
for different values of multipliers, in accordance with Table 3

Fig. 8 A comparison of mean relative errors of solutions for the tests
berlin52, kroA100, kroA200 and gr202 in terms of the percentage of the
number of vertices that underwent changes for the DPSOR− algorithm
(i.e., the DPSO algorithm that does not involve resetting the pheromone
value)

tions, but the change would be relatively small, which one
can observe by comparing the results for the values of the
multiplier: 512 and 1024.

The dominance of the DPSOR− algorithm, in which
pheromone memory is not reset after changes that are made
to the current subproblem, is also evident. This is particularly
visible for the smallest problems, i.e., berlin52 and kroA100.

5.4 Comparison of all algorithms

In order to compare the DPSO algorithms with the MMAS
and the PACO, a range of computational experiments was
conducted for a set of four instances: berlin52, kroA100,
kroA200 and gr202. To check the “extent of usefulness” of
pheromone memory for the search process, the behavior of
algorithms was tested for the instances of the problem with

an increasing percentage (3, 5, 10, 20, 30, 40, 50, 60 and
70%) of the total number of vertices (cities) whose coor-
dinates underwent random changes. Intuitively, when only
a small proportion of vertices change their location, the
existing knowledge about the search space that is stored in
pheromone trails largely remains up to date and makes it
easier to find high-quality solutions for a new subproblem.
If, however, the extent of changes is very large, for example
60%, one can expect that “old” knowledge about the problem
will mostly be outdated.

Figure 9 presents a box plot of the mean solution error for
the DPSO algorithms that involve resetting the pheromone
matrix (DPSOR+) and the DPSO algorithms that do not
involve resetting the pheromone matrix as well as for the
MMAS and PACO algorithms for the problem berlin52.
As can be seen, the DPSO algorithm outperforms the other
algorithms, especially when the number of vertices whose
coordinates undergomodifications between consecutive sub-
problems is small. The version of the DPSO algorithm that
does not involve resetting the pheromone matrix turned out
to be much better than the DPSO algorithm version that does

Fig. 9 Box plot of the relative solution error for the berlin52 DTSP
instance for the analyzed algorithms. The boxes are grouped according
to the percent of the total number of vertices (cities) whose locations
underwent a change

Fig. 10 Box plot of the relative solution error for the kroA200 DTSP
instance for the analyzed algorithms. The boxes are grouped according
to the percent of the total number of vertices (cities) whose locations
underwent a change
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involve resetting the pheromone value when the percentage
of the number of vertices that underwent changes was not
higher than 20%.

A comparison of the algorithms for the gr202 instance,
which is presented in Fig. 10, is more interesting. ACO algo-
rithms achieved better results when the problem underwent
small changes, i.e., changes that did not amount to more
than 5%, whereas the DPSO algorithm proved to be bet-
ter when the changes were significant (60 and 70%). This
is because the adapted parameter values of the MMAS and
PACO algorithms resulted in putting a large emphasis on the
exploitation of the search space around the best solutions that
had been obtained at the expense of more extensive explo-
ration.

All the algorithms were compared in terms of the qual-
ity of the results that were produced based on a two-sided,
nonparametric Mann–Whitney–Wilcoxon test, with a signif-
icance level of 5%. The results of the calculations for the
number of evaluations pev = 256 · 11 · n are summarized in
Table 5. These results vary significantly for some instances.
The MMAS algorithm performed significantly better more
often than the other algorithms for the kroA100 and kroA200
instances. The DPSO algorithm, which did not involve reset-
ting the pheromone matrix, obtained good results for the
berlin52 and kroA100 instances. The performance of the
PACO was especially good for the gr202 instance. When
taking into account all four instances, the MMAS obtained
significantly better results in 55 cases, the DPSOR− algo-
rithm (i.e., the DPSO version of algorithm, which did not
involve resetting the pheromone value) in 49 cases, the PACO
algorithm in 39 cases and theDPSOR+ algorithm in 28 cases.

To recapitulate, the ant colony algorithms turned out to be
better in a larger number of cases, even though the parameter
values of the DPSO were chosen on a per-instance basis, as
indicated in Table 4. Nevertheless, the performance of the
DPSO algorithms, particularly the DPSOR−, is encourag-
ing, especially considering the fact that the DTSP can be
considered a native as problem to the ACO algorithms, i.e.,
it is discrete and graph based.

6 Conclusions

Dynamic optimization problems have great practical signif-
icance. An innovative algorithm for discrete particle swarm
optimization (DPSO) is proposed in the present paper; this
algorithm has been enriched by pheromone memory which
is modeled on ant algorithms. The DPSO searches the solu-
tion space because of pheromone that makes use of machine
learning and due to the interaction between particles. In this
way, it combines the advantages of ant colony algorithms
and classical particle swarm optimization. For the purpose of
computational experiments, a library of DTSP instances was

developed based on the well-known TSPLIB library (Reinelt
1995). For each test, a dynamic counterpart was prepared
which consisted of a series of subproblems that had been
created as a result of a random change in the location of a
predetermined number of coordinates of cities (vertices). For
each subproblem, an optimal solutionwas determined,which
allowed one to clearly evaluate the quality of the results that
were obtained for the analyzed algorithms.

The algorithms were tested on four different DTSP
instanceswith 9 different intensities of changes between con-
secutive subproblems as well as for 6 different limits on the
number of generated solutions (in total, there were 216 com-
binations). The quality of the results greatly depended on
the computational budget that had been adapted. The aver-
age quality of solutions was within 1% from optima for the
larger numbers of solutions created. The quality of solutions
could have been significantly improved if local search had
been applied.

It is worth noting that the use of pheromone memory
improves the convergence of the DPSO algorithm for the
DTSP. If the differences (coordinates of points) between con-
secutive subproblems of the DTSP are relatively small, then
the knowledge about the previous subproblem that is accu-
mulated in pheromone memory makes it easier to find good
solutions for a new subproblem. This is particularly visi-
ble when the computational budget that has been adapted
is small, which confirms that this algorithm is useful when
the problem undergoes frequent changes and the time peri-
ods between consecutive changes does notmake it possible to
carry out long calculations. On the other hand, if the problem
rarely undergoes modifications, similar quality results can be
obtained by using the DPSO algorithm, in which pheromone
memory is reset following each modification of the problem
and the algorithm execution is equivalent to separate execu-
tions of this algorithm for each of the DTSP’s subproblems.

Although theMMAS and PACOalgorithms produced bet-
ter results in a larger number of cases, this advantage is
not big, which shows that the DPSO algorithm is compet-
itive. Further studies should take into account local search
heuristics and focus on solving larger DTSP instances (with
thousands of cities). It will also be interesting to use the
DPSO algorithm for other dynamic combinatorial optimiza-
tion problems, such as the dynamic vehicle routing problem.
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